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Precision of nano-metric operations is an important issue in nano-engineering studies. Several 

operative parameters might affect the quality of results. The parameters of the nano world are 

significant but not entirely controllable. However, the geometrical and mechanical properties of 

micro cantilevers are completely controllable. So, controlling the sensitivity of resulting image 

through t lamination design could be a proper approach. This paper analyses the effects of com-

posite lamination on the performance of common Micro and Nano Electro Mechanical systems 

(MEMS and NEMS, respectively). Generalized Differential Quadrature (GDQ) and Generalized 

Differential Quadrature Element (GDQE) methods are used as semi-analytic solutions for regular 

and irregular domains, respectively. Validity, applicability and accuracy of the proposed ap-

proach are demonstrated and then the lamination effects on the nano-imaging and manipulation 

of nano particles by micro cantilevers are studied. This study shows that some laminations of 

micro cantilevers resulted in a better performance in nano-manipulation and imaging. Further-

more, clarifying the dependency of system sensitivity on the profile of the substrate is remarka-

ble. 
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1. Introduction    
 

Sensing and actuating the small scales has trend-
ed the researchers to focus on Micro and Nano Elec-
tro Mechanical systems (MEMS and NEMS). Howev-
er, experiment-based predictions are very expensive 
in this area. As a proper alternative, therefore, mi-
cro- and nano electro mechanics theories must be 
further developed and applied. Piezoelectric-based 
structures, named smart structures, are the most 
well-known category of MEMs and NEMs. Applica-
tions of piezoelectric actuators extend to the follow-
ing things: mass production of sound transmitters; 
ultrasonic power transducers and sensors; bending 
actuators for textile machines; ink print heads; 
beam benders in valves, in braille displays, in optical 

systems; and newly monolithic multilayer actuators 
for automotive injection systems [1].  

A sufficiently accurate model for MEMs and 
NEMs remains one of the most challenging problems 
of the MEMs and NEMs dynamics. Until now, numer-
ical methods have been developed to study the dy-
namics of small devices, such as the finite element 
method (FEM), the finite difference method (FDM) 
and the finite cloud meshless method (FCM) [2-4]. 
This paper will show that although FEM is suffi-
ciently simple and accessible, its precision is limited 
in some usual boundary and ambient conditions. As 
an alternative, Generalized Differential Quadrature 
(GDQ) and Generalized Differential Quadrature El-
ement (GDQE) methods have been recently applied 
to continuous and discontinuous mechanical sys-
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tems, respectively. In this paper, these methods are 
used to study the performance of NEMs and MEMs 
in nanometric operations. It is useful to list valuable 
works on modelling nano-manipulation and nano-
imaging with the molecular dynamics approach. 
Coarse-grained molecular dynamics simulation of 
the automatic nano-manipulation process was per-
formed to study the effect of tip damage on the posi-
tioning errors [5]. However, nano-cluster manipula-
tion’s success in considering the flexibility of the 
system was studied via molecular dynamics simula-
tions [6]. 

Some researchers have focused on the free vibra-
tion analysis of plates and shells as a common me-
chanical problem [7-9]. Others have presented the 
mechanics of especial systems through especial 
conditions [10]. Piezoelectric-based structures typi-
cally have complicated behavior due to multi-field 
excitations. This forces the implementation of nu-
merical methods. Balamurugan and Narayanan [11] 
have used a nine-nodded, piezo-laminated, degener-
ated shell element to model and analyse multi-
layered composite shell structures together with 
sensors and piezoelectric actuators. Applications of 
FEM in structures, including sensors and actuators, 
are surveyed [12]. In addition to FEM, advanced 
numerical methods have been developed. For in-
stance, the differential quadrature method (DQM) 
has been introduced as an effective semi-analytic 
method in the analysis of the free, static and dynam-
ic response of mechanical systems. Then some re-
searchers have used it for more complicated me-
chanical engineering problems [13]. Other related 
works can be mentioned where the piezoelectric 
laminated cylindrical shell - with the shear rotations 
effect under the electromechanical loads and the 
four sides simply supported the boundary condition 
- was studied by using the two-dimensional general-
ized DQ (GDQ) computational method [14]. The ap-
plication of DQ is limited to uniform domains, and 
for irregular domains, including the discontinuity in 
material or geometry, the DQ element method 
(DQEM) has been suggested by Chen [15]. Re-
searchers believe that the GDQ and GDQE methods 
lead to moderately exact solutions to problems 
[16,17]. So, it could be a proper analysis procedure. 

