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Abstract

Using the concept of extended Wardowski-Mizoguchi-Takahashi contractions, we investigate the ex-
istence of solutions for three type of nonlinear fractional differential equations. To patronage our
main results, some examples of nonlinear fractional differential equations are given.
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1. Introduction

Fixed point theory is a powerful mixture of several branches of mathematics such as analysis,
topology, and geometry. This theory has been applied as a very vigorous and substantial instrumen-
tation in the scrutiny of nonlinear phenomena. This theory has been applied in biology, chemistry,
economics, engineering, game theory, physics, logic programming etc particularly. After stating the
Banach contraction principle many authors have tried to develop this interesting field of mathematics.
For more circumstance in this direction we refer the reader to [7]-[9].

Let Π be the family of all maps π : [0,∞) −→ [0,∞) so that
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1. π(s) = 0 ⇔ s = 0;

2. π is nondecreasing and lower semi-continuous;

3. lim sup
κ−→0+

κ

π(κ)
<∞.

Consider,
(H): σn � σ for each n ≥ 0 where {σn} ⊆ X is an increasing sequence with σn → σ as n→∞.

Gordji and Ramezani [10] propounded an alternative of Mizoguchi-Takahashi Theorem [14] for
single-valued mappings.

Theorem 1.1. [10] Assume that (X, d,�) be a complete partially ordered metric space and let µ :
X −→ X be an increasing mapping so that there is σ0 ∈ X with σ0 � µ(σ0). Assume that there is
π ∈ Π so that

π(d(µ(ι), µ(κ))) ≤ α(π(d(ι, κ)))π(d(ι, κ)) (1.1)

for all comparable elements ι, κ ∈ X, where α : [0,∞) −→ [0, 1) avers the reservation that lim sup
s−→x+

α(s) <

1, for all x > 0. If either µ is continuous, or, (H) holds, then µ admits a fixed point.

Definition 1.2. [11] A self-mapping µ on X is triangular α-admissible if

(T1) α(µ(ι), µ(κ)) ≥ 1 provided that α(ι, κ) ≥ 1 where ι, κ ∈ X,

(T2) α(ι, κ) ≥ 1 provided that α(ι, ζ) ≥ 1 and α(ζ, κ) ≥ 1 where ι, κ, ζ ∈ X.

Lemma 1.3. [11] Let there is σ0 ∈ X so that α(σ0, µ(σ0)) ≥ 1, where µ is a triangular α-admissible
mapping. Let σn = µnσ0. So,

α(σk, σl) ≥ 1 for all k, l ∈ N with k < l.

Denote by Σ the set of all functions σ : (0,∞) −→ [0, 1) such that

lim sup
ι−→x+

σ(ι) < 1,

for any x > 0.
Denote by Ξ the set of all functions Υ : (0,∞)→ R so that:

(δ1) Υ is strictly increasing and continuous.

(δ2) Υ(s) = 0↔ s = 1.

As examples of elements of Ξ:

(i) Υ1(x) = x ln(x),

(ii) Υ2(x) = ln(x),

(iii) Υ3(x) = − 1√
x

+ 1

(iv) Υ4(x) = − 1
x

+ 1

Denote by Π′ the family of all maps π : [0,∞) −→ [0,∞) so that
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1. π(s) = 0 ⇔ s = 0;

2. π is nondecreasing and continuous.

For ι, κ ∈ X, set
∆(ι, κ) = max{d(ι, κ), d(ι, µ(ι)), d(κ, µ(ι))}.

Consider,
(K): α(σn, σ) ≥ 1 for each n ≥ 0 provided that {σn} is a sequence in X so that α(σn, σn+1) ≥ 1

for each integer n ≥ 0 and σn → σ as n→ +∞.
Now, we recall the main results of [15]. In fact, in [15], the authors have extended the Mizoguchi-

Takahashi fixed point result motivated by Wardowski’s approach [16].

Theorem 1.4. [15] Let µ be a self-mapping on the complete metric space (X, d) and assume that
there is a function α : X2 → [0,∞) satisfying

Υ(α(ι, κ)π(d(µ(ι), µ(κ)))) ≤ Υ(σ(π(d(ι, κ)))) + Υ(π(∆(ι, κ))) (1.2)

for all ι, κ ∈ X with µ(ι) 6= µ(κ), where Υ ∈ Ξ, σ ∈ Σ and π ∈ Π′. Suppose that µ is a triangular
α-admissible mapping and assume that there is σ0 ∈ X for which α(σ0, µ(σ0)) ≥ 1. Then µ admits
one fixed point if,

(I) either µ is continuous, or;

(II) (K) holds.

