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Abstract

Using the techniques of the differential subordination and superordination, we derive certain subordi-
nation and superordination properties of multivalent functions associated with the Dziok-Srivastava
operator.
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1. Introduction

Let A (p, k) denote the class of functions of the form

f(z) = zp +
∞∑
n=k

an+pz
n+p (p, k ∈ N = {1, 2, 3, . . . }) , (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}; we write A (p) := A (p, 1).
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tms00@fayoum.edu.eg, tmsaman@uqu.edu.sa (Tamer M. Seoudy)

Received: February 2019 Revised: November 2019

http://dx.doi.org/10.22075/ijnaa.2019.17226.1916


998 Aouf, Bulboacă, Seoudy

Suppose that f and g are analytic in U. We say that the function f is subordinate to g in U,
or g superordinate to f in U, and we write f(z) ≺ g(z), if there exists an analytic function w in U
with w (0) = 0 and |w (z)| < 1, such that f(z) = g(w (z)), z ∈ U. If g is univalent in U, then the
following equivalence relationship holds (see [13], [14] and [15]):

f(z) ≺ g(z)⇔ f (0) = g (0) and f (U) ⊂ g (U) .

For the functions fj ∈ A (p, k) given by

fj(z) = zp +
∞∑
n=k

an+p,jz
n+p, z ∈ U, (j = 1, 2) ,

we define the Hadamard product (or convolution) of f1 and f2 by

(f1 ∗ f2) (z) = zp +
∞∑
n=k

an+p,1an+p,2z
n+p = (f2 ∗ f1) (z), z ∈ U.

For the complex parameters a1, . . . , aq and b1, . . . , bs, with bj /∈ Z−0 := {0,−1,−2, . . . }, j =
1, . . . , s, the generalized hypergeometric function qFs is defined (see [26]) by the following infinite
series

qFs (a1, . . . , aq; b1, . . . , bs; z) =
∞∑
n=0

(a1)n . . . . (aq)n
(b1)n . . . (bs)n

zn

n!
, z ∈ U,

(q ≤ s+ 1; q, s ∈ N0 := N ∪ {0}) ,

where (θ)n is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

(θ)n =
Γ(θ + n)

Γ(θ)
=

{
1, if θ = 0
θ (θ + 1) . . . (θ + n− 1) , if θ ∈ N.

Corresponding to the function hp (a1, . . . , aq; b1, . . . , bs; z) defined by

hp (a1, . . . , aq; b1, . . . , bs; z) = zp qFs (a1, . . . , aq; b1, . . . , bs; z) , z ∈ U,

Dziok and Srivastava [4] considered a linear operator

Hp(a1, . . . , aq; b1, . . . , bs) : A (p, k)→ A (p, k)

defined by the following Hadamard product:

Hp(a1, . . . , aq; b1, . . . , bs)f (z) = hp (a1, . . . , aq; b1, . . . , bs; z) ∗ f (z) , z ∈ U, (1.2)

(q ≤ s+ 1; q, s ∈ N0) .

If f ∈ A (p, k) is given by (1.1), then we have

Hp(a1, . . . , aq; b1, . . . , bs)f(z) = f(z) = zp +
∞∑
n=k

Γnan+pz
n+p, z ∈ U, (1.3)

where

Γn =
(a1)n . . . . (aq)n
(b1)n . . . (bs)n

1

n!
(n ∈ N) .
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To simplify the notations, we write

Hp,q,s(a1)f(z) := Hp(a1, . . . , aq; b1, . . . , bs)f(z).

From (1.2) or (1.3) it follows that

z (Hp,q,s (a1) f(z))
′
= a1Hp,q,s (a1 + 1) f(z)− (a1 − p)Hp,q,s (a1) f(z), z ∈ U.