The imaging and manipulation of nano objects 
include various techniques performed by especial 
devices named macro-scale nano-robots [18]. Imag-
ing and manipulation could be performed in various 
procedures based on the aims and goals of the oper-
ation [18]. Accuracy is the most significant challenge 
in such devices. Usually, nonlinearity has been ob-
served in the MEMs and NEMs that are used in 
nano-robots. Predicting these nonlinearities is very 
useful to achieve sufficient accuracy for the opera-

tion. In this paper, nonlinearities were neglected 
and a linear model was proposed. 

This paper represents a comprehensive semi-
analytic approach for static and dynamic responses 
of nano-robots that could include torsion, elonga-
tion and bending in various planes. The most prom-
inent contribution of this study is to comprehensive-
ly investigate the laminated composite effects on 
nano-manipulation and nano-imaging. 

 

2. Problem 
 

Piezoelectric materials could be used in various 
configurations for actuation and/or sensing purpos-
es. For instance, the mono-morph, bimorph and tri-
morph laminations are the most well-known repre-
sentatives of piezoelectric plate-bending actuators. 
Multilayer technology has the advantage of working 
with even lower driving voltages. In this study, 
which uses laminated composite structures, a gen-
eral and applicable configuration is suggested for a 
superior performance in MEMs and NEMs. The im-
aging and manipulation of nano objects by Scanning 
Probe Microscopes (SPMs) and especially an Atomic 
Force Microscope (AFM) are two of the prominent 
applications of micro-cantilevers. For example, the 
imaging of a surface and the manipulation of a na-
noparticle are depicted in Figure 1 schematically.   

 

 
(a) 

 
(b) 

Figure 1. (a) Imaging of a general substrate and (b) manipulation 
of a nanoparticle by a general AFM. 
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As depicted in Figure 1, in an AFM, the micro-
cantilever is attached at the end of a piezotube actu-
ator. Since the dimensions of the micro-cantilever 
with respect to the piezo tube are negligible, the 
dynamics of the piezo tubes are neglected. Recently, 
the dynamics of a piezo tube in nano-imaging and 
manipulation operations have been studied [16].  
 
2.1. Formulation of micro-cantilever dynamics 

The general form of the linear constitutive rela-
tion of piezo-electro mechanics can be written as:

      
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where [C], [e] and [ ]  denote the elastic coeffi-

cients, piezoelectric constant and dielectric permit-
tivity matrices, respectively [16,17].  

Based on the dimensions of the MEMs and NEMs 
used, mentioned previously, the laminated system 
considered is assumed to be thin and, thus, strains 
along the thickness can be neglected. Here, the First 
Order Shear Deformation Theory (FSDT) is used. 
Using the generalized Hamilton principle, the equa-
tions of motion and related boundary conditions of a 
segmented laminated shell are derived as: 
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in which iI  is the inertia and N(w0) is the non-

linear term of equations whose higher-order terms 
are neglected. 
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It is particularly important for an actuator that 
the stiffness of the system is affected by the nonline-
ar term. In the equations presented, the upper aster-
isks (*) denote the external forces. In MEMs and 

NEMs, there is an electric field beneath the bigger 
surfaces and, thus, there is current along the thick-

ness (Ez). Using the electroelastic charge equation 
and the boundary condition, the electric potential 
can be written as:

  
 3 31 32 36

33 33

( )
i

i k k xx k yy k xy

zk

k k

Q e S e S e S
E

  
   

   

               (4) 

where Q3k is the surface electric charge density of 
the kth layer in ith segment. The piezoelectric force 

and moment resultants 
eN and 

eM are defined as:
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where  
i

elec i i

k 31 32 36 k zk{e e e } E  and “M” is the 

number of piezoelectric layers. Based on the theory 
mentioned, for each element, the equation of mo-
tion, in operator form, can be written as:
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where mech

i 1 2L (u, v, w, , )   and elec

i 1 2L (u, v, w, , , )  

are the mechanical and electrical effects, respective-

ly, and i

jI is the mass term of the jth equation for ith 

element. The electrical effect contains two parts: the 

converse effect Celec

i(L ( )) , and the direct effect

Delec

i 1 2(L (u, v, w, , , ))   . The geometrical com-

patibility conditions at the common nodes of the 
two connected elements are defined as: 
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Denoting the axial and circumferential directions 
by “x” and “y,” respectively, the natural compatibil-
ity conditions are as follows: 
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Also, the natural and geometrical external 
boundary conditions along the x and y edges are:  
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3. Solution 
 

