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Abstract

In this paper a new kind of graph on a commutative semiring is introduced and investigated. The
maximal ideal graph of S, denoted by MG(S), is a graph with all nontrivial ideals of S as vertices
and two distinct vertices I and J are adjacent if and only if I + J is a maximal ideal of S. In this
article, some interrelation between the graph theoretic properties of this graph and some algebraic
properties of semirings are studied. We investigated the basic properties of the maximal ideal graph
such as diameter, girth, clique number, cut vertex, planar property.
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1. Introduction

There has been a lot of activity over the past several years in associating a graph to an algebraic
system such as a ring or semiring [1,5,8,9,10,14]

In 1988, Beck [5] introduced the concept of the zero-divisor graph. Since then, others have
introduced and studied many researches in this area. Gupta et al. [14] in 2015 defined a variation
of zero-divisor graphs. Recently, the study of such graphs of rings are extended to include semirings
as in [8,9,10]

In 2020, Abdulqadr [1] introduced the maximal ideal graph of a commutative ring R denoted by
MG(R), is the undirected graph with all non-trivial ideals of R as vertices and two distinct vertices I
and J are adjacent if and only if I + J is a maximal ideal of R. In this paper, we introduce maximal
ideal graph of a commutative semiring, as a generalization of this notion. Throughout this paper S
will be a commutative semiring with identity, also, N be the semiring of all non-negative integers.

A commutative semiring S is defined as an algebraic system (S,+, ·) such that (S,+) and (S, ·)
are commutative semigroups, connected by a(b + c) = ab + ac for all a, b, c ∈ S, and there exists
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0, 1 ∈ S such that s+ 0 = s and s0 = 0s = 0. A commutative semiring is a semifield if each non-zero
element in S has multiplicative inverse. Clearly, any ring is a semiring. A nonempty subset I of a
semiring S is defined to be an ideal of S if a, b ∈ I and s ∈ S implies that a+ b, sa ∈ I. An ideal I of
a semiring S is called subtractive if a+b ∈ I and a ∈ I imply b ∈ I for all a, b ∈ S. We say a semiring
is subtractive if each of its ideals is subtractive see [2,16] . An ideal of a semiring S is maximal if
and only if it is not properly contained in any other ideal of S. A semiring is said to be local if it
has a unique maximal ideal M and we denote it by (S,M). A semiring is said to be semi-local if the
set of its maximal ideals is finite. An ideal I 6= {0} of a semiring S is minimal if and only if it does
not contain any ideal of S other than itself and 0. The set of non-trivial ideals is denoted by Id(S).
The set of maximal ideals of S is denoted by max(S), and the intersection of all maximal ideals of S
is called the Jacobson radical of S and is denoted by J(S). The set of minimal ideals of S is denoted
by min(S). A semiring S is Noetherian (respectively, Artinian) if any non-empty set of ideals of S
has a maximal member (respectively, minimal member) with respect to set inclusion.

The maximal ideal graph helps us to consider the algebraic properties of semirings using graph
theoretical tools. In our investigation of MG(S), maximal ideals play an important role to find
some connections between the graph theoretic properties of this graph and some algebraic properties
of semirings. In section 2, we show that MG(S) cannot be a complete graph if S has more than
one maximal ideal. Fire explore some of the properties and characterizations of these graphs. For
instance, the semirings S, for which the graph MG(S) is star or complete bipartite, are characterized.

In Section 3, the planarity is investigated. At the first of this section, one of the important
properties of MG(S) is introduced, which help us to gain interesting results about the girth of
MG(S). Also, then number of maximal ideals of S.

In Section 4, under one condition it is shown that MG(S) is a connected graph and diam(MG(S)) ≤
3.

In order to make this paper easier to follow, we recall in this section various notions which will
be used in the sequel [11,12] . Let G be a graph. Then V(G) and E(G) denote the set of vertices
and edges of G, respectively. The set of vertices adjacent to vertex v of the graph G is called the
neighborhood of v and denoted by N(v). In addition, for two distinct vertices u and v in G, the
notation {u, v} ∈ E(G) means that u and v are adjacent. The degree of a vertex v of any graph
G is denoted by deg(v) and defined as the number of edges incident on v. A vertex of degree 0 is
called an isolated vertex. The complete graph of order n, denoted by Kn, is a graph with n vertices
in which every two distinct vertices are adjacent.