Moreover, such fixed point is unique if for any two fixed points ι, κ of µ, we have α(ι, κ) ≥ 1.

Note that if π is considered as the identity function, Theorem 1.4 can be expressed as the following
result.

Theorem 1.5. [15] Let f be a self-mapping on the complete metric space (X, d) and let there is a
function α : X2 → [0,∞) such that

Υ(d(µ(ι), µ(κ))) ≤ Υ(σ(d(ι, κ))) + Υ(∆(ι, κ))) (1.3)

for all ι, κ ∈ X with α(ι, κ) ≥ 1 and µ(ι) 6= µ(κ), where Υ ∈ Ξ and σ ∈ Σ. Suppose that µ is a
triangular α-admissible mapping and there is σ0 ∈ X for which α(σ0, µ(σ0)) ≥ 1. Then µ admits one
fixed point if,

(I) either µ is continuous, or;

(II) (K) holds.

Moreover, such fixed point is unique if α(ι, κ) ≥ 1 for any two fixed points ι, κ of µ.

Fractional calculus is an important field for research in mathematics considering the properties
of derivatives and integrals of non-integer orders and has played an important role in the study of
nonlinear fractional differential equations that arise from the modeling of nonlinear phenomena. In
particular, this discipline contains the study of methods for solving fractional equations.

The theory of fractional calculus includes even complex orders so that fractional calculus becomes
very darling and has many applications.
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Now, let us recall some introductive definitions of fractional differential equations ([1], [2] and
[6]).

For a continuous function µ : [0,∞) → R, the Caputo-derivative of fractional order α is defined
by

cDαµ(x) =
1

Γ(n− α)

∫ x

0

(x− σ)n−α−1µn(σ)dσ (n− 1 < α < n, n = [α] + 1),

whereas the Reimann-Liouville fractional derivative of order α is defined by

Dαµ(x) =
1

Γ(n− α)
(
d

dx
)n
∫ x

0

(x− σ)n−α−1µ(σ)dσ (n− 1 < α < n, n = [α] + 1).

2. Main results

Now, we are able to state and prove the main result of this work. We give our results in the
following three forms:

Form 1: In this form, we consider the following nonlinear fractional differential equation

cDαι(x) = µ(x, ι(x)) (x ∈ J , 1 < α ≤ 2), (2.1)

with the following boundary value conditions:

ι(0) = 0, ι(1) =

∫ η

0

ι(σ)dσ (0 < η < 1),

where µ : [0, 1] × R → R is a continuous function. Here, X = C([0, 1],R) is the Banach space of
continuous functions from [0, 1] to R with the supremum morm ‖ι‖∞ = sup{|ι(x)| : x ∈ [0, 1]}.

Theorem 2.1. Suppose that

(i) there are functions Υ ∈ Ξ, σ ∈ Σ and ξ : R2 → R satisfying

Υ(
5

Γ(α + 1)
|µ(x, a)− µ(x, b)|) ≤ Υ(σ(|a− b|)) + Υ(|a− b|) (2.2)

for all x ∈ J and a, b ∈ R with ξ(a, b) ≥ 0.

(ii) there is ι0 ∈ C(J ) such that ξ(ι0(x),Λι0(x)) ≥ 0 for all x ∈ J , where the operator Λ : C(J )→
C(J ) is defined by

Λι(x) = 1
Γ(α)

∫ x
0

(x− σ)α−1µ(σ, ι(σ))dσ − 2x
(2−η2)Γ(α)

∫ η
0

(1− σ)α−1µ(σ, ι(σ))dσ

+ 2x
(2−η2)Γ(α)

∫ η
0

(
∫ s

0
(s− σ)α−1µ(σ, ι(σ))dσ)ds (0 ≤ x ≤ 1);

(2.3)

(iii) ξ(ι(x), κ(x)) ≥ 0 implies ξ(Λι(x),Λκ(x)) ≥ 0 for each x ∈ J and for each ι, κ ∈ C(J );

(iv) if {ιn} is a sequence in C(J ) such that ιn → ι in C(J ) and ξ(ιn, ιn+1) ≥ 0 for all n, then
ξ(ιn, ι) ≥ 0 for all n.