It should be remarked that the linear operator Hp,q,s (a1) is a generalization of many other linear
operators considered earlier. In particular, for f ∈ A (p) we have the following special cases:

(i) H1,2,1(a, b; c)f =:
(
Ia,bc
)
f
(
a, b ∈ C; c /∈ Z−0

)
, where the linear operator Ia,bc was investigated by

Hohlov [8];

(ii) Hp,2,1(n+p, 1; 1)f =: Dn+p−1f (n ∈ N; n > −p), where the linear operator Dn+p−1 was studied
by Goel and Sohi [7]. In the case when p = 1, Dnf is the Ruscheweyh derivative of f (see [22]);

(iii) Hp,2,1(δ + p, 1; δ + p + 1)f(z) =: Jp,δ(f)(z) =
p+ δ

zδ

∫ z

0

tδ−1f(t)dt (δ > −p), where Jp,δ is the

generalized Bernardi–Libera–Livingston integral operator (see [3]);

(iv) Hp,2,1(p+1, 1; p+1−λ)f(z) =: Ω
(λ,p)
z f (z) =

Γ (p+ 1− λ)

Γ (p+ 1)
zλDλ

z f (z) (−∞ ≤ λ < p+ 1), where

Dλ
z f is the fractional integral of f of order −λ when −∞ ≤ λ < 0, and fractional derivative

of f of order λ when 0 ≤ λ < p + 1. The extended fractional differintegral operator Ω
(λ,p)
z

was introduced and studied by Patel and Mishra [21], while the fractional differential operator

Ω
(λ,p)
z with 0 ≤ λ < 1 was investigated by Srivastava and Aouf [25]. The operator Ω

(λ,1)
z =: Ωλ

z

was introduced by Owa and Srivastava [20] (see also Owa [19]);

(v) Hp,2,1(a, 1; c)f =: Lp(a, c)f (a ∈ R; c ∈ R \Z−0 ), where the linear operator Lp(a, c) was studied
by Saitoh [23], which yields the operator L(a, c) introduced by Carlson and Shaffer [1] for p = 1;

(vi) H1,2,1(µ, 1;λ + 1)f =: Iλ,µf(z) (λ > −1; µ > 0), where Iλ,µ is the Choi–Saigo–Srivastava
operator [3], which is closely related to the Carlson–Shaffer [1] operator L(µ, λ+ 1);

(vii) Hp,2,1(p + 1, 1;n + p)f =: In,pf (n ∈ Z; n > −p), where the operator In,p was considered by
Liu and Noor [10];

(viii) Hp,2,1(λ + p, c; a)f =: Iλp (a, c)f (a, c ∈ R \ Z−0 ; λ > −p), where Iλp (a, c) is the Cho–Kwon–
Srivastava operator [2].

In recent years, many interesting subclasses of analytic functions associated with the Dziok–
Srivastava operator Hp,q,s (a1) and its many special cases were investigated by (for example) Dziok
and Srivastava ([4] and [5]), Gangadharan et al. [6], Liu and Noor [10], Liu [9], Liu and Srivastava
[12], Liu and Patel [11], and many others (see also [2, 16, 17, 27]). In the present paper we shall
use the method based upon the differential subordination to derive inclusion relationships and other
interesting properties and characteristics of the Dziok–Srivastava operator Hp,q,s (a1).
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2. Preliminaries lemmas

Let P [c, k] denote the class of functions of the form

ϕ (z) = c+ ckz
k + ck+1z

k+1 + . . . ,

that are analytic in U; we write P [k] := P [1, k].

Definition 2.1. [15] Denote by Q the set of all functions f that are analytic and injective on
U \ E (f), where

E (f) =

{
ζ ∈ ∂U : lim

z→ζ
f (z) =∞

}
,

and such that f
′
(z) 6= 0 for ζ ∈ U \ E (f).

In our present investigation, we shall require the following lemmas.

Lemma 2.2. [14] Let h be analytic and convex (univalent) in U, with h(0) = 1, and let ϕ ∈ P [k].
If

ϕ (z) +
zϕ
′
(z)

γ
≺ h (z) ,

where γ 6= 0 and Re γ ≥ 0, then

ϕ (z) ≺ q (z) =
γ

k
z−

γ
k

∫ z

0

t
γ
k
−1h (t) dt ≺ h (z) ,

and q is the best dominant.

Lemma 2.3. [24] Let q be a convex (univalent) function in U, let σ ∈ C and θ ∈ C∗ := C \ {0},
with

Re

(
1 +

zq
′′

(z)

q′ (z)

)
> max

{
0;−Re

σ

θ

}
.