For a positive integer r, an r-partite graph is one whose vertex set V(G) can be partitioned into
r subsets V1, V2, . . . ,Vr( called partite sets ) such that every element of E(G) joins a vertex of Vi
to a vertex of Vj, i 6= j. The complete bipartite graph (2-partite graph) with exactly two partitions
of size m and n is denoted by Kn,m. A graph G is said to be star if G = Kn,1. Two vertices u
and v of a graph G are said to be connected in G if there exists a path between them. A graph G
is called connected if there exists a path between any two distinct vertices. Otherwise, G is called
disconnected. A graph G is said to be totally disconnected if it has no edges. Let G be a connected
graph. The distance between two distinct vertices u and v of G, denoted by d(u, v), is the length of the
shortest path connecting u and v, if such a path exists; otherwise, we set d(u, v) =∞. The diameter,
eccentricity, and radius of a connected graph G are defined by diam(G) = Max{d(u, v) : u, v ∈ V(G)}
e(v) = Max{d(u, v) : for all u ∈ V(G)} and rad(G) = Min{e(v) : v ∈ V(G)}, respectively. A vertex v
of a connected graph G is a cut-vertex if the components of G−v are more than the components of G.
The girth of a graph G, denoted by gr(G), is the length of a shortest cycle in G, provided G contains
a cycle; otherwise; gr(G) =∞. A k-coloring of a graph G is a function C : V(G)→ {1, 2, . . . , k} such
that C(u) 6= C(v) whenever u is adjacent to v. If a k-coloring of G exists, then G is k-colorable. The
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chromatic number of G is defined by χ(G) = min{k : G is k-colorable}. A complete subgraph Kn of
a graph G is called a clique, and ω(G) is the clique number of G, which is the greatest integer r ≥ 1
such that Kr ⊆ G. A graph G is called a planar graph if it can be drawn on a plane in such a way
that any two of its edges either meet only at their end vertices or do not meet at all. A graph G is
perfect if every induced subgraph H of G satisfies χ(H) = ω(H). A graph is a split graph if it can be
partition in an independent set and a clique.

2. The Maximal Ideal Graph of a Semiring

In this section, we introduce the concept of the maximal ideal graph of a commutative semiring
with identity. We illustrate this concept by examples and remarks and give some of its properties
and characterizations. We begin with the key definition of this paper.

Definition 2.1. Let S be a commutative semiring with identity. The maximal ideal graph of S,
denoted by MG(S), is the undirected graph with all non-trivial ideals of S as vertices and two distinct
vertices I and J are adjacent if and only if I + J is a maximal ideal of S.

Proposition 2.2. [13, Proposition 6.59] Every ideal of a semiring S is contained in a maximal ideal
of S.

The proof of the next result is the same as in [1, Lemma 2.2], for the sake of completeness, a
proof will be given.

Lemma 2.3. 1. Every non-maximal ideal is adjacent to at least one maximal ideal in MG(S).

2. If M1,M2, . . . ,Mn ∈ max(S) such that
⋂n

i=1Mi /∈ max(S) ∪ {(0)}, then the ideal
⋂n

i=1Mi is
adjacent to every Mi ∈ max(S) in MG(S), for 1 ≤ i ≤ n.

Proof . For(1): Let I ∈ V (MG(S))\max(S). So IM , for some M ∈ max(S). Then clearly,
I +M = M . Thus I is adjacent to M .

For(2): Clearly
⋂n

i=1Mi ⊆Mt, for 1 ≤ t ≤ n. So the proof is a direct consequence of (1). �

We recall that for a graph G, a subset E of the vertex-set of G is called a dominating set if every
vertex not in E is adjacent to a vertex in E. The domination number, γ(G), of G is the minimum
cardinality of a dominating set of G (see [15], [19]).

Theorem 2.4. Let S be a semiring. Then {max(S)} is a dominating set of MG(S).

Proof . This is an immediate consequence of Lemma 2.3(1). �

Example 2.5. Let S = N be a semiring of non-negative integers. The set N\{1} is a unique maximal
ideal of the semiring S which contains all ideals of S see [13, Example 6.60].Theset{N \{1}} is a
dominating set for MG(S). Hence γ(MG(S)) the domination number of MG(S) is equal to 1.

Recall [13, p. 118] that an ideals I and H of a semiring S are comaximal if and only if I+H = S.

Remark 2.6. The comaximal ideals of S are not adjacent in MG(S)
. The next main result shows the adjacency between ideal vertices of MG(S)

Theorem 2.7. Let I, J and M be three distinct vertices of MG(S) with M ∈ max(S). Then:

1. M ∈ N(I) ∩N(J) if and only if M ∈ N(I + J), where I + J 6= M,S.
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2. If I ⊂ J(S), then M ∈ N(I).

3. If I ⊂ J and J /∈ max(S), then I /∈ N(J)

4. If I ∈ N(JL), then I ∈ N(J ∩ L) ∩N(J), for every vertices L in which JL 6= (0).

Proof . For (1): Let I + J 6= M . If M ∈ N(I) ∩N(J), then by Lemma 2.3, I, J ⊂ M . This means
that I + J ⊂M . Thus, M ∈ N(I + J). Similarly, If M ∈ N(I + J), then M ∈ N(I)∩ N(J).

For (2): Let I ⊂ J(S). Then I ⊂ I + J(S) = J(S) ⊆M . By Lemma 2.3,M ∈ N(I).
For (3): Let I ⊂ J and J /∈ max(S). Clearly I + J = J /∈ max(S), this completes the proof.
For (4): Let I, J , and L be an ideals of S such that I ∈ N(JL). In semiring theory, it is clear that

JL ⊆ J ∩L, but, in general, we do not have equality. Thus, N(JL) ⊆ N(J ∩L) and so I ∈ N(J ∩L).
Similarly, we can show, I ∈ N(J). This completes the proof. �

An ideal I of S is called small if I +K = S, for some ideal K of S, implies K = S [16].

Proposition 2.8. Let S be a semiring. If I and J are two vertices of MG(S) such that I ⊆ J and
J is small ideal of S. Then deg(I) ≤ deg(J).