In numerical analyses, a specific feature makes 
GDQ and GDQE highly distinctive in reaching very 
precise results by using merely a few grid points. 
This feature, which will be introduced in the follow-
ing notes, is particularly precious in structural and 
vibration applications. In principle, DQM was initial-
ly introduced to express the derivatives of a func-
tion to various directions in terms of the sum of 
weighted function values at some specific discrete 
points.
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In Eq. (8), ix , n, N, f, iX  and 
n

ijw denote coor-

dinate system directions (such as a curvilinear one), 
order of derivative, number of discrete points, de-

sired function, points in the ix direction whose de-

rivatives are needed, and weighting coefficients (for 

nth order derivative in the ix  direction and at point 

iX ), respectively. Recently, a recursive relation has 

been developed to calculate the weighting coeffi-
cients as [14]:
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where 
ija are the first derivative coefficients, 

calculated by [14] as:
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Note that (1) N

i k 1,k i i kM (x ) (x x )   . For nu-

merical calculations, sampling points with the Che-
byshev-Gauss-Lobatto are employed in the follow-
ing way: 
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where L is the specific length along the direction 
considered. Due to the discontinuity, domain de-
composition is needed for segmented systems. 
Therefore, various elements should be considered 
and the GDQEM should be applied. Generally, ne-
glecting the damping effect, equations of motion 
yield:
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And the boundary conditions are defined as:
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where, extIF and extBF  are the vectors of external 

forces on interior and boundary points, respectively.  
For the implementation of boundary conditions 

in the DQM or DQEM, several approaches have been 
proposed. Except for the general approach [14], 
others cannot be used in cases other than those that 
are simply supported or have clamped conditions. 
The equations of motion and boundary conditions 
can be rewritten in the matrix form as: 

IB B II I I I Dist

BB B BI I BC

A W A W W F

A W A W F

   

 
             (13) 

where FDist and FBC are the distributed forces of 
the interior and boundary forces that are obtained 
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from extIF and extBF . Substituting BW  from the sec-

ond into the first relation in Eq. 13 leads to: 
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And in the state space form: 
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Using a numerical approach, for instance, the 
Runge-Kutta method, the aforementioned state 
space equation can be solved. Then displacement of 
boundary points can be calculated as 
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For static problems, the solution of Eq. (13) can be 
written as:
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4. Validation 
4.1. Comparison of static deflections 

Numerical solutions exist for electromechanical 
problems. The Finite Element Method (FEM) is 
commonly used to study the behavior of MEMs and 
even NEMs. Previously, validation used to be pro-
vided by the comparison of methods with the tradi-

tional software programs, such as ANSYS and 
ABAQUS. Here, for more clarification, comparisons 
of the static and dynamic responses are made with 
the Green's function approach and ANSYS software. 
In ANSYS, the shell element has been used. These 
types of comparisons clearly show the efficiency of 
the proposed model. Table 1 lists the properties and 
dimensions of beams and plates used for the com-
parison. Table 2 lists the static deflection of the 
midpoint of the beam and plate due to the point and 
uniformly distributed loads. For each problem, the 
simulation error of GDQM is of a considerably lower 
order compared to that of FEM. Table 2 also lists the 
comparison of the static deflection of a stepped B-
beam, due to the 100 N point and uniform loads us-
ing GDQEM. Furthermore, due to a 100 N uniform 
line load on the step position, the static deflection of 
the midpoint of a B-plate is compared. 
 
4.2. Comparison of dynamic response 

The dynamic response of an A-beam (middle 
point) under the SS-SS boundary conditions due to a 
uniformly distributed load (as 100×Sin(10×t)) is 
depicted and compared for three different ap-
proaches in Figure 2. Figure 3 shows the dynamic 
response of an A-plate (middle point) under SS-SS-
SS-SS boundary conditions, due to a uniformly dis-
tributed load (as 100×Sin(10×t)). In Figure 2, three 
approaches resulted in the same responses, when in 
the case of plate (Figure 3), the GDQ method leads to 
a more precise estimation.  

 
 Properties of beams and plates used for simulations. 