If the function ϕ is analytic in U and

σϕ (z) + θzϕ
′
(z) ≺ σq (z) + θzq

′
(z) ,

then ϕ (z) ≺ q (z), and q is the best dominant.

Lemma 2.4. [15] Let q be a convex (univalent) function in U and let k ∈ C, with Re k > 0. If

ϕ ∈ P [q (0) , 1] ∩Q,

and ϕ (z) + kzϕ
′
(z) is univalent in U, then

q (z) + kzq
′
(z) ≺ ϕ (z) + kzϕ

′
(z)

implies q (z) ≺ ϕ (z), and q is the best subordinant.

Lemma 2.5. [28, Chapter 14] For any real or complex numbers a, b, c
(
c /∈ Z−0

)
we have∫ 1

0

tb−1 (1− t)c−b−1 (1− tz)−a dt =
Γ (b) Γ (c− b)

Γ (c)
2F1 (a, b; c; z) (2.1)

(Re c > Re b > 0) ;

2F1 (a, b; c; z) = 2F1 (b, a; c; z) ; (2.2)

2F1 (a, b; c; z) = (1− z)−a 2F1

(
a, b; c;

z

1− z

)
. (2.3)
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3. Main results

Unless otherwise mentioned, we assume throughout the sequel that ai > 0 for i = 1, . . . , q, α > 0,
µ > 0 and −1 ≤ B < A ≤ 1. Now, we will prove the following sharp subordination result:

Theorem 3.1. Let 0 ≤ j < p, and for f ∈ A (p, k) suppose that

(Hp,q,s (a1) f(z))(j)

zp−j
6= 0, z ∈ U,

whenever µ ∈ (0,+∞) \ N. Let define the function Φj by

Φj (z) = (1− α)

[
(Hp,q,s (a1) f(z))(j)

zp−j

]µ
+ (3.1)

α
(Hp,q,s (a1 + 1) f(z))(j)

zp−j

[
(Hp,q,s (a1) f(z))(j)

zp−j

]µ−1
,

where all the powers are the principal ones, i.e. log 1 = 0.
If

Φj (z) ≺
[

p!

(p− j)!

]µ
1 + Az

1 +Bz
, (3.2)

then [
(Hp,q,s (a1) f(z))(j)

zp−j

]µ
≺
[

p!

(p− j)!

]µ
q (z) , (3.3)

where

q (z) =

{
A
B

+
(
1− A

B

)
(1 +Bz)−1 2F1

(
1, 1; µa1

αk
+ 1; Bz

Bz+1

)
, if B 6= 0,

1 + µa1
µa1+αk

Az, if B = 0,

and
[

p!
(p−j)!

]µ
q is the best dominant of (3.3). Furthermore, we have

Re

[
(Hp,q,s (a1) f(z))(j)

zp−j

]µ
>

[
p!

(p− j)!

]µ
η, z ∈ U, (3.4)

where η is given by

η =

{
A
B

+
(
1− A

B

)
(1−B)−1 2F1

(
1, 1; µa1

αk
+ 1; B

B−1

)
, if B 6= 0,

1− µa1
µa1+αk

A, if B = 0,

and the estimate (3.4) is the best possible.

Proof . Letting

ϕ (z) =

[
(p− j)!
p!

(Hp,q,s (a1) f(z))(j)

zp−j

]µ
, z ∈ U, (3.5)

by choosing the principal branch in (3.5) we note that ϕ ∈ P [k]. Differentiating both the sides of
(3.5), by using in the resulting equation the assumption (3.2) and the fact that

z (Hp,q,s (a1) f(z))(j+1) = a1 (Hp,q,s (a1 + 1) f(z))(j) − (3.6)

(a1 − p+ j) (Hp,q,s (a1) f(z))(j) , z ∈ U, (0 ≤ j < p)



1002 Aouf, Bulboacă, Seoudy

we obtain

ϕ (z) +
zϕ
′
(z)

µa1
α

≺ 1 + Az

1 +Bz
.

