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Today, the use of composites has received widespread attention due to their special 

properties that cannot be found in alloys. Kevlar-Epoxy composite is one of the most 

widely used materials. In this paper, we analyze the heat transfer in rectangular fin and 

present an exact, Differential Transform Method and FEM solution for steady-state 

conduction heat transfer in rectangular composite laminates. The differential 

Transformation Method (DTM), is applied for predicting the temperature distribution in a 

rectangular composite fin. Laminate with fiber orientations of 0° is considered for the 

analysis.  By validating the results in one composite layer, the temperature changes and 

heat flux in several composite layers were finally simulated in ABAQUS software and the 

effect of the number of composite layers and time on these parameters have been 

investigated. The selected composite fin’s material is Kevlar-epoxy. The results show 

that the exact solution and DTM predict the same trend compared to the FEM result and 

are very accurate and there is a good match between FEM results with DTM method and 

the exact solution. The thermo-geometric fin parameter (µ), the number of composite 

layers, and time have a significant effect on temperature distribution and heat flux. By 

increasing of thermo-geometric fin parameter (µ), heat flux and dimensionless variable for 

temperature distribution increase. When the number of layers increases, the 

dimensionless variable for temperature distribution and heat flux decrease along the fin. 

With increasing time, the temperature distribution and heat flux become more uniform 

and the ratio of heat flux changes decreases along the fin.  

1. Introduction 

Today, the use of composites has received 
widespread attention due to their special 
properties that cannot be found in alloys. The use 
of composites has been widely used due to their 
special properties that cannot be found in alloys. 
One way to improve the mechanical properties of 
composites is to produce multi-layered sheets 
[1]. Today, the use of composite materials for the 
production of equipment, machinery, and 
structures has expanded dramatically. With 
composite, the weight of materials, structures, 
and costs are reduced. In some industries, the use 
of these materials is unique compared to 
isotropic materials. Scientific works usually end 
with the behavior of these mechanical and 
thermal loads, and we rarely see other effects 
such as heat transfer in this category of materials. 
Scientific works usually include the behavior of 

these mechanical and thermal loads, and we 
rarely see other effects such as heat transfer in 
this category of materials. 

One of the most important applications of heat 
transfer in composite materials is the 
manufacturing process, which includes cooking, 
cutting and welding fiber, and so on. Preliminary 
work in this area is based on one-dimensional 
heat transfer in heterogeneous crystals [2, 3]. 
Fins are surfaces that have an initial material that 
flows into a liquid around them. They are used 
mainly for heat transfer rates between the body 
and the surrounding environment. Their outer 
surface is designed to increase the level of an 
object and cause the conditions to be identical to 
the environment. Argyris et al. [4] analytically 
studied heat transfer in flat laminates they have 
made a triangle. They considered the influence of 
the formulation of all three mechanisms of 
conduction, convection, and radiant heat transfer 
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of laminate flooring. We [5-6] proposed an 
analytical solution of conductive heat transfer in 
colleagues non-radioisotope multilayer 
environments in two modes, without doors by 
considering the heat source and the internal 
heating, respectively. They have been examined 
separately. They use a conversion of the linear 
coordinates to transform the anisotropic 
problem to simply isotropic. They have changed 
and solved the problem. Gou [7] investigated 
numerical conduction heat transfer in laminates. 
In this study the thickness and using the finite 
element method, on-permanent heat transfer in 
the presence of domestic energy production has 
been checked. The Differential Transformation 
Method is used to solve some problems. The 
method was successfully applied to various 
application problems.  

Recently, this kind of problem has been 
analyzed by some researchers using different 
methods. Carly and Advani [8] studied the 
temperature of a thin composite plate that is 
exposed to a central heating source with 
numerical methods and they have gained 
experience. They did a parametric study to 
determine the important dimensionless numbers 
and their effect on temperature distribution. 
Yaziciog et al. [9] studied the optimum fin spacing 
of rectangular fins on a vertical base in free 
convection heat transfer. The separate roles of fin 
height, fin spacing, and base to ambient 
temperature difference were investigated. It was 
found that for a given base to ambient 
temperature difference, the convective heat 
transfer rate from fin arrays takes on a maximum 
value as a function of fin spacing and fin height 
and an optimum fin spacing value which 
maximizes the convective heat transfer rate from 
the fin array is available for every fin height.  

Dialameh et al. [10] analyzed natural 
convection from an array of horizontal 
rectangular thick fins with short length. In this 
article, a numerical study is made to predict 
natural convection from an array of aluminum 
horizontal rectangular thick fins of 3 mm < t < 7 
mm with short lengths (L 6 50 mm) attached to a 
horizontal base plate. The three-dimensional 
elliptic governing equations of laminar flow and 
heat transfer were solved using finite volume 
scheme. For 128 fin geometries. Joneidi et al. [11] 
studied the fin efficiency of convective straight 
fins with temperature-dependent thermal 
conductivity is solved using a simulation method 
called the Differential Transformation Method 
(DTM). They analyzed the effects of some 
physical applicable parameters in this problem 
such as thermo-geometric fin parameter and 
thermal conductivity parameter. 