Proof . Let I and J be two vertices of MG(S) such that I ⊆ J and J is small ideal of S. Let K
be a vertex adjacent to I. So I + K = M , for some M ∈ max(S). Now, I + K = M ⊆ J + K. If
J+K = S, and J small ideal, then K = S. Hence, M = S, which is a contradiction. Then J+S 6= S
and so M = J +K. Thus K is adjacent to J . Hence deg(I) ≤ deg(J). �

Theorem 2.9. Let S be a semiring and n > 1, if |max(S)| = n <∞. Then the following hold:

(a) There is no vertex in MG(S) which is adjacent to every other vertex.

(b) MG(S) cannot be a complete graph.

(c) If J(S) 6= {0} then it is a cut vertex of MG(S).

Proof . For (a): Since the comaximal ideals are not adjacent in MG(S), this proves (a).
For (b): This is a direct consequence of (a).
For (c): By Remark 2.6, the comaximal ideals of S are not adjacent in MG(S). By Lemma 2.3 (2),
an ideal J(S) =

⋂n
i=1Mi is adjacent to every Mi ∈ max(S). It can be easily seen that J(S) is a cut

vertex. �

Proposition 2.10. If {I, J} ∈ E(MG(S)) with I, J /∈ max(S), then there exists a unique M ∈
max(S) such that M ∈ N(I) ∩N(J).

Proof . Suppose that M1,M2 ∈ max(S) and each of I and J are adjacent to both M1 and M2 in
MG(S). Then by Lemma 2.3, I, J ⊂M1 ∩M2. Since I + J ∈ max(S), then M1 = I + J = M2. �

Corollary 2.11. Suppose I1 and I2 are two are adjacent non-maximal ideals of a semiring S, then
the set {I1, I2, I1 + I2} forms a triangle in MG(S).

Proof . This is a direct consequence of Proposition 2.10. �

The next result shows that the degree of maximal ideals determines the finiteness of MG(S).

Proposition 2.12. Let S ∼= S1 × · · · × Sn, where (Si,Mi) is a local Artinian semiring. If deg(I) <
∞, for every I ∈ max(S), then MG(S) is a finite graph and S is Artinian.
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Proof . Assume that S ∼= S1 × · · · × Sn, where (Si,Mi) is a local Artinian semiring. So, the maxi-
mally of I gives that I = S1× S2× · · · × Si−1×Mi× Si+1× · · · × Sn, where 1 ≤ i ≤ n. Since deg(I)
is finite, then Id(Si) is finite. Thus, MG(S) is a finite graph and so S is Artinian. �

The next result gives the conditions on MG(S) for which S is a local semiring.

Theorem 2.13. If MG(S) ∼= Kn or MG(S) ∼= Kn,1, where n ∈ Z+, then S is a local semiring.

Proof . If MG(S) ∼= Kn, then by Theorem 2.7, S is local. Suppose that MG(S) is a star with center
I. If MG(S) consists of only one edge, then it refers to completeness case. Assume that |MG(S)| ≥ 3.
If I /∈ max(S), then by Lemma 2.3, V(MG(S))\{I} = max(S). Thus I = J(S) 6= (0). Now, suppose
that M,T ∈ max(S) with M 6= T . Obviously (0) 6= MT /∈ max(S). Thus MT = I = J(S).
This contradicts that |MG(S)| ≥ 3. Therefore, I ∈ max(S). By Lemma 2.3, max(S) = {I}. This
completes the proof. �

The converse of Theorem 2.13 will be true if V(MG(S)) is a totally ordered set. We illustrate it
in the following result.

Proposition 2.14. If V(MG(S)) is a totally ordered set, then MG(S) is a star.

Proof . Since V(MG(S)) is a totally ordered set, then MG(S) contains a vertex I which is adjacent
to each other vertex. If J and H are two distinct vertices of MG(S) such that J 6= I and H 6= I, then
either H ⊂ J or J ⊂ H. For both cases, J and K are not adjacent vertices. Thus MG(S) is a star
with center I. �

Corollary 2.15. For any prime number p, the graph MG(Zpn) is star.

Proof . It follows from Proposition2.14. �

Now, we give the condition for which MG(S) be a complete bipartite, as follows.

Theorem 2.16. Let J(S) /∈ max(S) ∪ {(0)}. Then MG(S) ∼= Km,n; m, n ∈ Z+ if and only if
Id(S)−max(S) ⊆ J(S).

Proof . Suppose that Id(S)−max(S) ⊆ J(S).
Choose V1 = max(S) and V2 = {I ∈ V(MG(S)) : I ⊆ J(S)}. From Lemma 2.3 , every two vertices
in V1 are independent with respect to the graph MG(S). Since |MG(S)| 6= 1, then J(S) /∈ max(S).
Thus I + J /∈ max(S) for every I, J ∈ V2. This means that every two vertices in V2 are independent
with respect to the graph MG(S). On the other hand, Theorem 2.7 mentions that every I ∈ V1 is
adjacent to each J ∈ V2, this completes the proof.

Conversely, if MG(S) is a complete bipartite with partite sets W1 and W2, we can prove that
Wi = max(S) and Wj = {I ∈ V(MG(S)) : I ⊆ J(S)}, for i, j = 1, 2 with i 6= j. This completes the
proof. �

Corollary 2.17. Let J(S) /∈ max(S) ∪ {(0)}. If MG(S) is not a complete bipartite, then MG(S) is a
3-partite graph.