Problem Dimensions (m) Module of Elasticity (GPa) Density (Kg/m3) Configuration 
A-Beam 5×0.04×0.04 70 2,800 Simple 
B-Beam 2.5×0.04×0.04,2.5×0.04×0.06 70 2,800 Step 
A-Plate 1×1×0.03 70 2,800 Simple 
B-Plate 0.5×1×0.03,0.5×1×0.05 70 2,800 Step 

     Problem Dimensions (m) Piezo Type Material Configuration 
C-Plate 0.1×.05×.0025 PZT-5H Gr/Epoxy Simple 
D-Plate 0.05×0.05×0.0025, 0.05×0.05×0.0015 PZT-5H Gr/Epoxy Step 

 

 Comparison between the results of present approach, exact solution and ANSYS for static problem. 

System and BC Loading Exact 
ANSYS GDQM 

𝛿 Er. (Ans-Exct) (%) 𝛿 Er. (DQ-Exct) (%) 

A-Beam, SS-SS Point load on mid 17.43861607 17.386 mm 0.301720 17.43861 mm 0.000 
A-Beam, SS-SS Distributed Load 54.49567000 54.278 mm 0.399430 54.49567 mm 0.000 

A-Plate, SS-SS-SS-SS Distributed Load 2.34713e-3 2.5654e-3 mm 9.299442 2.35808e-3 mm 0.466 
System and BC Loading ANSYS GDQEM Er. (Ans-DQ) (%) 

B-Beam, C-F Point load on end 0.0258350 m 0.025834986 m 0.0 
B-Beam, C-SS Point load on mid 0.0040965 m 

0.0025456 m 
0.1785600 m 
0.0120030 m 
0.0063912 m 

1.0852000 µm 
0.6929000 µm 
1.0432000 µm 

0.004108690 m 0.3 
B-Beam, C-C Point load on mid 0.002558450 m 0.5 
B-Beam, C-F uniform line load 0.178019000 m 0.3 

B-Beam, C-SS uniform line load 0.012003150 m 0.0 
B-Beam, C-C uniform line load 0.006396139 m 0.0 

B-Plate, C-C-C-F uniform line load 1.113778000 µm 2.0 
B-Plate, C-C-C-C uniform line load 0.711344000 µm 2.0 

B-Plate, C-SS-SS-C uniform line load 1.07712000 µm 3.1 
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As a result, according to the more accurate GDQ, 
it is used for the dynamic response in nanometric 
operations. As already discussed, the exact solution 
cannot be provided in the case of other boundary 
conditions. But the GDQ results could be compared 
with FEM with an intrinsic guarantee in accuracy for 
both static and dynamic responses.  

Figure 4 shows the dynamic response of the 
stepped B-plate (middle point) under various 
boundary conditions and due to the uniformly dis-
tributed load (100×Sin(10×t)) applied to the patch. 
Obviously, in this figure, the GDQE results are close 
to those of ANSYS. However, it has already been 
demonstrated that the response of GDQE is more 
accurate. 

Based on the aforementioned comparison, the 
reliability of the approaches presented is satisfied. 
Thus, it can be used to study the effects of various 
parameters on the performance of MEMs and NEMs. 
Here, for instance, the micro-cantilever (MC), which 
is used in nano-robots, is studied. The statics and 
dynamics of MC in the nano-imaging and manipula-
tion of nano-particles have been discussed. 

 

 
Figure 2. Dynamic response for a beam; comparison of exact, 
ANSYS and GDQ models. 
 

 
Figure 3. Dynamic response for a plate; comparison of exact, 
ANSYS and GDQM. 

 
Figure 4. Dynamic response of the stepped B-plate (middle 
point) under various boundary conditions and due to the uniform 
100sin(10t) distributed load applied on the patch. 

 

4. Results and Discussion 
 

There are two key operations in nano-scale in 
which the micro-cantilever plays an important role: 
nano-imaging and nano-manipulation. These two 
operations are discussed in the next sections as the 
most useful results could be concluded. 

 
5.1. Surface nano-imaging 

Precision of nanoimaging is an important issue 
in nano-engineering studies. Various parameters 
affect the quality of images obtained. Parameters in 
the nano-world, such as roughness of surface and 
chemical properties, are the most significant, but 
they are not entirely controllable. However, are 
some parameters in macro world could be changed 
and controlled. For instance, the geometrical and 
mechanical properties of micro-cantilevers could 
seriously affect the imaging result. So controlling the 
sensitivity of resulting image through the lamination 
design could be a proper approach. Figure 5 shows 
the nano-imaging scheme. Recently, by implement-
ing molecular dynamics, a shape feedback has been 
used to control the shape of a particle used in ma-
nipulating [19]. Here, the problem is considered to 
be a state-dependent dynamic force on the MC end. 
Neglecting the tip deformation effects on the dy-
namics of MC, where they might be studied via mo-
lecular dynamics, Figure 6 shows the algorithm im-
plemented. An interaction-attraction force field is 
considered for the interfacial force between the tip 
end and substrate [20]: 