Naidu et al. [12] studied natural convection 
heat transfer from fin arrays in experimental and 

theoretical studies on the effect of inclination of 
base on heat transfer. Numerical results are 
obtained for temperature along the length of the 
fin and in the fluid in the enclosure. The 
experimental studies have been also carried out 
on two geometric orientations, (a) vertical base 
with vertical fins (vertical fin array) and (b) 
horizontal base with vertical fins (horizontal fin 
array), with the five different inclinations like 00, 
300, 450, 600, and 900. The experimental results 
are compared with the numerical results 
computed by the theoretical analysis and show 
good agreement.  

Tanigawa et al. [13] conducted thermal 
bending analysis of a laminated composite 
rectangular plate due to a partially distributed 
heat supply. They examined the effect of 
relaxation on distributions of the thermal stress 
and thermal deflection for the nonhomogeneous 
rectangular plate. Tari et al. [14] investigated the 
natural convection and radiation heat transfer 
from eleven large vertically based fin arrays. In 
the former work.  

Hatami et al. [15] studied heat transfer 
through porous fins (Si3N4 and AL) with 
temperature-dependent heat generation. Three 
highly accurate and simple analytical methods, 
Differential Transformation Method (DTM), 
Collocation Method (CM), and Least Square 
Method (LS) are applied for predicting the 
temperature distribution in a porous fin with 
temperature dependent internal heat generation. 
Their results could indicate that the temperature 
distribution is strongly dependent on the Darcy 
and Rayleigh numbers and a higher heat 
generation rate leads to higher fin temperatures 
since more amount of heat is dissipated to the 
surrounding.  

Ahmadi et al. [16] studied effect of interrupted 
fins in heat transfer in external natural 
convection is studied. Provision of interruption 
length ranging from 20mm to 40mm with a 
variable number of interruptions ranging from 2 
to 4 is investigated. Results are more prominent 
towards optimized parameters i.e. number of 
interruptions and interruption length. Jacob et al. 
[17] studied the optimization of triangular fins. 
Their optimization provided general guidelines 
relative to the dimensionless characteristics of a 
well-designed fin.  

Bunjaku et al. [18] analyzed geometric 
parameters of rectangular and triangular fins 
with Constant surfacing. They reported the 
optimal geometrical parameters of the fins might 
serve as a practical tool for engineers involved in 
designing of fined heat transfer surfaces. Gupta et 
al. [19] studied analytical thermal analysis on 
straight triangular fins. They reported base wall 
temperature, total area for heat convection, heat 
dissipation rate, fin efficiency, fin effectiveness, 
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and contours of temperature distribution and 
heat flux.  

Fallo et al. [20] provide predictions for the 
transfer of composite materials It is mainly 
limited to numerical opinions and arguments. 
Namdari et al. [21] analyzed numerical solutions 
for transient heat transfer in longitudinal fins. 
They reported that the parabolic fin has the 
lowest rate of heat transfer while the rectangular 
and convex profiles have the highest rate of heat 
transfer respectively. Pasha et al. [22] presented 
an analysis of unsteady heat transfer of specific 
longitudinal fins with Temperature-dependent 
thermal coefficients by DTM. In this paper, it has 
been shown that DTM is a very useful method to 
solve these problems when e and M are 
increasing the temperature plot going to the 
lower level so efficiencies are being lowered. 

Patel et al. [23] investigated comparative 
thermal analysis of Fins the models were 
designed in ANSYS. The fins were analyzed for 
forced convection. The fins were compared based 
on non-dimensional Nusselt number and 
Reynolds number. Mazhar et al. [24] studied 
numerical analysis of rectangular fins in a PCM 
for low-grade heat harnessing. Compared to a 
non-finned geometry this optimized fin 
configuration enhances the effective thermal 
conductivity of the PCM by a factor of 1.38 for 
melting and 4.75 for freezing. Their results 
showed The GW to CW energy transfer efficiency 
is 72.4% with higher fluid flow temperature 
increments, compared to only 47.3% for a non-
finned version. Adhikari et al. [25] had an 
experimental and numerical study of forced 
convection heat transfer from rectangular fins at 
low Reynolds numbers. Their results showed that 
heat transfer rate per channel decreases linearly 
with the increase in channel length, but remains 
approximately constant with the increase in the 
number of fins. 

Past research studies show that it is very 
important to study the heat transfer and effective 
parameters on heat transfer in the fins. Also, due 
to the special properties of composite materials, 
the study of these parameters in composite fins is 
an important problem and issue that should be 
considered. Based on the authors' knowledge, the 
thermo-geometric fin parameter (µ), the number 
of the composite layers, and time on heat 
transfer, temperature distribution, and heat flux 
in Kevlar-epoxy rectangular composite fin have 
not been investigated with a combination of three 
methods of analytical, DTM and FEM.  

