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Abstract

In this paper we study the notion of Gerghaty type contractive mapping via simulation function
along with C-class functions and prove the existence of several fixed point results in ordinary and
partially ordered metric spaces. An example is given to show the validity of our results given herein.
Moreover, existence of solution of two-point boundary value second order nonlinear differential equa-
tion is obtain.
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1. Introduction

The Banach contraction principle [4] is one of the fundamental result in metric fixed point theory.
Because of its importance in nonlinear analysis, number of authors have improved, generalized and
extended this basic result either by defining a new contractive mapping in the context of a complete
metric space or by investigating the existing contractive mappings in various abstract spaces (see,
e.g., [1, 5, 6, 7, 20, 28] and references therein).

In particularly, Geraghty [8] consider an auxiliary function and generalized the Banach contraction
in the frame work of complete metric space. Later on, Amini-Harandi and Emami [28] obtained
similar results in the setting of partially ordered metric spaces. Using the concept of Samet [11], Cho
et al. [6] generalized Geraghty contraction to α-Geraghty contraction and prove a fixed point theorem
for such contraction. On the other hand, Khojasteh et al. [15] introduced the notion of Z-contraction
by using a function called simulation function and proved a version of Banach contraction principle.

∗Corresponding author
Email addresses: hafiziqbal30@yahoo.com (Azhar Hussain), ishfaqahmad5632@gmail.com (Muhammad

Ishfaq), tanzeelakanwal16@gmail.com (Tanzeela Kanwal), radens@beotel.rs (Stojan Radenović)
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2. Preliminaries

In this section we present some basic notions and results from the literature:
We denote by F the class of all functions β : [0,∞)→ [0, 1) satisfying β(tn)→ 1, implies tn → 0 as
n→∞.

Definition 2.1. [8] Let (X, d) be a metric space. A map T : X → X is called Geraghty contraction
if there exists β ∈ F such that for all x, y ∈ X,

d(Tx, Ty) ≤ β(d(x, y))d(x, y).

Theorem 2.2. [8] Let (X, d) be a complete metric space. Mapping T : X → X is Geraghty contrac-
tion. Then T has a fixed point x ∈ X, and {T nx1} converges to x.

In 2015, Khojasteh et al. [15] introduced simulation function ζ : [0,∞)× [0,∞)→ R, satisfying the
following assertions:

(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(t, s) < s− t for all t, s > 0;

(ζ3) If {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0 then

lim
n→∞

sup ζ(tn, sn) < 0.

Definition 2.3. [15] Let (X, d) be a metric space, T : X → X a mapping and ζ a simulation
function. Then T is called a Z-contraction with respect to ζ, if it satisfies

ζ(d(Tu, Tv), d(u, v)) ≥ 0 for all u, v ∈ X. (2.1)

Theorem 2.4. [15] Let (X, d) be a complete metric space and T : X → X be a Z-contraction with
respect to ζ. Then T has a unique fixed point u ∈ X and for every x0 ∈ X, the Picard sequence {xn}
where xn = Txn−1 for all n ∈ N converges to this fixed point of T .

Example 2.5. [15] Let ζi : [0,∞)× [0,∞)→ R, i = 1, 2, 3 be defined by

(i) ζ1(t, s) = λs− t, where λ ∈ (0, 1);

(ii) ζ2(t, s) = sϕ(s) − t, where ϕ : [0,∞) → [0, 1) is a mapping such that lim
t→r+

sup ψ(t) < 1 for all

r > 0;

(iii) ζ3 = s− ψ(s)− t, where ψ : [0,∞)→ [0,∞) is a continuous function such that ψ(t) = 0 if and
only if t = 0.

Then ζi for i = 1, 2, 3 are simulation functions.

Roldán-López-de-Hierro et al. [24] modified the notion of a simulation function by replacing (ζ3) by
(ζ ′3),

(ζ ′3) : if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = lim
n→∞

sn > 0 and tn < sn, then

lim
n→∞

supζ(tn, sn) < 0.
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The function ζ : [0,∞)× [0,∞)→ R satisfying (ζ1− ζ2) and (ζ ′3) is called simulation function in the
sense of Roldán-López-de-Hierro.

Definition 2.6. [2] A mapping G : [0,+∞)2 → R is called a C-class function if it is continuous
and satisfies the following conditions:

(1) G(s, t) ≤ s;

(2) G(s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,+∞).

Definition 2.7. [18] A mapping G : [0,+∞)2 → R has the property CG, if there exists and CG ≥ 0
such that

(1) G(s, t) > CG implies s > t;

(2) G(s, t) ≤ CG, for all t ∈ [0,+∞).

Some examples of C-class functions that have property CG are as follows:

(a) G(s, t) = s− t, CG = r, r ∈ [0,+∞);

(b) G(s, t) = s− (2+t)t
(1+t)

, CG = 0;

(c) G(s, t) = s
1+kt

, k ≥ 1, CG = r
1+k

, r ≥ 2.

For more examples of C-class functions that have property CG see [3, 7, 18].

Definition 2.8. [18] A CG simulation function is a mapping G : [0,+∞)2 → R satisfying the
following conditions:

(1) ζ(t, s) < G(s, t) for all t, s > 0, where G : [0,+∞)2 → R is a C-class function;

(2) if {tn}, {sn} are sequences in (0,+∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, and tn < sn, then

lim
n→∞

sup ζ(tn, sn) < CG.

Some examples of simulation functions and CG-simulation functions are:

(1) ζ(t, s) = s
s+1
− t for all t, s > 0,

(2) ζ(t, s) = s − φ(s) − t for all t, s > 0, where φ : [0,+∞) → [0,+∞) is a lower semi continuous
function and φ(t) = 0 if and only if t = 0.

