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Abstract

The main purpose of present article is proposed an effective method for robust fitting penalized
regression splines models. According to such a context a comparative analysis with two common
robust techniques, M-type estimator, S-type estimator, and non-robust least squares (LS) for pe-
nalized regression splines (PRS) has been implemented. Because the penalized regression splines
are recently a common approach to smoothing noisy data for its simplicity, efficiency, and sig-
nificantly reducing disturbance of outliers and its flexibility in monitoring nonlinear data trends.
In many cases, it is difficult to determine the most suitable form and a way of designing a data
is needed when faced with many smoothing problems. The executing aspects of fitting precision
and robustness of the four estimators have a thorough evaluation of their performance on R codes.
A comparative analysis demonstrates that the proposed method can resist the noise effect in both
simulated and real data examples compared to other robust estimators with different combinations
of contamination. These findings are used as guidance for finding a specific method to pulsing
smoothing noisy data.

AMS Classification: 62F35, 62-08, 62-04

Keywords: M-estimator; S-estimator; modal regression; penalized regression splines;
Smoothing.

1. Introduction

The penalized technique of spline smoothing was already seen as a popular nonparametric
approach for the noisy smoothing data in the design domain Wegman and Wright (1983), Wood
(2000) and Kim, and Gu (2004). Over the last two decades because of its convenient and flexible
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fitting inner knots and parameter smoothing. The concept of integrating the regression splines with
slightly fewer inner knots relative to the sample size, and the penalized parameter introduction can
at least be traced back to O’Sullivan (1986) who used the B-spline base in estimation.

In the early stages, Kelly and Rice (1990) approximated a smoothing curve spline with hybrid
splines fitted with the inner knots equal to the sample data and the penalty value parameter, which
was normally determined by the generalized cross-validating criterion. In addition, Marx and
Eilers (1998) suggested flexible criteria to choose an optimal penalty parameter to deal with the
coefficients of the B-splines. Wand (1999) has also derived a quick and simple approach to find
the optimum penalty parameter for the regression of the penalized spline. In addition, Ruppert et
al. (2003 ) examined spatially different penalties and choosing the inner knots layout.

A penalized minimization problem can be derived in the closed-form formula. Such penalties
appear to be the least, but regression splines cannot be disturbance resistant from outliers. An
easy and straightforward idea is to change squared residuals by a slower loss function close to
the estimator for M-type regression Wold et al. ( 2001 ). Achieving atypical observation allevi-
ate the outliers effects. Early investigation of the technique for M-type smoothing. The work on
cubic splines for regression was introduced by Cox (1983) and by Lee and Oh ( 2007 ). Another
effective model estimate is the Sestimation by Eilers and Marx (1996), with its high breakdown
and extremely robust Tharmaratnam et al ( 2010 ). The regression curve for the penalized spline
is defined by minimizing the squared residuals, subject to a bound at the spline coefficient scale.
Therefore, a closed-form form formula can be extracted from the penalized minimization problem.
Obviously, those penalized least square regression splines cannot be resistant to the perturbation
of the outliers. Likewise, the clear and simple concept of the M-type estimator is to replace the
squared with a loss function, to alleviate the outlier effects. Early research started on the M-type
smoothing technique by Huber (1981) who worked on cubic regression splines. The S-type estima-
tion which has a high breakdown point and minimizes the scale of residuals in an extremely robust
way, can be another robust model Rousseeuw and Yohai (1984). Computing the S-type regression
estimates have developed a fast algorithm in Salibian-Barrera and Yohai (2006). The results of
comparison in showed that the S-estimator is more capable of resisting outlier disturbance com-
pared to the M-type estimator, but with smaller efficiency Wang et al. ( 2014 ). However, until
15 years ago, little work was done to put the penalized spline regression into the robust estimate
category. Oh et al. ( 2004 ) proposed a robust smoothing method introduced to the time analysis
of variable started by simply enforcing on the generalized cross-validation (GCV) criterion the
favorite loss function of Huber Tharmaratnam et al. (2010). An iterative procedure for conniving
the M-type estimator of penalized regression splines via the introduction of empirical pseudo data
was proposed by Lee and Oh (2007) and Finger (2013) subsequently verified that such an M-type
estimator compromised the efficiency of different estimation methods in insurance applications
among the very robust estimators and the very effective least square type estimators for penalized
spline regressions. Meanwhile Tharmaratnam et al. ( 2010 ) have also submitted S-type estima-
tor to substitute a least square estimate with an efficient estimator for penalized regression splines
which is equivalent to a weighted penalized least square regression and which is well-conforming
even in the case of highly contaminated samples. This article introduces the new robust method
of smoothing penalized regression splines accordingly and carries out a comparative study with
M-type estimator and the S-type estimating technique for penalized regression splines. Section 3
involves the proposed method with its algorithm. Comparative studies are conducted with both
simulated data and a real weather ballon data set. Concluding remarks are included in Section 5 .
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2. Robust Penalized Regression Splines

The idea of the penalized regression splines begins with the following model:
yin(f(xi),ag),izl,...,n (2.1)

where f (x;) is supposed to be a smooth but unknown regression function which needs to be esti-
mated based on the sample observations (z;,v;),7 = 1,...,n and o2 denotes the constant variance
of the random deviation error between the response variable and the regression function f(x). It’s
a flexible definition in terms of penalized spline smoothing since the different basis functions will
refer to the various penalized spline smoothing functions. The truncated polynomial bases are a
common collection, but other choices can be explored similarly,