We use Kevlar-Epoxy composite in this 
research because Kevlar is a conductive material 
and epoxy is a heat insulator and is a significant 
difference between conductive heat transfer 
coefficient in fibers and matrix materials. Heat 
transfer analysis in this composite can help us to 

understand heat transfer in composite materials. 
Also, using DTM method in solving these 
problems is very accurate. Therefore, in this 
paper, the effect of important parameters on the 
heat transfer of composite fin was investigated 
using FEM, DTM, and analytical methods. The 
present solution can be done in many operations 
applications to calculate temperature 
distributions and heat flux to be useful. 

2. Heat conduction in composites 

Fourier equation for conductive heat transfer 
in orthotropic materials can be expressed as 
follows [26]: 

 {

qx
qy
qz
} = − [

k11 k12 k13
k21 k22 k23
k31 k32 k33

]

{
  
 

  
 
∂T

∂x
∂T

∂y
∂T

∂z}
  
 

  
 

 (1) 

kij is Conductive heat transfer coefficients and 

q, heat flux and T is temperature. Due to the 
Onsager reciprocity, the tensor of conductive 
heat transfer coefficients, for all substances in 
nature must be symmetric [27]: 

kij = kji   (2) 

According to the second law of 
thermodynamics, the diametric elements of this 
tensor are positive and the following relation 
must be established [28]: 

kiikjj > kij
2       for: i ≠ j (3) 

Due to the Clausius-Duhem relationship, the 
following inequalities are managed between the 
orthotropic material conductance coefficients 
[26, 28, and 29]: 

kii ≥ 0 (4) 

1

2
(kiikjj − kijkji ) ≥ 0 (5) 

εijk k1jk2jk3j ) ≥ 0 (6) 

where, kij  introduces symmetric part of 

conductivity tensor:  

kij = kji  =  
 kij + kji   

2
  (7) 

According to the problem, two different 
coordinate systems are defined: on-axis 
(X1,X2 and X3) and off-axis (X, Y, and Z) [30]. As 
shown in Fig1, the direction of on-axis 
coordinates depends on fiber orientation, in a 
way that x1 is in the direction of the fibers, X2 is 
perpendicular to X1 in the composite layers and 
X3 is perpendicular to the layer plane. To study 
physical properties, we must also define an out-
of-axis reference coordinate system. Also, there is 
an angular deviation by h between the on-axis 
and off-axis system and these coordinates are 
coincident. 
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Fig. 1. On-axis and off-axis coordinate systems 

In the on-axis coordinate system, the Fourier 
relation for a composite material can be 
expressed as follows [31]: 

 {

q1
q2
q3
}

on

= −[

k11 0 0
0 k22 0
0 0 k22

     ]

{
  
 

  
 
∂T

∂x
∂T

∂y
∂T

∂z}
  
 

  
 

on

 (8) 

Because of Eq. 8, properties in direction of 
fibers (X1) is different from those in 
perpendicular directions (X2,X3) in each lamina. 
But in the perpendicular plane to the fibers, heat 
transfers in all directions are the same. With a 
rotation of the on-axis system by (−θ), Eq. 8 can 
be obtained in the off-axis system: 

[T(−θ)]{q}off  = −[k]on[T(−θ)]∇Toff (9) 

T(θ) is the rotation sensor conversion shown 
in Equation 9 is obtained from the following 
equation:  

[T(θ)] = − [
cos θ −sinθ 0
sinθ cos θ 0
0 0 1

     ]

{
  
 

  
 
∂T

∂x
∂T

∂y
∂T

∂z}
  
 

  
 

 (10) 

Also, the heat flux in the off-axis directions 
using Equation 10 is as follows: 

{q}off  = −[T(−θ)]−1[k]on[T(−θ)]∇Toff (11) 

Given that the rotary torque converter is 
orthogonal, it can be written: 

[T(−ө)]−1 = [T(−ө)]  (12) 

To calculate the heat flux vector in the off-axis 
directions, it is sufficient to replace Equation 12 
with Equation 11. 

{Q}off  = −[T(θ)][k]on[T(−θ)]∇Toff (13) 

According to Fourier law, heat flux in off-axis 
directions is: 

{q}off = −[k]off ∇Toff (14) 

Then, in order to obtain the off-axis heat 
transfer coefficient tensor in terms of on-axis 
coordinate system was compared with the 
comparison of equations 13 and 14: 

[k]off = [T(θ)][k]on[T(−θ)] (15) 

The heat transfer coefficient tensor in on-axis 
system and off-axis system are shown by [k] and 
[k̅], respectively, and cos θ is shown by ml and 
sin θ by nl, equations 8, 10, and 15 can be used to 
obtain the tensor elements of heat transfer 
coefficient in off-axis directions:  

k11 = ml
2 k11 +  nl

2 k22  (16) 

k22 = nl
2 k11 +  ml

2 k22   (17) 

k33 = k22  (18) 

k12 = k21 = ml
  nl

 (k11 − k22 )        (19) 

k13 = k31  = 0           (20) 

k23 = k32  = 0  (21) 