Then, the problem (2.1) has at least one solution.
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Proof . It is well known that ι(x) is a solution of the problem (2.1) if and only if it is a solution of
the fractional integral equation

ι(x) = 1
Γ(α)

∫ x
0

(x− σ)α−1µ(σ, ι(σ))dσ − 2x
(2−η2)Γ(α)

∫ 1

0
(1− σ)α−1µ(σ, ι(σ))dσ

+ 2x
(2−η2)Γ(α)

∫ η
0

(
∫ s

0
(s− σ)α−1µ(σ, ι(σ))dσ)ds (x ∈ J );

(2.4)

Thus, the existence of a solution for (2.1) is equivalent to this fact that Λ admits one fixed point.
Now, let ι, κ ∈ C(J ) be such that ξ(ι(x), κ(x)) ≥ 0 for all x ∈ J and Λι 6= Λκ. Then, for all x ∈ J
with Λι(x) 6= Λκ(x), we have ι(x) 6= κ(x). From (i), we have

|µ(x, ι(x))− µ(x, κ(x))| ≤ Γ(α + 1)

5
Υ−1[Υ(σ(|ι(x)− κ(x)|)) + Υ(|ι(x)− κ(x)|)].

Now, we have

∣∣∣Λι(x)− Λκ(x)
∣∣∣ =

∣∣∣ 1
Γ(α)

∫ x
0

(x− σ)α−1µ(σ, ι(σ))dσ − 2x
(2−η2)Γ(α)

∫ 1

0
(1− σ)α−1µ(σ, ι(σ))dσ

+ 2x
(2−η2)Γ(α)

∫ η
0

(
∫ s

0
(s− σ)α−1µ(σ, ι(σ))dσ)ds

− 1
Γ(α)

∫ x
0

(x− σ)α−1µ(σ, κ(σ))dσ + 2x
(2−η2)Γ(α)

∫ 1

0
(1− σ)α−1µ(σ, κ(σ))dσ

− 2x
(2−η2)Γ(α)

∫ η
0

(
∫ s

0
(s− σ)α−1µ(σ, κ(σ))dσ)ds

∣∣∣
≤ 1

Γ(α)

∫ x
0

(x− σ)α−1|µ(σ, ι(σ))− µ(σ, κ(σ))|dσ
+ 2x

(2−η2)Γ(α)

∫ 1

0
(1− σ)α−1|µ(σ, ι(σ))− µ(σ, κ(σ))|dσ

+ 2x
(2−η2)Γ(α)

∫ η
0

(
∫ s

0
(s− σ)α−1|µ(σ, ι(σ))− µ(σ, κ(σ))|dσ)ds

≤ 1
Γ(α)

∫ x
0

(x− σ)α−1 Γ(α+1)
5

Υ−1[Υ(σ(|ι(x)− κ(x)|)) + Υ(|ι(x)− κ(x)|)]dσ
+ 2x

(2−η2)Γ(α)

∫ 1

0
(1− σ)α−1 Γ(α+1)

5
Υ−1[Υ(σ(|ι(x)− κ(x)|)) + Υ(|ι(x)− κ(x)|)]dσ

+ 2x
(2−η2)Γ(α)

∫ η
0

(
∫ s

0
(s− σ)α−1 Γ(α+1)

5
Υ−1[Υ(σ(|ι(x)− κ(x)|)) + Υ(|ι(x)− κ(x)|)]dσ)ds

≤ Γ(α+1)
5

Υ−1[Υ(σ(‖ι− κ‖) + Υ(‖ι− κ‖)]( 1
Γ(α+1)

+ 2
Γ(α+1)

+ 2
Γ(α+1)

)

= Υ−1[Υ(σ(‖ι− κ‖) + Υ(‖ι− κ‖)].
(2.5)

Therefore
‖Λι− Λκ‖ ≤ Υ−1[Υ(σ(‖ι− κ‖) + Υ(‖ι− κ‖)],

and so
Υ(‖Λι− Λκ‖) ≤ Υ(σ(‖ι− κ‖) + Υ(‖ι− κ‖).