Proof . Since MG(S) is not a complete bipartite, then by Theorem 2.16, I * J(S), for some
I ∈ MG(S)\max(S) · We set V1 = max(S), V2 = {I ∈ V(MG(S)) : I ⊆ J(S)} and V3 =
V(MG(S))\ (V1UV2) . It is not difficult to show that every two vertices in Vi are independent, for
i = 1, 2, 3. Thus MG(S) is a 3-partite graph. �
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Example 2.18. The graph MG (Z24) is a 3-partite graph, as the following figure shows:

The following main result determines whenever

Theorem 2.19. Let min(S) 6= ∅. If V(MG(S)) = min(S) ∪max(S), then:

1. The graph MG(S) is split.

2. The graph MG(S) is perfect.

3. The clique number of MG(S) is ω(MG(S)) = max{|min(S)|, |min(S)|+ 1}.
4. If J(S) 6= {0} then max(S) contains a cut vertex of MG(S).

Proof .

1. Let A be the induced subgraph of MG(S) by min(S). Let N,T ∈ min(S) with N 6= T. Evidently,
N + T 6= S. If we assume that N + T ∈ min(S), then N = N + T = T, which is a contradiction.
Hence N+T ∈ MG(S). Thus A is a complete graph. From Remark 2.6 , the vertices in max(S)
are independent. Thus, MG(S) is a split graph.

2. Let C : I1 − I2 − · · · − I2n+1 − I1 be an induced cycle in MG(S) with n ≥ 2. If C does not
contain any maximal ideal vertex, then by (1), {I1, I3} ∈ E(MG(S)), which is a contradiction.
Let I1 ∈ max(S). Obviously, I2n+1, I2 /∈ max(S). Then they are adjacent in MG(S), which
is a contradiction. Now, suppose that C ′ is an induced odd cycle in MG(S) of length n ≥ 5.
Then C ′ contains at least P,Q ∈ max(S) with P 6= Q such that they are not adjacent in C ′.
From Lemma 2.3, P and Q are adjacent in MG(S). This contradicts Lemma2.3. Hence, by the
strong perfect graph theorem in [6],MG(S) is a perfect graph.

3. The proof follows from the first part of Theorem 2.12 in [7].

4. Using the same argument as in Theorem 2.19(1) , one can show that J(S) + I = M for some
I ∈ min(S) and M ∈ max(S). It is easy to see that I is not adjacent to any vertex belong to
the graph induced by MG(S)−M. This ends the proof.

�

Example 2.20. Consider S = Z18 as the semiring of integers modulo 18. The following graph shows
that MG (Z18) is a split and perfect graph. Also ω (MG (Z18)) = |min (Z18)|+ 1 = 3.
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In the next result, we find the girth of MG(S).

Theorem 2.21. Let J(S) 6= (0). Then gr(MG(S)) ∈ {3, 4,∞}.

Proof . If MG(S) contains an edge {R,T} with R and T /∈ max(S), then R,T 6= R + T ∈ max(S)
Thus R + T is adjacent to both S and T. This means that C : R − T − {R + T} − R is a cycle in
MG(S) In this case, gr(MG(S)) = 3. Suppose that for every {I, J} ∈ E(MG(S)), either I ∈ max(S)
or J ∈ max(S). If MG(S) does not possess any cycle, then gr(MG(S)) = ∞. Now, suppose that
Cn : I1 − I2 − · · · − In − I1 is a cycle in MG(S) of length n. Since the maximal ideals are not adja-
cent in MG(S), the vertices of C are alternatively maximal and non-maximal ideals. Consequently,
J(S) /∈ max(S). Let I1 ∈ max(S). From Lemma 2.3, J( S) is adjacent to each of I1, I3 and I5. If
I2 = J(S), then C′ : I2 − I3 − I4 − I5 − I2 is a cycle in MG(S). If J(S) 6= I2, then C′′ : J(S)−
I1 − I2 − I3 − J(S) is a cycle in MG(S). From both cases, we have proved that gr(MG(S)) is either 3
or 4. �

The next result shows the upper bound of clique number of MG(S).

Proposition 2.22. The clique of MG(S) contains in an its induced subgraph by {I ∈ V(MG(S)) :
I ⊆ M}, for precisely one M ∈ max(S).

Proof . Let H be the clique of MG(S). Since any two maximal ideals are not adjacent in MG(S),
then H has only one maximal ideal. The adjacency of every two vertices of H and Proposition 2.10
explains that there is precisely one M ∈ max(S) such that H is a subgraph of the graph induced by
{I ∈ V(MG(S)) : I ⊆ M}. �

Example 2.23. Consider the following four ideals of the semiring of nonnegative integers N :

1. I = 2N,

2. J = 3N,

3. K = N\{1},
4. L = N\{1, 2}.

Now, let {Hi | i ∈ Ω} be a set of all ideals of a semiring N which are not identical to any one of above
four ideals. In the following figure we explain that the girth gr(MG(N)) and the clique of MG(N)
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Note that gr(MG(N)) = 3. Also, {I, J,K} and {I, L,K} are the cliques with three elements in
MG(N). The clique number of MG(N) is ω(MG(N)) = 3. It is easy to see that min(N) = ∅ and so
this example shows that the condition ” min(S) 6= ∅” in Theorem 2.19 is not superfluous.