where “a” and “b” are the force coefficients and 
“u” is the deflection of the MC end. The quantities of 
“a” and “b” depend on the system considered. The 
best evaluation of “a” can be provided through the 

inverse of the amplitude of the MC end (a1/).  And 
“b” can be considered 1 (one). For simplicity, a gen-
eral profile is assumed for the substrate, including 
triangular, square and sinusoidal parts, simultane-
ously. The desired and resulting profiles, obtained 
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by the first configuration depicted in Figure 7, are 
illustrated on the left side of Figure 5. The length, 
width and thickness are 200, 40 and 8 micrometers, 
respectively.  

2
  

a b
F

u u
                                              (18) 

1 1 1 1

1 1 1 1 1
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(19) 
To evaluate the lamination composite effects on 

the imaging results, the third configuration of lami-
nation, demonstrated in the left side of Figure 5, is 
studied with various laminations. Assuming a pro-
portional damping, Figure 8 shows the effects of 
various laminations on the nano-imaging result by 
scanning the above-mentioned general profile. Im-
plementing proportional damping into Eq. (15) 

leads to Eq. (19), where, IBC  and IIC  have been 

selected as: 

IB IB average IB

II II average II

C PDC( A U )

C PDC( A U )

   

   
            (20) 

PDC, average  and U  are the total proportional 

damping coefficient, average density of lamination 
and identity matrix, respectively. The constant coef-
ficientsand   are assumed to be 0.0008 and 

0.0003. For more clarification, some subplots of Fig-
ure 8 have been enlarged in Figure 9. The legend of 
Figure 9 is mentioned in Figure (9-e). The key areas 
focused on in Figure 9 could be used to study the 
output sensitivity of various configurations to ob-
tain more precise results. When same geometrical, 
ambient and imaging schemes are used, one expects 
to observe different results for the profile obtained 
because of the variations in stiffness in the lamina-
tions used. Thus, some behavior is mechanically 
predictable and simulations are not necessary. In 
practice, however, some factors limit the perfor-
mance of MEMS and NEMS. Thus, even smallest dif-
ference between various laminations may lead to an 
optimal selection of lamination for more precise 
imaging. The P/90˚/0˚/P lamination results in more 
precision in the case of the ascent (Figure 9-a), peak 
(Figure 9-b) and descent (Figure 9-c) parts of the 

triangular surface. Fr square and sinusoidal profiles, 
the output image is completely different. The 
P/90˚/0˚/P lamination leads to the worst results. 
Based on the fourth to sixth subplots of Figure 9, the 
P/0˚/0˚/0˚/P lamination is suggested for square and 
sinusoidal profiles. The dependency of system sensi-
tivity on the profile of a substrate is a highly signifi-
cant result in imaging especial surfaces. Among all 
laminations studied, P/90˚/0˚/P and P/0˚/0˚/0˚/P 
are suggested for triangular and both square and 
sinusoidal substrates, respectively. 

Figure 8 is provided by using a sufficient damp-
ing coefficient. Piezoelectric shunt damping is a 
well-known technique for suppressing vibration in 
MEMS and NEMS. Techniques encompassed in this 
broad description are characterized by connecting 
electrical impedance to a structurally bonded piezo-
electric transducer [21]. Such methods can guaran-
tee the stability of the shunted system without any 
external sensor and do not require parametric mod-
els for a design. Thus, by using an electrical circuit, 
proportional damping could be designed to achieve 
the desired behavior. With this assumption, using 
the P/30/0/-30/P lamination for scanning a simpler 
substrate profile (as demonstrated in Figure 10), the 
effects of PDC on the image obtained are depicted in 
Figure 10. As illustrated in this figure, for a better 
result, the damping should be in an especial range. 
For instance, the PDC between 0.0001 and 0.001 
could be acceptable. The real like three-dimensional 
(3D) image of scanned surface could be obtained by 
repeatedly scanning the substrate considered. The 
real and 3D images of substrate obtained for three 
PDCs are shown in Figure 11.  

 

 
Figure 5. Various configurations of MC and AFM nano-imaging 
scheme using the MC. 
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Figure 6. Imaging of a substrate using the GDQ and GDQE methods.  

 

 
Figure 7. Substrate (real) and resulted profiles with a bimorph 
MC. 
 