The following relationships have been used to 
calculate the conduction coefficients (k11,k22) in 
on-axis system. This method is a suitable method 
with  

An error of less than 2% the lack of laboratory 
facilities is very helpful. Equations 22-25 can be 
generalized to other physical properties of the 
composite materials. [32]: 

k11 = vf   kf + vm   km (22) 

k22 = km
1+ ξηvf   

1− ηvf  
  (23) 

In equations 22 and 23 kf is a Fiber thermal 
conductivity coefficient, km is the Thermal 
conductivity coefficient of the ground 
material, vf   is the volumetric percentage of 
fiber, vm   and is the volume percentage of the 
material is background. Quantities η and ξ are 
also calculated from the following equations: 

η =  

kf
km

 − 1 

kf
km

+  ξ
 (24) 

ξ =  
1 

4 − 3vm  
 (25) 

2.1. Modeling and formulations 

Figure 2 shows steady-state heat transfer in a 
composite rectangular fin in this research. Figure 
2 shows the direction of the fibers in specific 
directions in the rectangle composite. The 
Fourier relation in a rectangular coordinate 
system for orthotropic material is given below 
[26]: 

 {

qx
qy
qz
} = − [

k11 k12 k13

k21 k22 k23

k31 k32 k33

 ]

{
  
 

  
 
∂T

∂x
∂T

∂y
∂T

∂z}
  
 

  
 

 (26) 
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Fig. 2. The fibers’ direction in a rectangular laminate 

 
Fig. 3. Heat fluxes in a rectangular element 

In Fig. 3 if the energy balance for the element 
a rectangular is formed, the result is as follows: 

ρc
∂T

∂t
dv = −

∂qxdAx
∂x

 dx 

−
∂qydAy

∂y
 dy −

∂qzdAz
∂z

 dz 

(27) 

In equation (27), C specific heat capacity, ρ 
density, time, and the V is volume. Also, the values 
of the size of the surfaces and Elements are: 

dAx = dydz  (28) 

dAy = d𝑥dz  (29) 

dAz = d𝑥dy  (30) 

dv =  d𝑥dydz  (31) 

By applying equations (26) and (28-31) in 
equation (27), the heat transfer relationship is 
obtained for the orthotropic material [33] to [36]: 

ρc
∂T

∂t
dxdydz = −

∂qxd𝑦dz

∂x
 dx − 

          
∂qydxdz

∂y
 dy −

∂qzdxdy

∂z
 dz 

(32) 

∂ (k11
∂T
∂x
+ k12

∂T
∂y
)

∂x
+
∂ (k12

∂T
∂x
+ k22

∂T
∂y
)

∂y
 

+
∂(k22

∂T
∂z
)

∂z
= ρc

∂T

∂t
 

(33) 

k11
∂2T

∂x2
+ k22

∂2T

∂y2
+ 2k12

∂2T

∂x ∂y
+ k33

∂2T

∂z2

=  ρc
∂T

∂t
 

(34) 

(ml
2 k11 +  nl

2 k22)
∂2T

∂x2
+ 

(nl
2 k11 +  ml

2 k22)
∂2T

∂y2
 + 

2ml
  nl

 (k11 − k22 )
∂2T

∂x ∂y
+ 

 k22
∂2T

∂z2
=  ρc

∂T

∂t
 

(35) 

In steady state, the time derivative term on 
the right the relation (35) is equal to zero. And the 
end temperature of the fin is also constant. Also, 
the derivative of temperature changes at the 
beginning of the fin is considered zero. And the 
temperature at the boundary of each layer is 
equal. In this study, such conditions are 
considered for the rectangular Taken. Figure 4 
shows the layers in rectangular laminate i and 
i + 1 are the boundaries between the two layers 
in this thickness. 

Ti = Ti+1  (36) 

(T − T∞)X=L = (TL − T∞ )  (37) 

d

dx
(T − T∞ )|x=0 = 0 (38) 

qȦ = Ph(T − T∞)dx + (q̇A +
dq̇

dx
dxA)  (39) 

By applying the (36-39) conditions, equation 
35 is simplified as follows:  

(ml
2 k11 + nl

2 k22)
d2T

dx2
−
Ph

A
(T − T∞)

=  0 
(40) 

In relation, h is the external heat transfer 

coefficient (
w

m2K
), p is a rectangular fin perimeter 

(m) and A is the cross-sectional area of the fin 
(m2). 