The following remark is clear.

Remark 2.24. Let S be a semiring and I, J be two ideals of S. If M is a maximal ideal of S, then
I ∩ J ⊆ M implies I ⊆ M or J ⊆ M.

Lemma 2.25. Suppose I1 and I2 are two ideals of a semiring S such that I1 ∩ I2 6= (0), then at least
one of them is non-isolated vertex in MG(S).

Proof . Suppose I1 and I2 are two ideals of a semiring S such that I1 ∩ I2 6= (0). Then I1∩ I2 ⊆ M
for some M ∈ max(S). By Remark 2.24 , either I1 ⊆ M or I2 ⊆ M. Without loss of generality we
may take I1 ⊆ M. Now, we have two cases either I1 ⊂ M and so I1 is adjacent to M. Or I1 = M and
thus I1 is adjacent to I1 ∩ I2. This ends the proof. �

Theorem 2.26. If S = S1×S2× · · · ×Sn (n ∈ N), where (Si,Mi) is a local semiring for 1 ≤ i ≤ n.
Then the following statements are equivalent:

(1) MG(S) is complete;

(2) MG (Si) is complete for all 1 ≤ i ≤ n.

Proof . (1) ⇒ (2) Assume that S is a product of local Artinian semirings Si with maximal ideals
Mi. We show that MG (Si) is complete. Let I, J be two non-trivial ideals of Si, then S1 × · · · ×
Si−1 × I × Si+1 × · · · × Sn and S1 × · · · × Si−1 × J × Si+1 × · · · × Sn are non-trivial ideals of S. As
MG(S) is complete, I and J are adjacent in Si. Therefore MG (Si) is complete.

(2)⇒ (1) Let I = I1 × · · · × In, J = J1 × · · · × Jn be two non-trivial ideals of S1 × · · · × Sn. Set

SI = {i : Ii is non-trivial } and SJ = {i : Ji is non-trivial }.

If SI ∩SJ = ∅, then I and J are adjacent. If SI ∩SJ 6= ∅, then by assumption, for each i ∈ SI ∩SJ , Ii
and Ji are adjacent in MG (Si). Thus I and J are adjacent. So MG(S) is complete. �
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3. Planar Property

In this section, we will investigate planar property of the maximal ideal graph. In the beginning,
we find the clique number of MG(S).

Proposition 3.1. Let S be a semiring. If the subgraph induced by {I ∈ V (MG(S)) : I ⊆ M} is
planar, for every M ∈ max(S), then ω(MG(S)) ∈ {2, 3, 4}.

Proof . The proof follows from Proposition2.22 and Koratowski’s theorem [12]. �

In the next theorem, we show that MG(S) is a planar graph under some conditions on vertex set
of MG(S).

Theorem 3.2. If V (MG(S)) = min(S)∪max(S) is finite and |max(S)| ≤ 3, then the graph MG(S)
is planar.

Proof . To show that MG(S) is planar, we refer to Koratowski’s theorem. Since |max(S)| ≤ 3 ,
then any subgraph of MG(S) induced by five vertices is not complete. This means that MG(S) does
not contain any complete subgraph K5. If we assume that MG(S) contains a K3.3 with partite sets
V1 = {I1, I2, I3} and V2 = {J1, J2, J3} , then by Lemma 2.3 either V1 ⊆ max(S) or V2 ⊆ max(S).
Assume that V1 ⊆ max(S). Then V2 ⊆ min(S). From Proposition 2.10, any two of J1, J2 and J3
are independent. This contradicts that each minimal ideal is adjacent in MG(S). Thus, MG(S) is a
planar graph. �

The next result exhibits that the planarity of MG(S) limits the order of max(S).

Proposition 3.3. Let J(S) 6= (0). If MG(S) is planar graph, then |max(S)| ≤ 4.

Proof . Let MG(S) be a planar graph. Assume by contrary that MG(S) has at least five distinct
maximal ideals, say M , N , P , Q and T . Obviously, any one of the vertices MNP , MNPQ and
MNPQT are non-zero ideals and adjacent to each of ideals M , N and P in MG(S). Therefore,
MG(S) contains a complete bipartite graph K3,3. This contradicts the Koratowski’s theorem. Thus,
|max(S)| ≤ 4. �

Theorem 3.4. Let S ∼= S1×S2× · · ·×Sn, with S1, S2, . . . , Sn are distinct semifields. Then MG(S)
is planar graph if and only if n ≤ 4.

Proof . Let MG(S) be a planar graph. Suppose that n > 4. Obviously, (0) × S2 × · · · × Sn ∈
max(S) and the sum of every two of ideals (0) × S2 × · · · × Sn, (0) × (0) × S3 × · · · × Sn, (0)×
S2× (0)×S4×· · ·×Sn, (0)×S2×S3× (0)×S5×· · ·×Sn, (0)×S2×S3×S4× (0)×· · ·×Sn is equal
to (0)× S2 × · · · × Sn. Then MG(S) contains a complete subgraph of order 5. This contradicts the
planarity of MG(S). Thus, n ≤ 4.