The substrate considered is similar to the one in 
Figure 11-a. The profile that resulted from using the 
algorithm presented with PDC = 0.0001 is demon-
strated in the second picture of Figure 11 (11-b). 
Even though the triangular and sinusoidal parts are 
almost close to the profile of substrate, the ascent 
and descent parts of square profile are completely 
different. A less damping coefficient leads to devia-
tions in the ascent and descent parts. However, as 
illustrated in the third picture, a more damping coef-

ficient leads to unwanted delays. As the best result, 
the fourth picture (PDC = 0.0005) could be men-
tioned. Triangular, square and sinusoidal parts have 
been scanned and sketched precisely. These im-
portant issues could be used to improve the shunt 
damping technique to provide a more precise image 
of the substrate. 

 
5.2. Manipulation of nano-particles 

Scanning Probe Microscopes (SPMs) and espe-
cially the Atomic Force Microscope (AFM) are used 
to reach, identify and manipulate nano-objects. De-
pending on its configuration, an AFM could include 
one or two piezo-tube actuators that are about 10 
mm to 15 mm long. The effects of the particle size 
on the semistatic deflection and sensed voltage of 
MC are studied here. Figure 12 shows a very special 
case of AFM, where one piezo-tube is used to span 
three dimensions in space. At the end of the piezo-
tube, an MC is attached (with the length, width and 
thickness of about 200 μm, 8 μm and 1 μm, respec-
tively), including a small conical tip (with the end 
diameter of about 10 nm) at the end. The piezo-tube 
scans the substrate in all directions (x, y and z).  

Assuming the rigidity of the piezo-tube toward 
the MC, the dominant dynamics belong to the MC. 
CFFF boundary conditions could be considered for 
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the MC and the existing forces and moments on the 
end of the MC (Figure 13) are depicted in Figure 14 
versus various steps of manipulation. 

The effective forces in the nano-manipulation 
operation can be obtained by using certain formula-
tions [16]. Figure 15 shows these results. The calcu-
lations are carried out in two cases, a particle with 
20 nm (D20) and 100 nm (D100) of diameter. Forc-
es in Cartesian coordinates and the free body dia-
grams for MC in the nano-manipulation mode are 
depicted in Figure 13. Table 3 lists forces and mo-
ments quantitatively for all steps of nano-
manipulation. 

Figure 15 shows the maximum of deflection of 
the MC in the various steps of nano-manipulations. 
The sensed voltage on the sensor layer of the MC is 
displayed in Figure 16. The effect of particle size on 
the static deflection and sensed voltage can be ob-
served clearly. The bigger the particle used is, the 
bigger the resulting deflection and voltage are. The 
effects of lamination on the deflection and sensed 
voltage of MC can be observed clearly.  The total 
thickness for all configurations considered is the 
same. The diagrams presented show that when two 
mechanical layers are used, the static deflection is 
greater. The P/0˚/90˚/P lamination leads to the 
greatest deflection and the minimum deflection be-
longs to the P/0˚/0˚/0˚/P lamination. One should 
note that the deflections for D20 and D100 prob-
lems are approximately the same before step "E." 
Before this, the moments were zero and, thus, vari-
ous laminations lead to approximately the same 
results in two cases. 

 

 
Figure 8. The resulting profile of various configurations for MC. 
 
 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9. Some subplots of the resulted profile in various 
configurations. 
 

 
Figure 10. The damping effects on the resulting profile. 

 

  

(a) (b) 

 
 

(c) (d) 
Figure 11. 3D view of (a) profile of substrate, (b) resulting profile 
by PDC=0.0001, (c) resulting profile by PDC=0.001 and (d) the best 
resulting profile by PDC=0.005. 
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Figure 12. Manipulation strategy using the AFM: a) auto parking, b) snap in substrate, c) substrate pull out, d) approach to nanoobject, e) 
snap in nanoobject,  f) offset in the z direction, g) pushing, h) nanoobject pull out, i) retraction [16].  

 

 

 
(a) 

 
(b) 

Figure 13. (a) The free body diagram for MC in nano-
manipulation mode and (b) the tip and corresponding 
parameters [16]. 
 