K
yi = Bo + Bui + Boxf + - + Boal + Y Bk (i — &) + & (22)
k=1

where this regression splines are a linear combination of (k + p + 1) of functions

La,...,o" (x = &), (2 = &)5 ..., (2 — k)% (2.3)
where
@ = &) ifr > &
(i = &) = { 0 Otherwise (24)
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which is called truncated-power basis function, (z; — &))" = max (z; — &, 0) and 8 = (8o, f1..., Bpsr) T

denotes a vector of regression coefficients, {;, . . ., {x is the specified inner knots, and p indicates
the exponential order for truncated power basis. The vector of parameters’ estimator can be written
in matrices form as

B=(XTX+AD)" XTy (2.5)

We can rewrite the regression splines model in general form using base function B-spline:

K+p+1

Z B;Bj (vi:p) + & (2.6)

where B; (x;; p) is B -spline number j in p degree.

Least Squares for Penalized Regression Splines (LSPRS)

Given a group of sample observations (x1,%1), ..., (Zn,Yn) , an increasingly popular way for
obtaining the estimation of f(-) is via transforming it into the category of a least squares problem,
where we need to seek out the member from the class f(x; 5) which minimizes the sum of squared
residuals Ruppert et al. (2003)

n

> (yz- - (ﬁo + Brw + Bord + -+ Byl + Zﬁm — &) )) + AZﬁk 2.7)

=1
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By using the Lagrange multiplier, the coefficients of the penalized least squares regression

splines B s are equivalent to mini
n Z —f(x;;8))> + Ak Z B2, (2.8)

For any parameter smoothing (penalty) A > 0 with regard to /3, violating the biases of the fitted
spline reverse curve with the variance, and with diagonal matrix D that only penalizes the spline
coefficient. The direct calculations can be made to the closed-formula minimizer for objective
function (5) Ruppert et al. ( 2003 ). Therefore, the corresponding estimate vector y is expressed
by the penalized least square regression splines as

-1

(XTX +AD) " XTy (2.9)
Y= Sxy (2.10)
Where S, = X (X TX + )\D)_1 XT is called a smoothing matrix. In the case of normal least
squares S}, is typically called smoothing matrix which corresponds to a hat matrix.

Choosing the Smoothing Parameter A

Using a simple trial-and-error technique, we can either manually choose the value of A, or we
can implement an automated process. In the PRS model, the smoothing parameter plays a key
role, as the value of this parameter affects the shape of the corresponding data set curve, so it is
important to use a suitable value for that parameter.

Figure 1 shows the difference between the effective curve using a relatively large parameter value
A (right shape) and using a relatively small parameter value (left shape).

Figure 1: The right shape is the curve that is reconciled with a relatively large parameter value,
and the left-hand curved shape that is reconciled with a relatively small parameter value.

Sx, which can be regarded as a linear conversion matrix by which the vector of estimates y is
linear as ¥ = Ly. An appropriate curve is generally a matter of concern, not an approximation at
each point, so the overall error across values of the variable X is usually calculated. One simple
alternative which avoids relying on the values of variable x enabled is the mean sum of Squared
errors (MSSE)

MsSE =3 {f (@) - fa)} @.11)

i=1
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Therefore, MSSE can be written as Ruppert et al. (2009)

MSSE() = Y {BF () — £ )} 4 Var { F ()} 2.12)

=1

— Bias*{f(x)} + Var{f(z)} (2.13)
In the case of the PRS model, the equation is as follows:
MSSE(f) = [[(Sx — I) f||* + o2 tr (S\ST) (2.14)

Where the first term refers to the square of bias and the second term refers to the sum of the
variations. Draper and Smith (1998) clarified that estimates of the PRS model take the form of
Ridge regression estimates, which are in turn, biased input regression capacities used in reducing
estimates change Krivobokova (2006). This can be said as a continuous function, in a single
parameter, the smoothing range of the estimates within the PRS model is ready to change Craven
and Wahba (1978). The higher the value of this parameter the more effective the curve is, the more
distraction has been and vice versa. It is easy to measure and does not require any terminology
for the distribution of model errors using the crossvalidation norm (CV) Hurvich et al. (1998). It
is one of the parameters used to pick a smoothing parameter in the PRS. The practical sample is
divided into n parts and the model is then reconciled to the measurement of the remaining square
residuals by using a (n-1) part and the remaining square residuals will be measured. The average
residual CV is estimated as follows:

n

cv =1 3 (y _ (xi))Q (2.15)

=1

Where f ~ (x;) refers to the model that is fitted using the sample available after excluding obser-
vation number i. Calculating CV requires to set (Q = n to fit a n number of times model, which is
mathematically difficult, but the relationship is achieved for many linear functions which depend
on error squares as a loss function. For considering out the penalty parameter A in (5), GCV tech-
nique is utilized hereafter, which is computed by leave-one-out of the residual from sum of squares
to avoid overfitting in the regression splines Wilcox (2011). CV criterion is given by

n

CV(A) = %Z (y — 7 (s, A))2 (2.16)

i=1

The augmented penalty parameter \ can be determined by minimizing CV (\) over A > 0. For the
linear smoothing matrix, H\ = X (XTX + )\D) - X7 and it can be verified as
1 1 [u-f@)]
Fi Yi — J T
- = () s == 2.17
DR IE SR Bk e

1=

Where h;; is the ith number of the main diagonal in estimation matrix Ruppert et al. (2003). GCV
criterion is proposed simply by replacing the diagonal elements with their average (%) in PRS
model Craven and Wahba (1978).