Therefore, by Theorem (2.1) Λ admits one fixed point and so the problem ((2.1)) admits one solution
in C(J ). �

Remark 2.2. Note that if we take Υ(x) = − 1
x

+1 and σ(x) = 2
3
, for all x ∈ (0,∞), then contraction

(2.9) is equal with

|µ(x, a)− µ(x, b)| ≤ Γ(α + 1)

5

|a− b|
1 + 1

2
|a− b|

(2.6)

for all x ∈ J and for all a, b ∈ R with ξ(a, b) ≥ 0.

Example 2.3. Consider the differential equation of fractional order

cDαι(x) =
Γ(α + 1)

5

e−xsin(x2 + 1)|ι(x)|
1 + |ι(x)|

(x ∈ J , 1 < α ≤ 2), (2.7)
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with the following boundary value conditions:

ι(0) = 0, ι(1) =

∫ η

0

ι(σ)dσ (0 < η < 1).

Here,

µ(x, a) =
Γ(α + 1)

5

e−xsin(x2 + 1)|a|
1 + |a|

.

We have

|µ(x, a)− µ(x, b)| = Γ(α + 1)

5
e−x|sin(x2 + 1)|| |a|

1 + |a|
− |b|

1 + |b|
|

≤ Γ(α + 1)

5

∣∣∣|a| − |b|∣∣∣
(1 + |a|)(1 + |b|)

≤ Γ(α + 1)

5

∣∣∣|a| − |b|∣∣∣
1 + 1

2
(
∣∣∣|a| − |b|∣∣∣)

≤ Γ(α + 1)

5

|a− b|
1 + 1

2
|a− b|

,

which is (2.6). Thus, by the Remark 2.2, the problem (2.7) admits one solution in C(J ).

Form 2: In this form, we consider the following nonlinear fractional differential equation:

cDαι(x) + µ(x, ι(x)) = 0 (x ∈ J , 1 < α), (2.8)

with the following boundary value conditions:

ι(0) = ι(1) = 0,

where µ : [0, 1]× R→ R is a continuous function and J = [0, 1].
It is well known that the Green function of the above problem is as follows:

G(x, σ) =
1

Γ(α)

{
x(1− σ)α−1 − (x− σ)α−1, 0 ≤ σ ≤ x ≤ 1,
x(1− σ)α−1, 0 ≤ x ≤ σ ≤ 1,

that is, the problem (2.8) is equivalent to the fractional integral equation

ι(x) =

∫ 1

0

G(x, σ)µ(σ, ι(σ))dσ.

Theorem 2.4. Suppose that

(i) there are functions Υ ∈ Ξ, σ ∈ Σ and ξ : R2 → R satisfying

Υ(|µ(x, a)− µ(x, b)|) ≤ Υ(σ(|a− b|)) + Υ(|a− b|) (2.9)

for all x ∈ J and for all a, b ∈ R with ξ(a, b) ≥ 0 and µ(x, a) 6= µ(x, b).

(ii) there is ι0 ∈ C(J ) such that ξ(ι0(x),
∫ 1

0
G(x, σ)µ(σ, ι(σ))dσ) ≥ 0 for all x ∈ J .

(iii) for each x ∈ J and for each ι, κ ∈ C(J ),

ξ(ι(x), κ(x)) ≥ 0 =⇒ ξ(

∫ 1

0

G(x, σ)µ(σ, ι(σ))dσ,

∫ 1

0

G(x, σ)µ(σ, κ(σ))dσ) ≥ 0;
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(iv) if {ιn} is a sequence in C(J ) such that ιn → ι in C(J ) and ξ(ιn(x), ιn+1(x)) ≥ 0 for all n,
then ξ(ιn(x), ι(x)) ≥ 0 for all n.

Then, the problem (2.8) has at least one solution.

Proof . Define Λ : C(J )→ C(J ) by

Λι(x) =

∫ 1

0

G(x, σ)µ(σ, ι(σ))dσ.