 

 
 
 

 
 

 
Figure 14. Significant forces and moments at the end of MC in the 
nano-manipulation strategy [16]. 
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 The deflections of MC during the nano-manipulation of 
a nanoparticle 

Steps A,I B C D E 

Forces 
D20 

D100 
D20 

D100 
D20 

D100 
D20 D100 D20 D100 

N12 (nN) 0 -1.19 -8.96 -1.40E-5 -5.37E-7 0.0016 0.0022 

Q13 (nN) 0 4.46 33.46 5.24E-5 2.01E-7 5.72E-5 -0.0004 

M12 (fN.m) 0 0 0 0 0 19.2 24.5 

Steps F G H 
Forces D20 D100 D20 D100 D20 D100 

N12 (nN) -1.06 -3.19 2.839 13.08 -1.064 -3.19 

Q13 (nN) 3.97 11.93 2.924 7.571 3.97 11.93 

M12 (fN.m) 19.2 24.5 42 175 0 0 

 

 
Figure 15. Maximum of MC deflection in various steps of nano-
manipulations. 
 

 
Figure 16. The sensed voltage on the sensor layer of the MC for 
various lamination. 
 

Figure 16 shows the sensed voltage through the 
sensor patch on the MC. Consciously, for plotting the 
diagrams in a specific range, some are multiplied by 
the coefficients mentioned in the figure legend. The 
static deflection of regular electromechanical sys-
tems has a linear relation with the sensed voltage. 
Nevertheless, the sensed voltage depends not only 
on particle size, but also on the structure of the MC. 
Irregularity can seriously affect the output. The 
sensed voltage increases with an increase in the 
particle diameter, but the effects of irregularity can-

not be addressed precisely. The egregious discrep-
ancy of the results of P/0/45/P and P/0/90/P from 
other laminations is illustrated in Figure 16, which 
demonstrates the effect of irregularity.  

 

5. Conclusions 

 
The precision of nano-imaging and nano-

manipulation is an important issue in nano-
engineering studies. There are various effective pa-
rameters of the quality of images obtained. Parame-
ters of the nano-world are significant but not entire-
ly controllable. However, geometrical and mechani-
cal properties of micro-cantilevers are completely 
controllable. So, controlling the sensitivity of the 
resulting image through the lamination design could 
be a proper approach.  

In this paper, semianalytic (GDQ and GDQE 
methods) static and dynamic solutions of Cartesian 
laminated beams and plates done to control the re-
sults of the nano-metric operations. The semianalyt-
ical approach presented is generally based on the 
FSDT. Comparing the results with the exact and ex-
isting numerical approaches revealed its efficiency. 
After reliable validation, the lamination effects on 
the static and dynamic manner of micro-cantilevers 
in nano-metric operations were studied. 

Also studied were the nano-imaging effects on 
the MC shape and the challenges presented by the 
sensitivity of the resulting image through the lami-
nation. The P/90/0/P lamination resulted in more 
precision in the ascent, peak and descent of a trian-
gular surface for a substrate. For the square and 
sinusoidal profiles, image output was completely 
different. The P/90/0/P lamination led to the worst 
result. The dependency of the system sensitivity on 
the profile of a substrate is a highly significant result 
for imaging especial surfaces. Among all laminations 
examined, the P/90/0/P and P/0/0/0/P were sug-
gested for triangular and both square and sinusoidal 
substrates, respectively. 

Since piezoelectric shunt damping can be im-
plemented for suppressing vibration in MEMS and 
NEMS, utilizing the P/30/0/-30/P lamination for 
scanning simpler substrates, the effects of a propor-
tional damping coefficient on the output were con-
sidered. With fewer damping coefficients, even 
though the triangular and sinusoidal parts were ap-
proximately close to the profile of substrate, the 
ascent and descent parts of square profile were 
completely different. More damping coefficients led 
to unwanted delays in the ascents and descents. 

Manipulating nanoparticles by using the AFM 
was studied and by plotting the static deflections 
and sensed voltage in various steps of manipulation, 
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it was demonstrated that the bigger the used parti-
cle was, the bigger the resulting deflection and volt-
age were. As the most important result, it was 
shown that when two mechanical layers were used, 
the static deflection was greater. The P/0/90/P lam-
ination had the most deflection and the minimum 
deflection belonged to the P/0/0/0/P lamination. 
Furthermore, before the step "E" (fifth to nine 
steps), various laminations led to approximately the 
same results for various diameters. The sensed volt-
age depended not only on particle size, but also on 
the structure of the MC. The sensed voltage in-
creased with an increase in the particle diameter, 
but the effects of irregularity could not be addressed 
precisely. 

 

References 
 

[1] Uchino K. Piezoelectric Actuators 2004–
Materials, Design, Drive/Control, Modeling and 
Applications. Proc 9th Int Conf New Actuators; 
2004. 