GCVy = nlly — f(X)|?/(n — trace(H())))? (2.18)

M -Type Estimator for Penalized Regression Splines LS may greatly suffer from various distur-
bances mainly when the data is contaminated with outliers. A penalized regression estimator can
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be constructed easily by replacing the squared residual loss function with the following M-type
criterion to alleviate effects of outliers Lee and Oh (2007):

Frobust () = argmin {Z pe (yi — B7x;) + )\BTDﬂ} (2.19)

=1

where p is even, nondecreasing in [0, +00) and p(0) = 0, for which a common choice is taken of
the Huber loss function Tharmaratnam et al. (2010) with cutoff ¢ > 0,

x? lz| < ¢
pe(w) = { 2clz| — ¢ x| > ¢ (2.20)

The above function of Huber is apparently a parabola near zero. A default choice of the tuning
constant ¢ = ko, k = 1.345 aims for a 95% asymptotic efficiency with respect to the standard
normal distribution. Denote the derivative of p. is 1.. When a set of fitted residuals

The robust M-scale estimator for the estimation of the standard deviation o, of these residuals can
be used as follows Wilcox (2011), based on the penalized spline regression:

> e (yi — f(z;8)6.) =0 2.22)
=1

A conventional option for a measure of scale with a high breakdown point can be the value of w
determined by

GUTY = 1.4826 x MAD (&;) (2.23)

Where MAD is the median absolute deviation statistic, and MAD is actually the sample median of
the n values, with its finite sample breakdown point approximately being 0.5 and MAD in place
normally needs to be rescaled to a more familiar context to estimate after all, particularly when
residues are sampled from normal distribution Wilcox (2011). Especially,

MADN = MAD)/Zy.15 ~ 1.4836M AD (2.24)

By utilizing the aforementioned spline basis functions Lee and Oh (2007), M-type penalized spline
estimator using the standardized residuals can be computed by obtaining the estimate of {1 (z)
as follows

FU(2) = X (X™X 4+ AD) X7 Z2U+D (2.25)

Under such circumstances, an M -type iterative algorithm for calculating the penalized regression
splines is proposed in Wilcox ( 2011 ) by introducing the empirical pseudo data with iterative
algorithm where the penalized least square estimator converges asymptotically. Regarding the M-
type estimator for the penalized regression splines, the optimal value of smoothing parameter \ is
obtained by GCV.
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S-Estimation for Penalized Regression Splines

The low breakdown point of M-type estimator was explained by Yao and Li (2014). The
robustness characteristics of the aforesaid M-type estimator for the penalized regression splines
are not fully satisfactory. Estimation for penalized regression splines, the core concept of which is
using flexible Stype estimator to replace the conventional least squares estimator, is another robust
approach to smoothing noisy results. The coefficient vector of the penalized S -regression splines
BS is defined as follows:

B, = argming (no.(6) + A" Dp) (2.26)
Where 62(/3) is robust M-scale estimator and for each vector 3, 52(3) Satisfies the equation

BN Yi — fUTﬁ)

SN, (B C pylp(z (2.27)

(M) = Eeb

To make the estimate consistent if the distribution is normal, where ® refers to the standard nor-
mal distribution. Considering this, substitute the estimation of &.(/5) by MADN in (22) with the
addition of the absolute value of residual median; namely,

5, = MADN + Median(r(83)) (2.28)

The penalized S-estimator for the regression splines model is computed as m, = X Bs, with its
coefficients vector BS satisfying both (26) and (27), simultaneously. The formula below shows that
such S-estimators are actually equal to a weighted penalized least squares regression Wang et al.
(2014) And, thus, a further simple deformation arrives at the coefficient vector ,; with an iteration

form
-1

B, = xw (ﬂ) X+ ﬁz) XTWw (BS> y (2.29)
W(p) = diag (W;(5)) € R™*" (2.30)
Where
Wi(B) = p' (7:(B)) /7:(B) (2.31)
(yi - 13?5)

7i(B) = (2.32)

on(0)

And T <65> =n62(8)/ [(y — XB)"W(B)(y — X3)] This shows that the penalty parameter A
is then determined based on the next Regularized GCV criterion

na [WBL - x5)|
(ny — trace (Hg(\)))?

RGCV, =

(2.33)

where

Hs(\) =X (XTX + (A/T (Bs)> D) TxT (2.34)

—W (BS)% X (XTW (Bs) X+ (/\/T (BS)) D)1 XTw (BS)é (2.35)

and n,, denotes the number of nonzero elements in weight matrix W (Bs> . Therefore, the itera-
tive S— type estimator algorithm for penalized regression splines based on the previous in-depth
discussions had proposed in Finger (2013), which the penalized least squares estimator converges
asymptotically.
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3. The Proposed Method

The median and mode have significantly better results of robustness when outliers are present.
In addition, since the modal regression focuses on the relationship between most of the data points,
a more meaningful forecast of points and a higher probability of prediction coverage than the mean
regression when the error distribution is skewed Zhao et al. (2014). Yao and Li (2014) suggested
to estimate the modal regression parameter (3 for linear regression models called MODLR that
assumes f(y | =) is a linear function of variable x, Mode (y | ) = y; = z! 3, by maximizing

Q) = =3 on (v~ 75) G
i=1

Where e = y — 273 and ¢5,(t) = h™'¢ (£) , n(t) is a kemel density function, and % is a sym-
metric bandwidth. We shall assume, for the remainder of the article, that 3 is the usual normal
computational density.