Now, by using Lemma 2.2, with γ = µa1
α

, in the above differential subordination, we deduce that

ϕ (z) ≺ q (z) =
µa1
αk

z−
µa1
αk

∫ z

0

t
µa1
αk
−1
(

1 + At

1 +Bt

)
dt ={

A
B

+
(
1− A

B

)
(1 +Bz)−1 2F1

(
1, 1; µa1

αk
+ 1; Bz

Bz+1

)
, if B 6= 0,

1 + µa1
µa1+αk

Az, if B = 0,

where we used a change of variable followed by the use of the identities (2.1), (2.2) and (2.3),
respectively. This completes the proof of the assertion (3.3).

Next, we will show that
inf {Re q (z) : |z| < 1} = q (−1) . (3.7)

Indeed, we have

Re
1 + Az

1 +Bz
≥ 1− Ar

1−Br
(|z| < r < 1) .

Setting

g (s, z) =
1 + Asz

1 +Bsz
(0 ≤ s ≤ 1; z ∈ U)

and
dυ (s) =

µa1
αk

s
µa1
αk
−1ds

which is a positive measure on the closed interval [0, 1], we get that

q (z) =

∫ 1

0

g (s, z) dυ (s) ,

so that

Re q (z) ≥
∫ 1

0

1− Asr
1−Bsr

dυ (s) = q (−r) (|z| ≤ r < 1) .

Now, taking r → 1− in the above inequality we obtain the assertion (3.7). The estimate (3.4) is the

best possible since the function
[

p!
(p−j)!

]µ
q is the best dominant of (3.3). �

Corollary 3.2. Let 0 ≤ j < p and f ∈ A (p, k). If

(Hp,q,s (a1 + 1) f(z))(j)

zp−j
≺ p!

(p− j)!
1 + A∗z

1 +Bz
,

where

A∗ =


B 2F1(1,1;µa1αk +1; B

B−1)
B+ 2F1(1,1;µa1αk +1; B

B−1)−1
, if B 6= 0,

a1+k
a1
, if B = 0,

then Hp,q,s (a1) f is p–valent in U.
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Proof . Putting µ = α = 1 and replacing A by A∗ in Theorem 3.1, we get

Re
z (Hp,q,s (a1) f(z))(j)

zp−j+1
= Re

(Hp,q,s (a1) f(z))(j)

zp−j
> 0, z ∈ U.

Since the function φ(z) = zp−j+1 is (p− j + 1)–valently starlike in U, in view of the result [18,
Theorem 8] we obtain that the function Hp,q,s (a1) f is p–valent in U. �

Theorem 3.3. Let 0 ≤ j < p, and for f ∈ A (p, k) let define the function Fα by

Fα (z) = (1− α− αa1 + αp)Hp,q,s (a1) f(z) + αa1Hp,q,s (a1 + 1) f(z). (3.8)

If

F
(j)
α (z)

zp−j
≺ (1− α + αp)

p!

(p− j)!
1 + Az

1 +Bz
, (3.9)

then
(Hp,q,s (a1) f(z))(j)

zp−j
≺ p!

(p− j)!
q (z) , (3.10)

where

q (z) =

{
A
B

+
(
1− A

B

)
(1 +Bz)−1 2F1

(
1, 1; 1−α+αp

αk
+ 1; Bz

Bz+1

)
, if B 6= 0,

1 + 1−α+αp
1−α+α(p+k) Az, if B = 0,

and p!
(p−j)!q is the best dominant of (3.10). Furthermore, we have

Re
(Hp,q,s (a1) f(z))(j)

zp−j
>

p!

(p− j)!
ξ, z ∈ U, (3.11)

where ξ is given by

ξ =

{
A
B

+
(
1− A

B

)
(1−B)−1 2F1

(
1, 1; 1−α+αp

αk
+ 1; B

B−1

)
, if B 6= 0,

1− µa1
µa1+αk

A, if B = 0,

and the estimate in (3.11) is the best possible.

Proof . Using the definition (3.8) and the identity (3.6), it follows that

F (j)
α (z) = (1− α + αj) (Hp,q,s (a1) f(z))(j) + αz (Hp,q,s (a1) f(z))(j+1) , (3.12)

for 0 ≤ j < p. Putting

ϕ (z) =
(p− j)!
p!