[2] Lee S, Kim J, Moon W, Choi J, Park I, Bae D. A 
multibody-based dynamic simulation method 
for electrostatic actuators. Nonlinear Dyn 2008; 
54: 53-68. 

[3] Lim YH, Varadan VV, Varadan VK. Finite-
element modeling of the transient response of 
MEMS sensors. Smart Mater Struct 1997; 6: 53-
61. 

[4] Beek JV, Puers R. A review of MEMS oscillators 
for frequency reference and timing applica-
tions. J Micro-mechanics Micro-engineering 
2011; 22: 013001. 

[5] Korayem M, Rahneshin V, Sadeghzadeh S. 
Coarse-grained molecular dynamics simulation 
of automatic nanomanipulation process: The 
effect of tip damage on the positioning errors. 
Comput Mater Sci 2012; 60: 201-211. 

[6] Korayem M, Rahneshin V, Sadeghzadeh S. Nano 
cluster manipulation success considering flexi-
bility of system: Coarse grained molecular dy-
namics simulations. Scientia Iranica 2012; 19: 
1288-1298. 

[7] Darvizeh M, Darvizeh A, Ansari R, Sharma C. 
Buckling analysis of generally laminated com-
posite plates (generalized differential quadra-
ture rules versus Rayleigh–Ritz method). Com-
pos Struct 2004; 63: 69-74. 

[8] Hosseini-Hashemi S, Fadaee M, Taher HRD. 
Exact solutions for free flexural vibration of Lé-
vy-type rectangular thick plates via third-order 
shear deformation plate theory. Appl Math 
Model 2011; 35: 708-727. 

[9] Hashemi SH, Arsanjani M. Exact characteristic 
equations for some of classical boundary condi-
tions of vibrating moderately thick rectangular 
plates. Int J Solids Struct 2005; 42: 819-853. 

[10] Tornabene F. Free vibrations of anisotropic 
doubly-curved shells and panels of revolution 
with a free-form meridian resting on Winkler–
Pasternak elastic foundations. Compos Struct 
2011; 94: 186-206. 

[11] Balamurugan V, Narayanan S. A piezolaminated 
composite degenerated shell finite element for 
active control of structures with distributed pi-
ezosensors and actuators. Smart Mater Struct 
2008; 17: 035031. 

[12] Benjeddou A. Advances in piezoelectric finite 
element modeling of adaptive structural ele-
ments: a survey. Comput Struct 2000; 76: 347-
363. 

[13] Tornabene F. 2D GDQ solution for free vibra-
tions of anisotropic doubly-curved shells and 
panels of revolution. Compos Struct 2011; 93: 
1854-1876. 

[14] Hong C. Computational approach of piezoelec-
tric shells by the GDQ method. Compos Struct 
2010; 92: 811-816. 

[15] Chen C. A differential quadrature element 
method. Proc 1st Int Conf Eng Comput Sim; 
1995. 

[16] Korayem M, Sadeghzadeh S, Homayooni A. 
Semi-analytical motion analysis of nano-
steering devices, segmented piezotube scan-
ners. Int J Mech Sci 2011; 53: 536-548. 

[17] Korayem M, Homayooni A, Sadeghzadeh S, Safa 
M, Rahneshin V. A semi-analytic modeling of 
nonlinearities for nano-robotic applications, 
macro and micro sized systems. 2nd Int Conf 
Control, Instrumentation Automation; 2011. 

[18] Sadeghzadeh S, Korayem MH, Rahneshin V, 
Homayooni A, Moradi M. Nanorobotic Appli-
cations of Finite Element Method. Computa-
tional Finite Element Methods in Nanotechnol-
ogy, Editor: Musa S. CRC Press: Taylor and 
Francis Corporation; 2012. 

[19] Sadeghzadeh S, Korayem M, Rahneshin V, 
Homayooni A. A shape-feedback approach for 
more precise automatic nano manipulation 
process. 2nd Int Conf Control, Instrumentation 
and Automation; 2011. 

[20] Hamed S, Ghader R. Comparison of generalized 
differential quadrature and Galerkin methods 
for the analysis of micro-electro-mechanical 
coupled systems. Commun Nonlinear Sci Numer 
Sim 2009; 14: 2807-2816. 

 



  

S. Sadeghzadeh et al. / Mechanics of Advanced Composite Structures 4 (2017) 19-31 31 

 

 

[21] Collinger J, Wickert JA, Corr L. Adaptive piezoe-
lectric vibration control with synchronized 
switching. J Dyn Sys Measurement Control 2009; 
131: 041006. 

 