The conditional density of f (e | x) refers to error distribution, Yao, and Li (2014) showed that an
error distribution based on x. However, if f (e | x) is skewed, the coefficients /5 of modal regression
and Conventional norm regression coefficients will vary. The modal regression may also be a lin-
ear function of x, but it is not in Conventional norm regression. They proposed an EM algorithm to
minimize a kernel-based objective function for the estimation of modal regression coefficients and
suggested a way of generating asymmetrical intervals of predictions which can be better coverable
than symmetric intervals if distributions are extremely skewed.

Since Zhao et al. (2014) B-spline base functions were used in the modal regression, which requires
determining the appropriate number and location of nodes and because the penalized regression
splines models overcome the problem of the number and location of the appropriate nodes by using
a large number of nodes using the smoothing parameter. Therefore, our method proposes to use
modal regression with penalized regression splines by Maximizing the objective function:

n K
Q) = -3 on (e —T8) ~AD By (3.2)
i=1 k=1

The values of the two parameters h and A control the shape of the curve that can be obtained
when estimating the model, and a figure 2 can be viewed to illustrate this. Where the degree of
smoothing parameter A controls the smoothing degree of the curve, the greater the value, the greater
the degree to which the curve is smoothed (see upper-left and middle-right shapes), the opposite is
true (see middle left and lower right shapes). While the parameter / controls the degree of curved
robustness, using a relatively small value for that parameter makes the resulting estimate more
robust and unaffected by the presence of outliers (see upper left and middle left shapes). When a
relatively large value is used for parameter h, it affects estimates in the presence of outliers (see
middle right and lower right shapes). Therefore, it is necessary to select appropriate values to the
parameters A and h to obtain a well-fitted curve for the data. This is what we have tried to do in
the current article.
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(a) Original function (b) small h and small A

(c) large h and small A (d) small h and large A

(f) Choosing h and A using our proposed

(e) large h and large A method

Figure 2: The upper-left shape is a scatter plot of a set of data that contains approximately 25% of
outliers attached to the actual function curve (solid line). Other shapes represent Mode penalized
regression splines with (Solid lines) by using different values for & and . The dashed line curve
in the lower-right shape is the curve of the real data function

To solve equation (2.29) Yao et al. (2012) extended the modal expectation-maximization
(MEM) proposed by Lee and Oh (2007). Similar to an expectation-maximization (EM) algorithm,
the MEM algorithm also consists of two steps: E-step and M-step and requires one to iterate the
E-step and the M-step until the algorithm converges.

The corresponding penalty parameter A is determined using GCV criterion for the LS fitting and
M type estimation methods, the regularized GCV criterion for the S -type estimation method and
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in the proposed method choosing the appropriate value from selected values nominated using the
robust generalized cross-validation (RGCV) to choose the optimum value. As for the bandwidth
parameter h, it will be based on Yao et al (2012) to select the optimal value from a set of the
following parameter:

hy =056 x1.020"Y 1=1,2,.....,L (3.3)

The optimal value for h is determined to correspond to the lowest value of a scale r(h)

r(h) = — (3.4)
Where
LORESYAD 39
Gy =+ Z 0 @) (.6
Algorithm:

The following steps explain our algorithm:
1- Put / = 1 and repeat the following steps until L number of iterations is reached.
2- Specify the number of i values nominated for the smoothing parameter (which will be referred
to as the symbols Ay, Ag, ... ... A1)
3- Iterate the following steps for each parameter’s candidate value for the smoothing parameter ;.
3-a) Obtain R number of initial estimates for the parameters vector indicated by the 5 -symbol
BO B0 B
3-b) Calculate the value of the objective function shown in (37) for each vector B,EO), and then
determine the initial value of smoothing parameter /., using the Silverman rule Weglarczyk (2018):

ho=1.06 X & x n"5 (3.7)

3-c) Choose the vector of estimates corresponding to the largest value of the objective function BO,
use this vector to calculate the corresponding residuals and standard deviation and then specify the
value for the parameter h;.

hy =0.56 x 1.020 Y 1=1,2,...... L (3.8)
3-d) Select the following weights for the observations
N ¢hl (y] - me(0)>
7 (i189) = — —
> izt Pn, (yz - ﬂ(0)>

Thus, the diagonal elements W is determined by these diagonal weights. 3-e) Calculate the value
of the robust GCV criterion

i=1,2...n (3.9)

d G|

RGCVy = (n — trace(H(\)))?