(Hp,q,s (a1) f(z))(j)

zp−j
, z ∈ U, (3.13)

we have that ϕ ∈ P [k]. Differentiating both the sides of (3.13), using (3.9) and (3.12) in the resulting
equation, by a simple calculation we get

ϕ (z) +
α

1− α + αp
zϕ
′
(z) ≺ 1 + Az

1 +Bz
.

The remaining part of the proof is similar to that of Theorem 3.1, so we omit these details. �
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Theorem 3.4. Let 0 ≤ j < p, and for δ > −p let define the operator Jp,δ : A (p, k)→ A (p, k) by

Jp,δ (f) (z) =
p+ δ

zδ

∫ z

0

tδ−1f (t) dt, z ∈ U.

If

(Hp,q,s (a1) f(z))(j)

zp−j
≺ p!

(p− j)!
1 + Az

1 +Bz
, (3.14)

then
(Hp,q,s (a1) Jp,δ (f) (z))(j)

zp−j
≺ p!

(p− j)!
q (z) , (3.15)

where

q (z) =

{
A
B

+
(
1− A

B

)
(1 +Bz)−1 2F1

(
1, 1; δ+p

k
+ 1; Bz

Bz+1

)
, if B 6= 0,

1 + δ+p
δ+p+k

Az, if B = 0,

and p!
(p−j)!q is the best dominant of (3.15). Furthermore, we have

Re
(Hp,q,s (a1) Jp,δ (f) (z))(j)

zp−j
>

p!

(p− j)!
k, z ∈ U, (3.16)

where k is given by

k =

{
A
B

+
(
1− A

B

)
(1−B)−1 2F1

(
1, 1; δ+p

k
+ 1; B

B−1

)
, if B 6= 0,

1− δ+p
δ+p+k

A, if B = 0,

and the estimate in (3.16) is the best possible.

Proof . Letting

ϕ (z) =
(p− j)!
p!

(Hp,q,s (a1) Jp,δ (f) (z))(j)

zp−j
, z ∈ U,

we have that ϕ (z) ∈ P [k]. Differentiating the above definition formula, by using (3.14) and the
identity

z (Hp,q,s (a1) Jp,δ (f) (z))(j+1) = (δ + p) (Hp,q,s (a1) f (z))(j) −
(δ + j) (Hp,q,s (a1) Jp,δ (f) (z))(j)

in the resulting equation, we get

ϕ (z) +
zϕ
′
(z)

δ + p
≺ 1 + Az

1 +Bz
.

Now, the assertion (3.15) and the estimate (3.16) follow by employing the same techniques that
was used in the proof of Theorem 3.1. �

Theorem 3.5. Let q be a univalent function in U, such that q satisfies

Re

(
1 +

zq
′′

(z)

q′ (z)

)
> max

{
0;−µa1

α

}
, z ∈ U. (3.17)



Subordination and superordination results . . . 12 (2021) No. 1, 997-1008 1005

Let 0 ≤ j < p, and for f ∈ A (p, k) suppose that

(Hp,q,s (a1) f(z))(j)

zp−j
6= 0, z ∈ U,

whenever µ ∈ (0,+∞) \ N. Let the function Φj defined by (3.1), and suppose that it satisfies the
following subordination: [

(p− j)!
p!

]µ
Φj (z) ≺ q (z) +

α

µa1
zq
′
(z) . (3.18)

Then, [
(p− j)!
p!

(Hp,q,s (a1) f(z))(j)

zp−j

]µ
≺ q (z) ,

and q is the best dominant of the above subordination.

Proof . If the function ϕ is defined by (3.5), from Theorem 3.1 we obtain[
(p− j)!
p!

]µ
Φj (z) = ϕ (z) +

α

µa1
zϕ
′
(z) . (3.19)

Combining (3.18) and (3.19) we find that

ϕ (z) +
α

µa1
zϕ
′
(z) ≺ q (z) +

α

µa1
zq
′
(z) , (3.20)

and by using Lemma 2.3 and (3.20) we easily get the assertion of Theorem 3.5. �
Taking q (z) = 1+Az

1+Bz
in Theorem 3.5 we obtain the following special case:

Corollary 3.6. For −1 ≤ B < A ≤ 1, suppose that

Re
1−Bz
1 +Bz

> max
{

0;−µa1
α

}
, z ∈ U.