 
Fig. 4. Layers arrangement in a rectangular laminate 
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3. Exact solution 

The energy balance for a rectangular element 
in Fig. 3 can be written in terms of the heat flux, 
for a fin of constant area [40]: 

Q̇=q Ȧ (41) 

q Ȧ = Ph(T − T∞)dx + (q̇A +
dq̇

dx
dxA) (42) 

A
dq̇

dx
+ Ph(T − T∞) = 0 (43) 

(ml
2 k11 +  nl

2 k22) 
∂2T

∂x2
−

Ph

A
(T − T∞) = 0 (44) 

(ml
2 k11 +  nl

2 k22) =£ (45) 

d2T

dx2
−
Ph

£A 
(T − T∞) = 0 (46) 

A
dq̇

dx
+ Ph(T − T∞) = 0 (47) 

(ml
2 k11 +  nl

2 k22) 
∂2T

∂x2
−

Ph

A
(T − T∞) = 0 (48) 

θ =
(T − T∞)

(Tl − T∞)
 is a dimensionless variable for 

temperature difference, and we can change 
variables to put: 

dT

dx
 =

d

dx
(T −  T∞) (49) 

(T − T∞)

(Tl − T∞)

dx
 =
dθ

dx
 (50) 

d2θ

dx2
− (

Ph

£A 
)θ = 0 (51) 

(𝑇 − 𝑇∞)𝑋=𝑙 = 𝑇𝑙  −  𝑇∞ (52) 

𝑑

𝑑𝑥
(𝑇 − 𝑇∞ )|𝑥=0 = 0 (53) 

where the values of θ range from 0 to 1 and λ = 
x/L, where λ also ranges from zero to one. The 
relation between derivatives that is needed to 
cast the equation in terms of λ is: 

𝑑

𝑑𝑥
=
𝑑 𝑑𝜆

𝑑𝜆 𝑑𝑥
=
1

𝐿

𝑑

𝑑𝜆
 (54) 

Equation (51) can be written dimensionless. 

d2θ

dλ2
− (

Ph

£A 
L2)θ = 0 (55) 

There is one non-dimensional parameter in 
Equation (55), which we will call µ and define by: 

µ=(
Ph

£A 
L2)

1

2 (56) 

The equation for the temperature 
distribution, we have obtained is: 

d2θ

dλ2
− µ2θ = 0  (57) 

θ =aeµλ + b e−µλ (58) 

The boundary condition at λ= 0 is: 

dθ

dλ
(0) = µae0 −µ b e0 = 0 (59) 

µa − µb = 0 (60) 

The boundary condition at λ= 1 is: 

θ (1) =aeµ + b e−µ = 1 (61) 

aeµ + b e−µ = 1 (62) 

4. Differential transformation 
method 

4.1. Principles of method 

The Differential Transformation Method is a 
method that can be used to find the expansion of 
Taylor from differential equations. It is assumed 
that 𝑥 (𝑡), the analytical function in domain 𝐷 and 
(t − ti ) represents any point within this domain 
it is written as a series of powers around point 𝑥 
(𝑡). The extension of the Taylor series of its 
function is as follows: 

x(t) =∑
(t − ti)

k

k!

∞

k=0

[
dkx(t)

dtk
]
t=ti

∀t ∈ D (61) 

For calculation, the McLaurin series of x (t) 
can be obtained by taking ti = 0 in equation (61) 
expressed as [11]: 

x(t) =∑
tk

k!

∞

k=0

[
dkx(t)

dtk
]
t=0

∀t ∈ D (62) 

As explained in [37] the differential 
transformation of the function x (t) is defined as 
follows: 

x(k) = ∑
Hk

k!

∞

k=0

[
dkx(t)

dtk
]
t=0

 (63) 

x (k) Express the transformed function and x 
(t) is the original function. The differential 
spectrum of x (k) is confined within the interval t 
e [0, H], where H is a constant. The differential 
inverse transform of x (k) can be written as 
follows: 
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x(t) =∑(
t

H
)
K

∞

k=0

x(k) (64) 

The values of function x(k) at values of 
argument k are referred to as discrete, i.e., x(0) is 
known as the zero discrete, x (1) is the first 
discrete, etc. Also, the value of the main function 
x (t) is approximated as a finite power series. The 
more discrete available, the more precise it is 
possible to restore the unknown function. The 
function x (t) consists of the T-function x (k), and 
its value is given by the sum of the T-function 
with (t/H) k as its coefficient. In real applications, 
at the right choice of constant H, the larger values 
of argument k result that the discrete spectrum 
reducing rapidly. The function x (t) is expressed 
by a finite series and equation (64) can be written 
as: 

x(t) =∑(
t

H
)
K

n

k=0

x(k) (65) 

Some Mathematical operations that are 
performed by differential transform are listed in 
Table 1. 

DTM Method problem analysis 

The dimensionless parameters in this issue 
are: 

𝜃 =
(T − T∞)

(Tl − T∞)
,     𝜆 =

x

L
,     µ=(

Ph

£A 
L2)

1

2 (66) 

According to the differential transform of the 
equation (48): 

d2θ

dλ2
− µ2θ = 0 

θ = 1 at   λ = 1  , 
dθ

dλ
 = 0 at  λ = 0 

(67) 

Table 1. Some fundamental operations of the Differential 
transform method [18] 

Original function Transformed function 

X(t)=αf(x)±βg(t) X(k)=αF(k)±βG(k) 

X(t)= 
𝑑𝑓(𝑡)

𝑑𝑡
 X(k)=(k+1)𝐹 (k+1) 

X(t)= 
𝑑2𝑓(𝑡)

𝑑𝑡2
 X(k)=(k+1)(𝑘 + 2)𝐹 (k+1) 

X(t)= 𝑒𝑥𝑝 (𝑡) X(k)=
𝑘

𝑘!
 