(3.10)
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Where
H(\) = W3 X (XTWX + D) XTW: (3.11)

4- Choose a value for A corresponding to the smallest value of a criterion RGCV), put k = 0 and
repeat the next three steps
(D) Step E : The weights are calculated in this step using

) Pn (yj - Xrﬁ(k)) .
w100 = o 1l¢h (ys - ZTamY & On (5 —x BY), G=1,..... n (3.12)
1= i ? 7
(IT) Step M : In this step, we update the parameters estimator vector using weighted ridge regres-
sion

BED — (XTW,X +AD) ™ XTW,y (3.13)

(1D If H Bl _ pUD | < ¢ B(k)’ or k = Itermax, terminate and output the convergent coefficient

vector and calculate r (h;) modify 1 to 1 + 1, if 1 is reached to L go to step 5 else go to Step 1.

5- Choosing the corresponding h; value for the smallest 7 (h;) to be the best value for the robustness
parameter hy,, specifying the corresponding smoothing parameter value )\, and determining the
vector of the final predicted values g,

= X (XTWi, X + \D) " XTW,,,y (3.14)

4. Performance Evaluation

This section is devoted to the comparative experiments upon both simulated data and one real
weather balloon data set for the foregoing explored penalized spline smoothing methods, including
the non-robust LS presented by Mallows (1995) and two robust smoothing approaches, the M -
type estimator by Lee and Oh (2007) and S - estimation by Tharmaratnam et al. (2010) and the
proposed method as described in Algorithm for penalized regression splines.

Configuration and Criteria:

It can obviously be said that for all three robust methods an exponential order p = 3 for
truncated power base will be applied and the knot locations will be chosen by Ruppert et al.
(2003), kx = ((k+ 1)/(k +2) ) ™ sample quantile of the Unique(x), k = 1,..., K; together
with a simple choice of the knot number X = min (35, (1/4)x Number of Unique(x)), where
x = (r1,%2,..., xn)T. the corresponding penalty parameter ) is determined according to GCV cri-
terion for the LS fitting and M - estimation methods and the RGCV criterion for the .S -estimation
method and for the proposed method. Meanwhile, the termination tolerance ¢ = 1075 and the
maximum iteration numbers 100 are allocated randomly to the exploration of the ultimate opti-
mum. In the meantime, ACCER 8700 (CPU: Intel Core i7-1070 @ 8GHz, R-4.0.3.tar.gz built on
Windows 10 Ultimate, are the hardware and software environment for the experiments below (64
Bit).

Simulated Data.

To test the method proposed in this article, we have created a function that exhibits various
kinds of overall pattems blurred by different examples of noise. In Lee and Oh (2007) and Thar-
maratnam et al. (2010) the simulated analysis is presented the same way Wang et al. (2014).
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The settings for the simulation analysis are made for the different sample dimensions in design
variables x; . . ., x, from the uniform distribution at interval [—1, 1]. For all settings, these values
are maintained to reduce the uncertainty of the simulation. N = 25,100, and 250 sample sizes
were used. We used the following functions for the mean structure which describe a number of
functions, which represent a variety of shapes:

fi(z) = sin(7z), fo(x) = sin 27(1 — 2)?), f3(x) = v + 22 + 2® + 2% and fy(x) = —20 + 3.
Function fy(x) is the same one used by Lee and Oh (2007) to facilitate a comparison with the
results presented therefor, the error distribution we used five possibilities, ordered according to the
heaviness of their tails: (i) uniform distribution (—1, 1), (ii) normal distribution N(0, 0.72), (iii) lo-
gistic distribution (0, 1), (iv) slash distribution, defined as N(0, 1)/ uniform (0, 1), and (v) Cauchy
distribution (0, 1). Both cauchy and slash distributions are heavy tailed. We compare four penal-
ized regression splines estimation methods in this simulation study: (A) the non-robust method for
penalized regression splines estimation as in equation (9), using LS method, (B) penalized M-type
regression splines estimators as studied by Lee and Oh (2007), (C) penalized Stype regression s-
plines estimators as studied by Tharmaratnam et al. (2010) and (D) The proposed method in this
article, using penalized modal regression splines estimators, and employing algorithm as described
in Section 3 . For all four methods, we use truncated cubic splines (p = 3) with K = 6,25, or
35knots (corresponding to sample sizes 25, 100, and 250 ), spread equally according to the quan-
tiles of the data. We have tried with different choices of K as well (results not shown) and found
similar results. The penalty parameter A is chosen by minimizing the GCV criterion for the LS
estimation method. Robust cross-validation (RCV) is used for the M-type regression splines esti-
mation method as proposed by Lee and Oh (2007). RGCV defined in (Section 2) is used for the
S-type estimation method Tharmaratnam et al. (2010) and for the proposed method, we set the
tolerance level in the three robust methods to 107% and the maximum number of iterations was
set to 500 . To examine the robustness of the approaches against outliers, we randomly generated
different percentages of outliers (5%, 10%, 20% and 30%) for each of the two cases, first to get
scattered outliers in normal distribution with mean 20 and standard deviation 20, and second to
get concentrated outliers in normal distribution with mean 20 and standard deviation 2. The results
of the estimation of the penalized spline regression model using the S estimator and the proposed
mode estimator are based on the quality of the initial values of robustness’s parameter 4. Only 50
values have been used for the parameter & in the proposed algorithm to reduce the time needed to
perform the current simulation study, the 50 values were specified using the equation of Yahoo et
al. (2012):

h=056x102,7=0,...,49 4.1)