Let 0 ≤ j < p, and for f ∈ A (p, k) suppose that

(Hp,q,s (a1) f(z))(j)

zp−j
6= 0, z ∈ U,

whenever µ ∈ (0,+∞) \ N. Let the function Φj defined by (3.1), and suppose that it satisfies the
following subordination: [

(p− j)!
p!

]µ
Φj (z) ≺ 1 + Az

1 +Bz
+

α

µa1

(A−B) z

(1 +Bz)2
.

Then, [
(p− j)!
p!

(Hp,q,s (a1) f(z))(j)

zp−j

]µ
≺ 1 + Az

1 +Bz

and the function 1+Az
1+Bz

is the best dominant of the above subordination.
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Theorem 3.7. Let 0 ≤ j < p, and for f ∈ A (p, k) suppose that

(Hp,q,s (a1) f(z))(j)

zp−j
6= 0, z ∈ U,

whenever µ ∈ (0,+∞) \ N. Suppose that[
(p− j)!
p!

(Hp,q,s (a1) f(z))(j)

zp−j

]µ
∈ P [1] ∩Q,

such that
[
(p−j)!
p!

]µ
Φj (z) is univalent in U, where the function Φj is defined by (3.1). If q is a convex

(univalent) function in U, and

q (z) +
α

µa1
zq
′
(z) ≺

[
(p− j)!
p!

]µ
Φj (z) ,

then

q (z) ≺

[
(p− j)!
p!

(Hp,q,s (a1) f(z))(j)

zp−j

]µ
,

and q is the best subordinant of the above subordination.

Proof . If the function ϕ is defined by (3.5), from (3.19) we have

q (z) +
α

µa1
zq
′
(z) ≺

[
(p− j)!
p!

]µ
Φj (z) = ϕ (z) +

α

µa1
zϕ
′
(z) .

Now, an application of Lemma 2.4 yields the assertion of Theorem 3.7. �
Taking q (z) = 1+Az

1+Bz
in Theorem 3.7, we get the following special case:

Corollary 3.8. Let 0 ≤ j < p, and for f ∈ A (p, k) suppose that

(Hp,q,s (a1) f(z))(j)

zp−j
6= 0, z ∈ U,

whenever µ ∈ (0,+∞) \ N. Suppose that[
(p− j)!
p!

(Hp,q,s (a1) f(z))(j)

zp−j

]µ
∈ P [1] ∩Q,

such that
[
(p−j)!
p!

]µ
Φj (z) is univalent in U, where the function Φj is defined by (3.1), and suppose

that −1 ≤ B < A ≤ 1. If

1 + Az

1 +Bz
+

α

µa1

(A−B) z

(1 +Bz)2
≺
[

(p− j)!
p!

]µ
Φj (z) ,

then
1 + Az

1 +Bz
≺

[
(p− j)!
p!

(Hp,q,s (a1) f(z))(j)

zp−j

]µ
and the function 1+Az

1+Bz
is the best subordinant of the above subordination.
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Combining the Theorem 3.5 and Theorem 3.7, we easily get the following Sandwich-type result:

Theorem 3.9. Let 0 ≤ j < p, and for f ∈ A (p, k) suppose that

(Hp,q,s (a1) f(z))(j)

zp−j
6= 0, z ∈ U,

whenever µ ∈ (0,+∞) \ N. Suppose that[
(p− j)!
p!

(Hp,q,s (a1) f(z))(j)

zp−j

]µ
∈ P [q (0) , k] ∩Q,

such that
[
(p−j)!
p!

]µ
Φj (z) is univalent in U, where the function Φj is defined by (3.1).

Let q1 be a convex (univalent) function in U, and suppose that q2 is a univalent function in U
that q2 satisfies (3.17). If

q1 (z) +
α

µa1
zq
′

1 (z) ≺
[

(p− j)!
p!

]µ
Φj (z) ≺ q2 (z) +

α

µa1
zq
′

2 (z) ,

then

q1 (z) ≺

[
(p− j)!
p!

(Hp,q,s (a1) f(z))(j)

zp−j

]µ
≺ q2 (z) ,

and q1 and q2 are, respectively, the best subordinant and the best dominant of the above double
subordination.
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