Conversely, let n ≤ 4. Evidently, E(MG(S)) = ∅, when n ∈ {1, 2}. Now, suppose that n = 3.
Then V (MG(S)) consists of I1 = S1 × (0) × (0), I2 = (0) × S2 × (0), I3 = (0) × (0) × S3, I4 =
S1×S2× (0), I5 = S1× (0)×S3 and I6 = (0)×S2×S3. Clearly, MG(S) is planar graph, when n = 3.

Suppose that n = 4. The maximal ideal vertices of MG(S) are (0) × S2 × S3 × S4, S1×
(0)× S3 × S4, S1 × S2 × (0)× S4 and S1 × S2 × S3 × (0), and the other vertices are (0)× (0)× S3×
S4, (0)×S2× (0)×S4, (0)×S2×S3× (0), S1× (0)× (0)×S4, S1×S2× (0)× (0), S1× (0)×S3× (0)
S1× (0)× (0)× (0), (0)×S2× (0)× (0), (0)× (0)×S3× (0), (0)× (0)× (0)×S4. This graph does not
contain K5. Also, for every three distinct vertices I, J and K of MG(S), there exists at most two
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vertices adjacent to each of I, J and K. Thus MG(S) does not contain K3,3. In this case, MG(S) is
a planar graph. �

For the important classes of additively regular (additively idempotent) semirings see [13], as a
special case of Theorem 3.4 we obtain the following result.

Corollary 3.5. Let S be an additively regular (or additively idempotent) subtractive semiring if
MG(S) is planar graph then S is semisimple if and only if S ∼= D1 × · · · × Dn with the semifields
D1, . . . , Dn and n ≤ 4.

Proof . By Theorem 3.4 and [16, Theorem 4.14]. �

If I is an ideal of a semiring S, then an idempotent g+ I ∈ S/I can be lifted mod I if there is an
idempotent e ∈ S with e+ I = g + I.

We now give the following definition similar to [17, P. 356].

Definition 3.6. A semiring S is called semiperfect in case S/J(S) is semisimple and every idem-
potent of S/J(S) can be lifted mod J(S). Clearly each local semiring is semiperfect.

Theorem 3.7. Let S be a semiring such that |max(S)| < ∞ and ω(MG(S)) < ∞. Then the
following holds.

1) S is semiperfect.

2) If S is a ring then S = S1 × S2 × · · · × Sr where r ≥ 2, (Si,Mi) is a local ring and MG(S) is
finite.

3) If V (MG(S)) = min(S) ∪max(S), then S is Artinian.

4) ω(MG(S)) ≤ max{(
∏r

j=i,j 6=i |Id(Si)|)− 1 : 1 ≤ i ≤ r}.

Proof . (1) Since max(S) is finite. Therefore, S/J(S) is semisimple. Now, we show that idempotent
of S/J(S) can be lifted. Let g + J(S) be a nonzero idempotent of S/J(S). Clearly g /∈ J(S), so
gn /∈ J(S) for each n ∈ N. Hence Sg ⊇ Sg2 ⊇ Sg3 ⊇ · · · is a descending chain of proper ideals
of S (if Sgn = S, then g + J(S) = 1 + J(S)). Since ω(MG(S)) ≤ 4 by Proposition3.1, so there
exists n ∈ N such that Sgn = Sgn+1. Thus gn = gn+1s for some s ∈ S. Let z = gnsn. Then
z = (gn+1s) sn = gn+1sn+1. This implies that z = z2 and g + J(S) = gn + J(S) = gn+1s + J(S) =
(gn+1 + J(S)) (s + J(S)) = (g + J(S))(s + J(S)) = gs + J(S). Thus, g + J(S) = (g + J(S))2 =
(g + J(S))n = (gs+ J(S))n = z + J(S). Hence S is semiperfect.

(2) Suppose that S is a ring. By [17, Theorem 23.11], S = S1× S2× · · · × Sr, where (Si,Mi) is a
local ring for 1 ≤ i ≤ r. Now, we will show that MG(S) is finite. It suffices to show that Id (Si) is
finite for all 1 ≤ i ≤ r. Suppose, on the contrary, Id (Si) is infinite for some 1 ≤ i ≤ r. Put

E = {S1 × S2 × · · · × Si−1 × F × Si+1 × · · · × Sr | F ∈ Id (Si)} .

Then E is an infinite clique in MG(S), which is a contradiction. Thus Id (Si) is finite for all 1 ≤ i ≤ r.
Hence Id(S) is finite and so MG(S) is finite. (3) Since ω(MG(S)) < ∞, by Theorem 2.19(3), then
|min(S)| <∞. So, we have Id(S) is finite. Therefore, S is artinian. (4) Put

Cj = {I ≤ S : I = I1 × I2 × · · · × Ij−1 ×Mj × Ij+1 × · · · × Ir, It ∈ Id (St) , for 1 ≤ t 6= j ≤ r},
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for each 1 ≤ j ≤ r. As 0×0×· · ·×Mj×· · ·×0 ⊆ I for each I ∈ Cj. By Proposition 2.22, we have that

the clique of MG(S) contains in an its induced subgraph by Cj. Since |Cj| =
(∏r

i=1,j 6=i |Id (Si)|
)
−

1, therefore

ω(MG(S)) ≤ max

{(
r∏

j=1,j 6=1

|Id (Si)|

)
− 1

}
.