Simulation Results

The goodness of fit of the estimated model is measured by calculating the median of mean
squared errors (MSE) and median absolute deviation of mean squared errors. Denoting fj (x;) the
estimated 4" value of f (z;) for simulationrunj (j = 1....J = 1000), mean squared error (MSE)
is defined by

MSEjz%i(f(xi)—fj(xi))Q,jz1,2,.....,J 4.2)

1=1

Table 1 presents summary values of the MSE (median and median absolute deviation) for the four
estimation methods for the normal error distribution and with mean function f;(z). In all sample
sizes, the median MSE of the proposed method is smaller than that of the other three methods
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for samples with more than 5% of outliers except in sample size of n = 100 with 5% of outlier-
s method of penalized M-type regression splines estimation works better. For LS and penalized
M-type regression splines estimators, MSE is clearly increasing with the percentage of outliers
increasing. For penalized S-type regression splines estimation, the MSE values tend to be quite
stable, the MSE of the proposed method tend to be quite stable with small values. As expected,
the goodness of fit as measured by the MSE values improves for larger sample sizes with all per-
centages of contamination. Table 1 clearly shows that the penalized least squares method may
already break down with only 5% of outliers. For penalized M-type regression splines estimation,
the breakdown arrives earlier, showing the need for taking the scale into consideration in the fitting
method and working with a bounded p -function, a clearer increase (breakdown) is observed for
the penalized S-type regression splines estimation method when the presence of outliers. For the
proposed method of penalized mode-regression splines estimation, the MSE values are relative-
ly small even with 30% of scattered outliers for all sample sizes a clearer increase (breakdown)
is observed for the proposed method when the presence of outliers reaches 30% of the sample
size. The median of absolute deviations is still at the same level as before, the LS-estimator’s
MSE grow very rapidly. Similarly, the penalized M-type regression splines estimator’s MSE grow
rapidly after 10% of outliers. These results are confirming that the penalized M-type regression
splines estimation method works better with less than 10% of outliers, while the penalized S-type
regression splines estimation method increases but is much less than the penalized M, while the
proposed method works well for all considered percentages of outliers.

Figure 3: TABLE 1 Median and median absolute deviation (between parentheses) of MSE for data
generated with mean structure f;(x), error terms from N(0,0.72) distribution, and for different
sample sizes. from N (20, 2%)

LS M § Mode LS M § Mode LS M S Mode
0.08 0.17 0.33 0.29 0.02 0.03 0.32 0.15 0.05 0.06 032 0.17

0% (0.03) | (0.07) | (0.14) | (0.13) | (0.02) | (0.02) | (0.14) | (0.08) | (0.02) | (0.03) | (0.14) | (0.08)

1.87 0.19 0.35 0.09 141 0.04 0.35 0.04 51 0.07 035 0.06

3%

a2 | 008 | 016 | @) | @13 | @03 | 016 | ©03) | @s) | 003 | @15 | 003

542 0.25 0.36 0.09 479 0.06 0.35 0.04 18.21 0.09 0.36 0.07

10%
G05) | 1) | @16 | 003 | 86 | 004 | @16 | 003 | qo2) | 008 | 016 | ©03)

1747 0.51 041 0.14 1644 0.18 04 0.04 5031 0.25 037 0.07

20%

(6.91) | (0.27) | (0.24) | (0.08) | (6.72) | (0.12) | (0.25) | (0.03) | (2354) | (0.15) [ (0.2) | (0.05)
38.33 1.74 04 0.36 36.00 0.76 0.29 0.04 | 13094 | L04 0.28 0.16

30%

(11.64) | (1.28) | (0.32) | (0.08) | (IL17) | (0.58) | (0.28) | (0.03) | (40.19) | (0.85) | (0.2) | (0.13)

We have further checked our proposed method with the penalized S-type regression splines
estimation method and the penalized M-type regression splines estimation method. We generated
errors €; from a normal distribution and included different percentages of outliers for sample size
n = 100. For each of these settings we computed the MSE over 1000 simulation runs; the results
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are presented in Table 2 . The proposed method gives the smallest median MSE values for all data
generated from functions goniometric f>(x), the polynomial f3(x), and the exponential f4(x) mean
functions if there are 5% and more of outliers. The penalized S has shown no relative superiority
over the penalized M unless with 30% contamination and the penalized M-type regression splines
estimation method works better than the penalized S for the cases with 5% and 10% of outliers in
all generation functions fo(z), f3(x), and fy(z).

Figure 4: TABLE 2 Median and median absolute deviation (between parentheses) of MSE for data
generated from functions fo(z), f5(z), and fy(z) with error terms from N (0, 0.72) for sample size
n = 100 with different percentages ¢ of outliers generated from N (20, 2%)

LS M § Mode LS M b Mode LS M § Mode

0.08 017 0.33 0.29 0.02 0.03 0.32 0.15 0.05 0.06 0.32 0.17

% | o) | 007 | 014 | @13) | ) | 00) | @14 | @08 | 00 | @03 | 014 | (008

187 0.19 0.35 0.09 141 0.04 0.35 0.04 573 0.07 0.35 0.06

5%

@) | 008 | 016 | ©03) | @13 | @03 | 016 | ©03) | @) | ©03) | @15 | 003
542 | 025 | 036 | 000 | 47 | 006 | 035 | 004 | 1821 | 000 | 036 | 007