X(t)= f(t) g(t) X(k)=∑ 𝐹(𝐼)𝑘
𝑖=0 𝐺(𝑘 − 𝐼) 

Boundary condition transformed form is: 

θ0 = a (68) 

The other boundary conditions are 
considered as follows: 

θ1 = 0 (69) 

Now we apply DTM from Table 1 into 
equation (67), we have: 

(K + 1)(K + 2)θ(K + 2) − µ2θ(K) = 0 (70) 

Where a, is constant, and we will calculate it 
by considering another boundary condition in 
equation (70) in point λ=1.  

θ2 =
1

2
µ2a 

(71) 

θ3 = 0 

θ4 =
1

24
µ4a 

θ5 = 0 

θ6 =
1

720
µ6a 

θ7 = 0 

θ8 =
1

40320
µ8a 

θ9 = 0 

θ10 =
1

3628800
µ10a 

θ11 = 0 

θ12 =
1

479001600
µ12a 

θ13 = 0 

θ14 =
1

87178291200
µ14a 

θ15 = 0 

θ16 =
1

20922789888000
µ16a 

θ17 = 0 

θ18 =
1

6402373705728000
µ18a 

To obtain the value of a, we substitute the 
boundary condition from Eq. (70) into equation 
(71) in point λ=1, and we can be written as: 

θ(λ) = a +
1

2
µ2a +

1

24
µ4a +

1

720
µ6a 

+ 
1

40320
µ8a +

1

3628800
µ10a 

+ 
1

479001600
µ12a 

+ 
1

87178291200
µ14a 

+
1

20922789888000
µ16a 

+
1

6402373705728000
µ18a 

(72) 
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Now we apply DTM from Table 1 into 
equation (70) for find temperature distribution 
will be obtained as:  

𝜃(1) = 𝑎 +
1

2
µ2𝑎 +

1

24
µ4𝑎 +

1

720
µ6𝑎 

+ 
1

40320
µ8𝑎 +

1

3628800
µ10𝑎 

+
1

479001600
µ12𝑎 

+ 
1

87178291200
µ14𝑎 

+
1

20922789888000
µ16𝑎 

+
1

6402373705728000
µ18𝑎=1 

(73) 

Solving equation (73), gives the value of a. To 
calculate θ(λ), it is enough to substitute obtained 
a in equation (72). 

5. Finite element formulation 

A rectangular Kevlar/epoxy composite plate 
was simulated using the finite element software 
ABAQUS Standard 6.13.1. The length of this 
rectangular laminate was L=0.40125 m and the 
width of this rectangular laminate was w = 0.25 
m. The thickness of rectangular Kevlar/epoxy 
laminate was 0.0025 m. Table 2 lists the different 
numerical examples. Rectangular Kevlar/epoxy 
laminate was modeled using heat transfer 
quadrilateral elements, with three elements 
along the rectangular examined. All the elements 
had a size of 0.01 m. Table 3 displays the 
mechanical Properties of the composite laminate. 
Figure 5 shows a schematic of the geometry of the 
problem in question and Fig. 6 shows a 
rectangular fin. By validating the results in one 
composite layer, the temperature distribution in 
several composite layers was finally simulated in 
ABAQUS software. Table 1 shows the geometry 
and boundary conditions in the problem Also, the 
values of density and specific heat capacity are 

respectively 935 
J kg 

K
 and 1400  

kg

m  3
 [38]. The fiber 

angle in all layers is equal to zero. The compound 
material intended for this part of the composition 
(25% epoxy with 75% graphite fibers 
Kevlar/epoxy) [38].  

Table 2. problem geometry and boundary condition 

(
𝒘

𝒎𝟐𝑲
) 𝑻∞ 𝑻𝒍 L(m) 

0.0053,0.021 
0.086,0.344,2.15 

300 320 0.40125 

Table 3. Mechanical properties of composite laminate 

thermal 
conductivity in 
the direction 
perpendicular 
to the fibers 

(
𝒘

𝒎 𝑲
) 

thermal 
conductivity 
in the 
direction of 
fibers 

(
𝒘

𝒎 𝑲
) 

Specific 
heat 

(
𝑱

𝑲𝒈 𝑲
) 