Thus, the existence of a solution for (2.8) is equivalent to this fact that Λ admits one fixed point.
Now, let ι, κ ∈ C(J ) be such that ξ(ι(x), κ(x)) ≥ 0 for all x ∈ J and Λι 6= Λκ. Then, for those
x ∈ J with Λι(x) 6= Λκ(x), we have also ι(x) 6= κ(x). From (i), we have

|µ(x, ι(x))− µ(x, κ(x))|) ≤ Υ−1[Υ(σ(|ι(x)− κ(x)|)) + Υ(|ι(x)− κ(x)|)].

Now, we have

|Λι(x)− Λκ(x)| = |
∫ 1

0

G(x, σ)µ(σ, ι(σ))dσ −
∫ 1

0

G(x, σ)µ(σ, κ(σ))dσ|

≤
∫ 1

0

G(x, σ)|µ(σ, ι(σ))− µ(σ, κ(σ))|dσ

≤
∫ 1

0

G(x, σ)Υ−1[Υ(σ(|ι(x)− κ(x)|) + Υ(|ι(x)− κ(x)|)]dσ

≤ Υ−1[Υ(σ(‖ι− κ‖) + Υ(‖ι− κ‖)].

Therefore,
‖Λι− Λκ‖ ≤ Υ−1[Υ(σ(‖ι− κ‖) + Υ(‖ι− κ‖)],

and so,
Υ(‖Λι− Λκ‖) ≤ Υ(σ(‖ι− κ‖) + Υ(‖ι− κ‖).

Therefore, Theorem (1.5) yields that problem (2.8) admits one solution in C(J ). �
Note that if we take Υ(x) = − 2

x
+ 2 and σ(x) = 4

5
, for all x ∈ (0,∞), then contraction (2.9) is

equall with

|µ(x, a)− µ(x, b)| ≤ |a− b|
1 + 1

4
|a− b|

. (2.10)

for all x ∈ J and for all a, b ∈ R with ξ(a, b) ≥ 0.

Example 2.5. Consider the differential equation of fractional order

cDαι(x) = −e
−xcos(x2 + 1)|ι(x)|

1 + 1
2
|ι(x)|

(x ∈ J , 1 < α), (2.11)

with the following boundary value conditions:

ι(0) = ι(1) = 0.

Here,

µ(x, a) = −e
−xcos(x2 + 1)|a|

1 + 1
2
|a|

.
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We have

|µ(x, a)− µ(x, b)| = e−x|cos(x2 + 1)|| |a|
1 + 1

2
|a|
− |b|

1 + 1
2
|b|
|

≤

∣∣∣|a| − |b|∣∣∣
(1 + 1

2
|a|)(1 + 1

2
|b|)
≤

∣∣∣|a| − |b|∣∣∣
1 + 1

4
(
∣∣∣|a| − |b|∣∣∣)

≤ |a− b|
1 + 1

4
|a− b|

,

therefore (2.10) holds. Thus, Theorem 1.5 yields that the problem (2.11) admits one solution in
C(J ).

Form 3: In this form, we consider the following nonlinear fractional differential equation

cDαι(x) +c Dσι(x) = µ(x, ι(x)) (x ∈ J , 0 < σ < α < 1), (2.12)

with the following boundary value conditions:

ι(0) = ι(1) = 0,

where µ : [0, 1]× R→ R is a continuous function and J = [0, 1].
Recall that the Green function of the above problem is

G(x) = xα−1Eα−σ,α(−xα−σ),

where Eα,σ is the Mittag-Leffler function (see [6]), that is, the problem (2.12) is equivalent to the
fractional integral equation

ι(x) =

∫ 1

0

G(x− σ)µ(σ, ι(σ))dσ.

Theorem 2.6. Suppose that

(i) there are functions Υ ∈ Ξ, σ ∈ Σ and ξ : R2 → R satisfying

Υ(
1

Γ(α + 1)
|µ(x, a)− µ(x, b)|) ≤ Υ(σ(|a− b|)) + Υ(|a− b|) (2.13)

for all x ∈ J and for all a, b ∈ R with ξ(a, b) ≥ 0 and µ(x, a) 6= µ(x, b).