�

Theorem 3.8. Let S be a semiring such that J(S) 6= (0). If MG(S) is a planar graph, then the
following holds.

1) χ(MG(S)) is finite;

2) χ(MG(S)) = ω(MG(S)).

Proof . For(1) By Propositions 3.1 and 3.3, χ(MG(S)) is finite.
For(2) It is known that ω(MG(S)) ≤ χ(MG(S)). Without loss of generality we may take that

{I1, I2, I3, I4} to be a maximal clique with four elements in MG(S), by Propositions 3.1 and 3.3.
Where for all 1 ≤ i ≤ 4, Ii ⊆ Mj for only one vertex Mj belong to max(S) such that max(S) has at
most four element which are {M1,M2,M3,M4} . Since any two vertices of the clique are not adjacent
if we consider they subsets of Mk, for k 6= j by Proposition 2.10. So for all k 6= j, then we can
coloured by at most 4-colours the vertices are adjacent to Mk. Then we can 4-colour the vertices of
MG(S). Thus, χ(MG(S)) = ω(MG(S)). �

4. The Connectivity of MG(S)

We begin this section with the next result.

Theorem 4.1. Let S ∼= S1 × S2 × · · · × Sn, where (Si, Pi) is a local semiring with MG(S) is a
non-empty graph. Then every two vertices are disconnected if and only if S = S1×S2, where S1 and
S2 are semifields.

Proof . If S = S1 × S2 where S1 and S2 are semifields, then V (MG(S)) = {(0)× S2, S1 × (0)}.
Evidently, (0)× S2 and S1 × (0) are not adjacent in MG(S).

Conversely, suppose that any two vertices are disconnected. Since S is a finite non-local semiring,
then S ∼= S1 × S2 × · · · × Sn, where (Si, Pi) is a local semiring for every i = 1, 2, . . . , n and n ≥ 2.
If P1 6= (0), then (P1 × S2 × · · · × Sn) + (P1 × P2 × · · · × Sn) ∈ max(S), which is a contradiction.
Hence P1 = (0). Similarly, P2 = P3 = · · · = Pn = (0). Thus S1, S2, . . . , Sn are semifields. If n ≥ 3,
then (0)×S2×· · ·×Sn and (0)× (0)×S3×· · ·×Sn are adjacent in MG(S), which is a contradiction.
Hence, n = 2. �

In the next main result, we investigate the connectivity of MG(S).

Theorem 4.2. If every two distinct maximal ideals of S have a non-zero intersection, then MG(S)
is connected with diam(MG(S)) ≤ 3.

Proof . Let K,L ∈ V (MG(S)) with K 6= L. If {K,L} ∈ E(MG(S)), then they are connected.
Suppose that {K,L} /∈ E(MG(S)). So, either K + L = S or K + L ⊂ P, for some P ∈ max(S). If
K + L ⊂ P , then by Lemma 2.3, P2 : −P − L is a path in MG(S). If K + L = S, then at least
one of K and L is a maximal ideal and neither K ⊂ L nor L ⊂ K. Assume that K ∈ max(S). If
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L ∈ max(S), again by Lemma 2.3, P ′2 : K −K ∩ L− L is a path in MG(S). Let L /∈ max(S). Then
there exists M ∈ max(S) such that L is adjacent to M . If M = K, then K is adjacent to L. Let
M 6= K. Then P3 : K −K ∩M −M − L is a path in MG(S). From each case, we have shown that
K and L are connected and d(K,L) ≤ 3. Thus MG(S) is connected with diam(MG(S)) ≤ 3. �

The next result is clear.

Corollary 4.3. Let S be a semiring such that J(S) 6= (0). Then MG(S) is connected with diam(MG(S)) ≤
3.

Remark 4.4. For a graph G, it is well-known that if G contains a cycle, then gr(G) ≤ 2 diam(G)+1.
Thus, if S is any semiring with J(S) 6= (0) and MG(S) contains a cycle. Then by Corollary 4.3,
gr(MG(S)) ≤ 7.

Note that the graph MG(S) may not be connected, whenever two distinct maximal ideals of S
have a zero intersection. As in the following example.

Example 4.5. (1) Consider Z15 as a semiring. Clearly, the graph MG (Z15) is disconnected.

(2) Consider S = Z2⊕Z2 as a semiring. It is clear that max(S) = {0⊕ Z2,Z2 ⊕ 0} , J(S) = 0 and
MG(S) is disconnected. See that V(MG(S)) = {0⊕ Z2,Z2 ⊕ 0} .

A semiring S is semidomain if ab = ac implies b = c for all b, c ∈ S and all non-zero a ∈ S, or
equivalent each non-zero principal ideal of S is invertible in S (see[4],[18]) . We say that a semidomain
S is said to be a Dedekind semidomain if every non-zero ideal of S is invertible in S (see [3],[18]).
Next, we turn to the following result.

Proposition 4.6. If S is a Noetherian Dedekind semidomain in which every two distinct maximal
ideals of S have a non-zero intersection, then diam(MG(S)) ≤ 2.