Density 

(
𝒌𝒈

𝒎𝟑
) 

material 

0.87 11.1 935 1400 
Kevlar 
epoxy 

 
Fig. 5. Schematic of a rectangular composite fin 

 
Fig. 6. Industrial samples of rectangular fin 

6. Results and discussion 

6.1. Case 1 

In this study, the heat transfer of a rectangular 
fin has been investigated by three different 
methods. The exact solution, DTM, and FEM are 
used for solving the current problem. The angle 
of the fibers in all layers should be 0°. In this case, 
all the fibers are in the X-direction. Boundary 
conditions applied in this paper, a boundary 
condition of constant temperature, and the 
insulated tip boundary condition. The surface of 
the fin is exposed to fluid flow. A very interesting 
agreement between the results is observed, 
which confirms the validity of the DTM and FEM. 
Figure 7 displays an example of the comparison of 
the temperature distribution in DTM, FEM, and 
exact results. The FEM results are in good 
agreement with the DTM and analytical results. 
The difference between the FEM results with 
DTM and analytical results is about 0.25%. 
Figures 8-10 show the dimensionless variable for 
temperature distribution with various values of 
thermo-geometric fin parameter (µ) from 0.25 to 
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5 in the exact solution, DTM, and FEM. The results 
depict that DTM and FEM are very useful 
methods to solve this problem. The trend of 
change in all results is quite similar and this 
minor difference can be ignored. 

 
Fig. 7. Example of the comparison of the solutions 

between DTM, FEM and exact results in µ=0.5 

 
Fig. 8. dimensionless variable for temperature 

distribution in the exact solution 

 

Fig. 9. dimensionless variable for temperature 
distribution in DTM 

 

Fig. 10. Dimensionless variable for temperature 
distribution in FEM 

The thermo- Geometric fin parameter (µ) has 
a significant effect on the dimensionless variable 
for temperature distribution. By increasing the 
thermo-geometric fin parameter (µ) the heat 
transfer becomes further. This is due to the 
increase in heat transfer rate is between the 
blade and the environment. Figure 11 displays 
heat flux distribution versus λ at various thermo-
geometric fin parameter (µ) from 0.25 to 5 in 
FEM. When the thermal conductivity coefficient 
increases the thermo-geometric fin parameter 
(µ) increases. By increasing the thermo-
geometric fin parameter (µ) heat transfer rate 
from the fin increase. Finally, The heat flux 
between composite fin and fluid increases. Also, 
these changes are more µ coefficients is possible. 
The results reveal heat flux in µ = 0.25 is 
negligible and value of about 33 w but by 
increasing the thermo-geometric fin parameter 
(µ), in µ = 5 its maximum value is about 2.6 kW. 
Figure 12 shows heat flux distribution with the 
temperature distribution with various values of 
thermo-geometric fin parameter (µ) from 0.25 to 
5 in FEM. it can be concluded that by increasing 
the thermo-geometric fin parameter (µ), the 
temperature changes increase. With increasing 
temperature changes along the fin, the heat 
transfer between the fin and the environment 
increases. With increasing heat transfer, we will 
see an increase in heat flux. According to the 
analysis and accuracy of the DTM solution and 
exact solution, the results obtained can be used as 
a criterion for measuring numerical solutions 
approximate search. 

 

Fig. 11. Heat flux distribution in FEM 

 

Fig. 12. Heat flux distribution with temperature 
distribution in FEM 
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6.2. Case 2 

In this case, we studied the effect of the 
number of composite layers on temperature 
distribution and the heat flux of the rectangular 
composite laminate. Figure 13 shows the fibers 
direction in two and three layers of composite 
fins. All the fibers are in the X-direction. The angle 
of the fibers in all layers should be 0°. The 
thickness of all layers was equal and its value is 
0.0025 m. 

Figure 14 shows the dimensionless variable 
for temperature distribution with different 
numbers of composite layers from 1 to 3 layers. 
The results display that when the number of 
composite layers increases, the temperature 
distribution decrease along the fin. By increasing 
the number of layers from one layer to two layers, 
temperature changes are significant and 
decrease by about 6%. By increasing the number 
of composite layers from two layers to three 
layers, temperature changes are relatively small 
and about 2%. The results show that increasing 
the layers up to a certain number is justified. But 
after a certain number, with increasing the 
number of composite layers, there is not much 
change in the temperature distribution along the 
fin. 

 

 

 

Fig. 13. The fibers’ direction in A) one layer, B) two 
layers, and C) three layers composite fin 

 

Fig. 14. Dimensionless variable for temperature 
distribution with different number of  

composite layers in FEM 

 

Fig. 15. Heat flux distribution with different numbers of 
composite layers in FEM 

Figure 15 shows the heat flux with different 
numbers of composite layers from 1 to 3 layers. 
The results depict that when the number of layers 
increases, heat flux decrease along the fin. The 
result displays that when the number of layers 
increases, heat transfer occurs at a lower rate 
than single-layer composite and multilayer 
composite materials have more insulating 
behavior with rectangular geometry. By 
increasing the number of composite layers from 
one layer to two layers, heat flux is significant and 
decreases by about 47%. By increasing the 
number of layers from two layers to three layers, 
heat flux is relatively small and about 32% 
compared to the two layers. The results show that 
by increasing the number of layers to a certain 
number, the changes will be closer to each other 
and will not be much different from each other. 
Therefore, in this study, the maximum number of 
layers was considered three layers. 