10%
605 | o) | @16 | 003 | @86 | 004 | 016 | 003 | qo2n) | 05 | 016 | ©03)

1747 0.51 0.41 0.14 1644 0.18 04 0.04 5031 0.15 0.37 0.07

20%

691 | 02 | 029 | ©08) | 67 | 01y | 029 | 003 | @334 | 015 | 02 | 005

38.33 174 04 0.36 36.00 0.76 0.29 004 | 13094 | 104 0.28 0.16
30%

(L6 | @28) | @32 | 008) | (AL17) | 039) | 028) | 003 | @019) | 085 | 02 | oW

Next, we measure the effects of the various error distributions on the performance of the esti-
mates. The results are shown in Table 3 for sample size n = 100 and true mean function f(x).
The proposed method in uniform distribution gives the smallest median MSE values in all per-
centages of outliers, only in one case is 5% contamination the results of the proposed method and
the penalized M-type regression splines estimation were similar. The penalized S-type regression
splines estimation showed a relative superiority over the penalized M only at 30% contamination.
The proposed method in logistic and slash distribution gives the smallest median MSE values with
data contamination from 10% to the 30%. While the penalized M-type regression splines esti-
mation works better for the samples with 5%. Also, the proposed method in caushy distribution
gives the smallest median MSE values with data contamination from 20% to the 30%, while in
10% contamination the results of the proposed method and the penalized M-type regression s-
plines estimation were similar, and the penalized M gives the smallest median MSE values with
data contamination 5%.

Next, we investigate the robustness of the methods against two types of outliers, simulated
cases with scattered outliers or with concentrated cloud of outliers. We generated data from scat-
tered outliers, simulated using normal distribution with mean 20 and standard deviation 20 and
concentrated cloud, simulated using normal distribution with mean 20 and standard deviation 2.,
and included different percentages of outliers for sample size n = 100. For each of these settings
we computed the MSE over 1000 simulation runs; the results are presented in Table 4. Regardless
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Figure 5: TABLE 3 Median and median absolute deviation (between parentheses) of MSE for data
generated with mean structure f;(z), error terms from different distributions, and for sample sizes
n = 100 with different percentages ¢ of outliers generated from N (20, 22)

€ 0% 5% 10% 20% 30%

LS 002 | @Oy | 13 | an 517 | @7 | 1813 | o4 | 381 | (23

é M 0.0 | @01 | 003 | (.02 005 | (.04 | 016 (0.1) 071 | (0.58)
3 $ 0.3 ©08 | 031 | (009 | o032 ©.1) 032 | 01 | 01 | (18
Mode | 021 | (006 | 003 | (0.02 003 | 0y | 003 | (002 | 004 | (0.04)

LS 0.16 (.1) 158 | (2% | 520 &) 1797 | (684 | 319 | (258

g M 016 | (0.09) 0.2 1) | 031 0.2) 108 0.7) 460 | @379
7 § 18 | (085 | 199 | 96 | 237 | @y | 400 | @358 | 32 | (3283
Mode | 035 ©.2) 023 | 015 | o3 | 19 0.2 012) | 022 | (014)

LS 692 | (878 | 823 | (0.02) | 1187 | (186 | 2517 | (891 | 4574 | Q4

z M 028 | @17 0.4 02 | 06 | o4 | 212 | @1 | 1527 | 4
d S 356 | (235 | 400 | (322 | 519 | (534 | 1866 | (2491) | 5858 | (69.86)
Mode | 032 ©0.2) 036 | (029 0.4 033 | 032 | (05 1 1.24)

LS 424 | 34 | 562 | (626 9.7 ©2) | 2350 | (1526) | 4184 | (20.63)

g M 0.17 @) 023 | 014 | 036 | @20 | 157 | an 780 | (745
£ $ 167 ) 193 | Q7 | 248 | (@64 | 43 ©62) | 2733 | @017
Mode | 024 | (017 | 026 | (019 | 031 | 0.24) | 034 | (020 | 046 | (0.48)

of the type of contamination whether it is scattered or concentrated. The proposed method has
the smallest median MSE values with data contamination from 10% to the 30%. While the M-
type estimation works better for the samples with 5%. The order of M-type and S-type estimation
magnitude varied according to the type of contamination at 30%, with the order of M-type being
the third in the case of concentrated contamination and the second in scattered, while the S-type
was second in concentrated contamination and third in the case of scattered contamination. Table

Figure 6: TABLE 4 Median and median absolute deviation (between parentheses) of MSE for data

generated from Scattered outliers and Concentrated cloud for sample size n = 100.

Concentrated cloud Scattered outliers

€ LS M S Mode LS M ) Mode
" 0.03 0.03 032 0.16 0.03 0.03 0.32 0.16
(0.02) (0.02) (0.13) (0.07) (0.02) (0.02) (0.13) (0.07)

w0 1.56 0.04 0.36 0.04 174 0.03 0.35 0.04
1.2) (0.02) (0.17) (0.03) (L.79) (0.02) (0.16) (0.03)

10% 517 0.06 035 0.04 579 0.05 037 0.05
(3.09) (0.04) (0.16) (0.03) (4.66) (0.03) 0.17) (0.03)

- 1743 0.2 0.39 0.04 1034 0.12 043 0.08
(6.96) (0.13) (0.24) (0.03) (1143 (0.08) 0.27) (0.07)

" 3835 083 03 0.06 42.66 0.37 042 025
(11.83) (0.67) 0.27) (0.03) (19.70) (0.27) (0.39) (0.13)




1052

Eldeeb, Desoky, Ahmed

5 summarizes the results of the simulation study of the effect of increasing the number of initial
values and the number of smoothing parameter values on the performance of the four estimation
methods (LS, M, S, and Mode). 350 ”Run” returns have been performed It is clear that the order

Figure 7: Table 5: Median and median absolute deviation (between parentheses) of MSE for data
generated with from the estimation methods (LS, M, S, and Mode ) in the cases of small and large
number of initial values and candidate values for a smoothing parameter.