Proof . From Theorem 4.2, d(P,Q) ≤ 2, for every P,Q ∈ V (MG(S)) with P 6= Q, except for the
possibility that P + Q = S and {P,Q} * max(S). Now, suppose that P + Q = S and P ∈ max(S)
but Q /∈ max(S). Then there exits T ∈ max(S) such that Q is adjacent to T . Since S is a Noetherian
Dedekind semidomain, then Q + (T ∩ P ) = (Q + T ) ∩ (Q + P ) = T ∩ S = T by [18] . Hence Q is
adjacent to T ∩ P . Since P is also adjacent to T ∩ P , then d(P,Q) ≤ 2. Thus, diam(MG(S)) ≤ 2.
�

Proposition 4.7. Let S be a Dedekind semidomain. Then I and J are adjacent in MG(S) if and
only if I + J is a prime ideal in S.

Proof . By Theorem 2.21 in [18] , each nonzero prime ideal of a Dedekind semidomain is maximal,
this completes the proof. �

The following result is an immediate consequence of the proof of Theorem 4.2 .

Proposition 4.8. If S is a semiring in which every two distinct ideals of S are non-comaximal
ideals. Then diam(MG(S)) ≤ 2.

The next result discovers the characterizations of the cut-vertices of MG(S).

Theorem 4.9. Suppose that every two distinct maximal ideals of S have a non-zero intersection. If
L is a cut-vertex of MG(S), then L = P ∩Q, for some P,Q ∈ max(S).
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Proof . If L ∈ max(S), then by putting P = Q = L, the proof will be completed. Now, suppose
that L /∈ max(S). Let J and K be two vertices in different components of MG(S) - L. We have
three cases:
Case1: If J,K ∈ max(S), then J ∩ K ∈ N(J) ∩ N(K). Since L is a cut-vertex of MG(S), then
L = J ∩K.
Case 2: If J ∈ max(S) and K /∈ max(S), then K ∈ N(M), for some M ∈ max(S). Since J ∩M is
adjacent to J and M , then L = J ∩M .
Case3: If J,K /∈ max(S), then P ∈ N(J) and Q ∈ N(K), for some P,Q ∈ max(S) such that P and
Q are adjacent to J and K, respectively. Since L is a cut-vertex, then P 6= Q. By the same way of
Case 2, we obtain that L = P ∩Q. �

Proposition 4.10. Let S be a semiring with MG(S) connected and every two distinct maximal ideals
of S have a non-zero intersection. Then each non-maximal ideal of S is not a cut vertex.

Proof . Let I be a non-maximal ideal of S. Suppose, on the contrary, I is a cut vertex of MG(S),
so MG(S)\{I} is not connected. Thus there exist vertices J,K such that I lies on every path from
K to J . We have three cases:
Case1: If J,K ∈ max(S). So J ∩K 6= 0. It is clear that J − J ∩K −K is a path in MG(S)\{I}, a
contradiction.
Case 2: If J ∈ max(S) and K /∈ max(S), then K ⊂ P for some P ∈ max(S). It is clear that
J − J ∩ P − P −K is a path in MG(S)\{I}, which is a contradiction.
Case3: If J,K /∈ max(S), then J ⊂ Q and K ⊂ M for some Q,M ∈ max(S). It is clear that
J −Q−Q∩P −P −M is a path in MG(S)\{I}, a contradiction. So I is not a cut vertex of MG(S).
�

In the next main result, we find the radius of MG(S).

Theorem 4.11. Let J(S) 6= (0). If |max(S)| ≥ 2, then rad(MG(S)) = 2.

Proof . From Lemma2.3, d(J(S), K) = 1, for every K ∈ max(S). Since every vertex I /∈ max(S) is
adjacent to a vertex in max(S), then d(J(S), I) ≤ 2. Assume that P,Q ∈ max(S) with P 6= Q. If
PQ is adjacent to J(S), then J(S) +PQ = P , for some P ∈ max(S). Since J(S) +PQ ⊆ P,Q, then
P = P = Q. This contradicts that P 6= Q. Hence, PQ is not adjacent to J(S). Thus the eccentricity
of J(S) is e(J(S)) = 2. If there exists I ∈ V(MG(S)) with e(I) = 1, then I is adjacent to each vertex
J ∈ max(S). Clearly, I /∈ max(S). Since PQ is not adjacent to J(S), for every P,Q ∈ max(S) with
P 6= Q, then neither I = J(S) nor I = PQ. Thus I * J(S). Hence, MG(S) contains a P ∈ max(S)
which is adjacent to I. This contradicts that e(I) = 1. Therefore, J(S) has the minimum eccentricity
over all vertices of MG(S). Thus, rad(MG(S)) = e(J(S)) = 2. �

Proposition 4.12. Let S be a semiring. Then MG(S) is a totally disconnected graph if and only if
S has no proper non-maximal ideal.

Proof . Suppose that S has no non-maximal proper ideal. Since any comaximal ideals of S are not
adjacent in MG(S), so MG(S) is a totally disconnected graph. Conversely, suppose that MG(S) is
a totally disconnected graph. Suppose I is a non-maximal proper ideal of S. So, I is a adjacent to
maximal ideal of MG(S) by Lemma 2.3 (1), which is a contradiction, as needed. �
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