6.3. Case 3 

Considering the comparison of the FEM 
results in the steady state with the analytical 
solution and DTM in this section, it has been tried 
to show the ability to solve and investigate the 
problems related to multilayer composite in the 
unsteady by providing a practical example. In this 
case, we studied the heat flux and temperature 
distribution of the rectangular composite fins in 
unsteady heat transfer. The angle of the fibers in 
all layers should be 0°. In this case, all the fibers 
are in the X direction and time values (t) were 
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from 10 s to 600 s in FEM. Figure 16 displays 
temperature distribution and unsteady heat 
transfer in rectangular composite fins. According 
to the results of Fig. 16, it can be concluded that 
the temperature changes in 10 s along the fin 
length a large slope. With an increasing time of 
600 s, the rate of heat transfer from the blade 
increases, and the slope of the graph decreases. 
Finally, the temperature distribution diagram 
becomes more uniform along the fin. 

Figure 17 shows the heat flux in unsteady heat 
transfer in rectangular composite fins. The 
results depict that with increasing time the heat 
flux becomes more uniform and the ratio of heat 
flux changes decreases along the fin. At 10 s the 
maximum heat flux value is about 13.3 kW and 
with increasing time at 600 s this value decreases 
to about 2.9 kW. The results show that with 
increasing time up to 100 s, the heat flux changes 
are significant and its value is about 65%. In the 
range of 100 s to 600 s these changes it becomes 
more uniform and its slope decreases and its 
value is about 78%. The choice of this time range 
is only to investigate the unsteady analysis of 
heat transfer in composite fins, and according to 
various issues, the ideal time range of the 
problem can be examined.  

 

Fig. 16. Effect of time on temperature distribution in FEM 

 

Fig. 17. Effect of time on heat flux distribution in FEM 

7. Conclusion 

This paper presents an exact, Differential 
Transform Method and numerical solution for 
steady-state conduction heat transfer in 
rectangular composite laminates. The differential 
Transformation Method (DTM), is applied for 
predicting the temperature distribution in a 
rectangular composite fin.  

1. The figures and tables clearly show the 

high accuracy of DTM to solve heat 

transfer problems in engineering. By 

comparing the simulation results with 

the exact solution and DTM results. The 

results obtained can be used as a 

criterion for measuring numerical 

solutions approximate search. 

2. The thermo-geometric fin parameter (µ) 

has a significant effect on the 

dimensionless variable for temperature 

distribution by increasing the thermo-

geometric fin parameter (µ) the heat 

transfer becomes further. 

3. The thermo-geometric fin parameter (µ) 

has a significant effect on heat flux 

change. When µ = 0.25, the heat flux 

between composite fin and fluid is very 

low but by increasing of thermo-

geometric fin parameter (µ) to µ = 5, the 

heat flux between composite fin and fluid 

is increased. 

4. The number of composite layers has a 

significant effect on the changes in the 

dimensionless variable for temperature 

and thermal flux. The results show when 

the number of layers increases, the 

dimensionless variable for temperature 

distribution and heat flux decrease along 

the fin. By increasing the number of 

layers to a certain number, the changes 

will be closer to each other and will not 

be much different from each other. 

Therefore, in this study, the maximum 

number of layers was considered three 

layers. 

5. With an increasing time of 600s, the rate 

of heat transfer from the blade increases, 

and the slope of the graph decreases. The 

temperature distribution diagram 

becomes more uniform along the fin.  

6. The results depict that with increasing 

time the heat flux becomes more uniform 

and the ratio of heat flux changes 

decreases along the fin. Which is 

significant in 10s and decreases with 

increasing time to 600s. 
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Nomenclature 

𝑘𝑖𝑗  
Main thermal conductivity coefficients 
(w/mk) 

𝑘𝑖𝑗  
Subsidiary thermal conductivity coefficients 
(w/mk) 

(𝑋1,𝑋2, 𝑋3) Main axis coordinate systems 

(X, Y, Z) Subsidiary axis coordinate systems 

Q Heat flux (W) 

T Temperature 

𝜃 Rotation tensor transform 

𝑘𝑓  Fiber thermal conductivity coefficient 

𝑘𝑚 
The Thermal conductivity coefficient of 
background material 

𝑣𝑓   Volumetric percentage of fiber 

𝑣𝑚   Volume percentage of background material 

C Specific heat capacity 

ρ Density 

V Volume 

I Number of layer 

H External heat transfer coefficient (w/(m2K)) 

p Rectangular fin perimeter (m) 

A Cross-sectional area of the fin (m2) 

Θ 
Dimensionless variable for temperature 
difference 

𝑥(k) 
Express the transformed function For The 
McLaurin series 

𝑥(t) Original function For The McLaurin series 

Λ Dimensionless coordinate 

µ Thermo-geometric fin parameter 

TL Temperature of x=L (K) 

a,b Arbitrary coefficients of the equation (58) 

t Thickness of laminate(mm) 
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