A small number of initial and candidate values for a A large number of initial and candidate values for a
smoothing parameter smoothing parameter
€
LS M S Mode LS M S Mode
0.03 0.03 032 0.16 0.03 0.03 0.46 0.16
0%
(0.02) (0.02) (0.14) (0.08) (0.02) (0.02) (0.32) (0.08)
1.56 0.04 0.36 0.04 157 0.04 0.46 0.03
5%
(1.25) (0.03) (0.17) (0.03) (1.25) (0.03) (0.29) (0.02)
520 0.06 0.36 0.04 521 0.06 0.45 0.03
10%
(3.05) (0.04) (0.16) (0.03) (3.06) (0.04) (0.27) (0.02)
17.14 0.19 041 0.04 17.22 0.19 0.43 0.04
0%
(6.66) (0.13) (0.29) (0.03) (6.63) (0.13) (0.30) (0.02)
38.27 0.83 032 0.05 38.27 0.83 0.37 0.04
30%
(12.77) 0.67) 0.28) 0.05) (12.67) (0.67) (0.29) (0.02)

of the four methods in terms of performance quality did not vary between small and large number
of initial values and the number of smoothing parameter values except in two cases, corresponding
to the contamination ratios (5% and 30%). If a small number of values were used at 5% contami-
nation, the proposed method and M-type estimator had the same performance. It is also clear from
a table 5 that both estimates have the same median value and the same absolute deviation value as
the median, while the mode estimate rank becomes 1 and the m-rated rank equals 2 if the number
of values increases, which means that there is an improvement in the estimated performance of
the mode in that case. As for the 30% contamination rate, it can be noted that the two different
estimates are S and M where the two values had the same order if the number of values was small,
and the order of 3 and 2 , if the number of values was increased. We can summarize some gen-
eral results of the simulation study to use as a practical guidance for finding a specific method to
pulsing smoothing noisy data:

1. the best estimate of the four comparable estimates in the case of data contamination is 10%
to 30%, i.e., if data is moderately or significantly contaminated, the expression is expressed.

2. M is the best estimate in case of small data contamination (5%).

LS is best estimated if data is not polluted (0% contamination).

4. The proposed method is generally best estimated in the simulation study, where it was with
the lowest ranking of the general average.

et
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Balloon data

In this section, we have used the balloon dataset from the R software’s library ftnonpar. The
data are radiation measurements from the sun, taken from a flight of a weather balloon. Due to the
rotation of the balloon, or for some other reasons, outliers were introduced because the measuring
device was occasionally blocked from the sun. The response variable Y is a radiation measuremen-
t, and the explanatory variable x is the index of the measurement. The sample size equals 4984.
Displayed in Figure 8 are regression estimates obtained by LS method, M-type penalized regres-
sion splines estimation, S-type penalized regression splines estimation and our proposed method
of Mode penalized regression splines estimation. For the time 0.3 — 0.9, the non-robust curve
estimate of LS suffers from the presence of the outliers. That is, the estimated curve was pulled
downwardly away from the majority of the observations, which is clearly visible around the value
of z = 0.8. On the other hand, this phenomenon does not affect all robust methods, including our
proposed method.

Figure 8: Fitted values for the balloon data. LS -type regression splines method (brown), penalized
S-type regression spline method (red), penalized M-type regression splines method (green) and
mode penalized regression(blue)

5. Concluding Remarks

In this article an effective method is proposed for robust fitting penalized regression splines
models. Generally, smoothing methods may be influenced by outliers. The proposed method is
easy to implement. Mode penalized regression splines estimators superior to least squares pe-
nalized regression splines, M-type penalized regression splines estimators and S-type penalized
regression splines estimators in moderate or high contamination percentage. The procedure per-
forms very well in many scenarios of simulated data and real data. The penalized M-type regres-
sion splines estimation works better for the cases with a small percentage of contamination while
penalized S-type regression splines estimation works well for higher percentages of contamination,
but mode penalized regression splines estimation works better for all percentages of contamina-
tion. In the absence of outliers, the efficiency of the proposed method is not very high, that is
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the price to pay for a high robustness. The asymptotic properties of mode penalized regression
have not yet been studied and are a topic of our further research. We expect that consistency, and
asymptotic normality still hold, under appropriate regularity conditions. These results would be
useful, for example to construct confidence bands for the curves.

Supplemental Materials R-code:

We make the R code available with functions implementing the mode penalized regression s-
plines estimators used in this article through the journal’s supplementary materials. The file also in-
cludes the code that we used for a comparison with penalized least squares penalized M-estimation
and S-estimation methods.
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