(ii) there is ι0 ∈ C(J ) such that ξ(ι0(x),
∫ x

0
G(x− σ)µ(σ, ι(σ))dσ) ≥ 0 for all x ∈ J .

(iii) for each x ∈ J and for each ι, κ ∈ C(J ),

ξ(ι(x), κ(x)) ≥ 0 =⇒ ξ(

∫ x

0

G(x− σ)µ(σ, ι(σ))dσ,

∫ x

0

G(x− σ)µ(σ, κ(σ))dσ) ≥ 0;

(iv) if {ιn} is a sequence in C(J ) such that ιn → ι in C(J ) and ξ(ιn(x), ιn+1(x)) ≥ 0 for all n,
then ξ(ιn(x), ι(x)) ≥ 0 for all n.
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Then, the problem (2.12) has at least one solution.

Proof . Define Λ : C(J )→ C(J ) by

Λι(x) =

∫ x

0

G(x− σ)µ(σ, ι(σ))dσ.

Thus, the existence of a solution for (2.12) is equivalent to this fact that Λ admits one fixed point.
Now, let ι, κ ∈ C(J ) be such that ξ(ι(x), κ(x)) ≥ 0 for all x ∈ J and Λι 6= Λκ. Then, for those
x ∈ J with Λι(x) 6= Λκ(x), we have also ι(x) 6= κ(x) and from (i), we have

|µ(x, ι(x))− µ(x, κ(x))|) ≤ Γ(α + 1)Υ−1[Υ(σ(|ι(x)− κ(x)|)) + Υ(|ι(x)− κ(x)|)].

Now, we have

|Λι(x)− Λκ(x)| = |
∫ x

0

G(x− σ)µ(σ, ι(σ))dσ −
∫ x

0

G(x− σ)µ(σ, κ(σ))dσ|

≤
∫ x

0

G(x− σ)|µ(σ, ι(σ))− µ(σ, κ(σ))|dσ

≤ Γ(α + 1)

∫ x

0

G(x− σ)Υ−1[Υ(σ(|ι(x)− κ(x)|) + Υ(|ι(x)− κ(x)|)]dσ

≤ Υ−1[Υ(σ(‖ι− κ‖)) + Υ(‖ι− κ‖)].

Note that

G(x) = xα−1Eα−σ,α(−xα−σ) ≤ 1

Γ(α)

xα−1

1 + xα−1
≤ 1

Γ(α)
xα−1.

Therefore, supx∈J
∫ x

0
G(x− s)ds ≤ 1

αΓ(α)
= 1

Γ(α+1)
. Thus,

‖Λι− Λκ‖ ≤ Υ−1[Υ(σ(‖ι− κ‖)) + Υ(‖ι− κ‖)],

and so
Υ(‖Λι− Λκ‖) ≤ Υ(σ(‖ι− κ‖) + Υ(‖ι− κ‖).

Therefore, Theorem 1.5 implies that Λ admits one fixed point and so the problem (2.12) admits one
solution in C(J ). �

Note that if we take Υ(x) = − 1
x

+ 1 and σ(x) = 2
3
, for all x ∈ (0,∞), then contraction (2.13) is

equall with

|µ(x, a)− µ(x, b)| ≤ Γ(α + 1)
|a− b|

1 + 1
2
|a− b|

. (2.14)

for all x ∈ J and for all a, b ∈ R with ξ(a, b) ≥ 0.

Example 2.7. Consider the differential equation of fractional order

cDαι(x) +c Dσι(x) = Γ(α + 1)
e−x[cos(x2 + 1) + sin(ex)]|ι(x)|

2(1 + |ι(x)|)
(x ∈ J , 0 < σ < α < 1), (2.15)

with the following boundary value conditions ι(0) = ι(1) = 0. Here,

µ(x, a) = Γ(α + 1)
e−x[cos(x2 + 1) + sin(ex)]|a|

2(1 + |a|)
.
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We have

|µ(x, a)− µ(x, b)| = Γ(α + 1)e−x|[cos(x2 + 1) + sin(ex)]|| |a|
2(1 + |a|)

− |b|
2(1 + |b|)

|

≤ Γ(α + 1)

∣∣∣|a| − |b|∣∣∣
(1 + |a|)(1 + |b|)

≤ Γ(α + 1)

∣∣∣|a| − |b|∣∣∣
1 + 1

2
(
∣∣∣|a| − |b|∣∣∣)

≤ Γ(α + 1)
|a− b|

1 + 1
2
|a− b|

.

So, the inequality (2.14) holds. Thus, by Theorem 1.5 the problem (2.15) admits one solution in
C(J ).
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