For more examples of simulation functions and CG-simulation functions see [3, 24, 15, 18, 19, 27].

Definition 2.9. [11] Let T : A→ B be a map and α : X ×X → R be a function. Then T is said
to be α-admissible if α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

Definition 2.10. [14] An α-admissible map T is said to be triangular α-admissible if α(x, z) ≥ 1
and α(z, y) ≥ 1 implies α(x, y) ≥ 1.

Definition 2.11. [9] Let (X, d) be a metric space, and let α : X ×X → R be a function. A map
T : X → X is called α-continuous, if for given x ∈ X and sequence {xn} with xn → x as n→∞,

α(xn, xn+1) ≥ 1, ∀ n ∈ N⇒ Txn → Tx.
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Cho et al. [6] generalized the concept of Geraghty contraction to α-Geraghty contraction and
prove the fixed point theorem for such contraction.

Definition 2.12. [6] Let (X, d) be a metric space, and let α : X ×X → R be a function. A map
T : X → X is called α-Geraghty contraction if there exists β ∈ F such that for all x, y ∈ X,

α(x, y)d(Tx, Ty) ≤ β(d(x, y))d(x, y).

Theorem 2.13. [6] Let (X, d) be a complete metric space, α : X ×X → R be a function. Define a
map T : X → X satisfying the following conditions:

1. T is continuous α-Geraghty contraction;

2. T be a triangular α-admissible;

3. there exists x1 ∈ X such that α(x1, Tx1) ≥ 1.

Then T has a fixed point x ∈ X, and {T nx1} converges to x.

Lemma 2.14. [14] Let T : X → X be a triangular α-admissible map. Assume that there exists
x1 ⊂ X such that α(x1, Tx1) ≥ 1.Define a sequence {xn} by xn+1 = Txn. Then we have α(xn, xm) ≥ 1
for all m,n ∈ N with n < m.

Lemma 2.15. [22] Let (X, d) be a metric space and let {xn} be a sequence in X such that

lim
n→∞

d(xn, xn+1) = 0. (2.2)

If {xn} is not a Cauchy sequence in X, then there exists ε > 0 and two sequences xm(k) and xn(k) of
positive integers such that xn(k) > xm(k) > k and the following sequences tend to ε+ when k →∞:

d(xm(k), xn(k)), d(xm(k), xn(k)+1), d(xm(k)−1, xn(k)),

d(xm(k)−1, xn(k)+1), d(xm(k)+1, xn(k)+1).

Motivated by the above results, we introduce the notion of Gerghaty type Z(α,G)-contraction and
prove some fixed point results in metric and partially ordered metric spaces. An example to prove the
validity and application to nonlinear differential equation for the usability of our results is presented.

3. Fixed point results in usual metric space

We begin with the following notion:

Definition 3.1. Let (X, d) be a metric space and α : X × X → [0,∞) be a function. A mapping
T : X → X is called a Z(α,G)-Geraghty contraction if there exists β ∈ F such that for all x, y ∈ X

ζ(α(x, y)d(Tx, Ty), β(M(x, y))M(x, y)) ≥ CG (3.1)

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Remark 3.2. Since the functions belonging to F are strictly smaller than 1, (3.1) implies that

d(Tx, Ty) < M(x, y)

for any x, y ∈ X with x 6= y and for α(x, y) ≥ 1, ζ(t, s) < G(s, t) = s− t.
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Theorem 3.3. Let (X, d) be a complete metric space, α : X ×X → [0,∞) and T : X → X be two
functions. Suppose that the following conditions are satisfied:

(1) T is Z(α,G)-Geraghty contraction;

(2) T is triangular α-admissible;

(3) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(4) T is α-continuous.

Then T has a fixed point x∗ ∈ X and T is a Picard operator that is, T nx1 converges to x∗.
Proof . Let x1 ∈ X be such that α(x1, Tx1) ≥ 1. Define a sequence {xn} ⊂ X by xn+1 = Txn
for n ∈ N. If xn0 = xn0+1 for some n0 ∈ N, then xn0 is a fixed point of T and hence the proof is
completed. Thus, we assume that xn 6= xn+1 for all n ∈ N. By Lemma 2.14, we have

α(xn, xn+1) ≥ 1 (3.2)

for all n ∈ N. Then

d(xn+1, xn+2) = d(Txn, Txn+1)

≤ α(xn, xn+1)d(Txn, Txn+1). (3.3)

Since T is a Z(α,G)-Geraghty contraction, we have

CG ≤ ζ(α(xn, xn+1)d(Txn, Txn+1), β(M(xn, xn+1))M(xn, xn+1))

< G(β(M(xn, xn+1))M(xn, xn+1), α(xn, xn+1)d(Txn, Txn+1)).

Using (G1), we obtain

α(xn, xn+1)d(Txn, Txn+1) < β(M(xn, xn+1))M(xn, xn+1). (3.4)

From (3.3) and (3.4), we have

d(xn+1, xn+2) < β(M(xn, xn+1))M(xn, xn+1), (3.5)

for all n ∈ N, where

M(xn, xn+1) = max{d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1)}
= max{d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2)}
= max{d(xn, xn+1), d(xn+1, xn+2)}.

If M(xn, xn+1) = d(xn+1, xn+2), then by definition of β, we have

d(xn+1, xn+2) < β(d(xn, xn+1)d(xn, xn+1))

< d(xn+1, xn+2),

a contradiction. Thus we conclude that M(xn, xn+1) = d(xn, xn+1) for all n ∈ N and so the sequence
{d(xn, xn+1)} of real numbers is decreasing and bounded below by zero. Hence there exists r ≥ 0 such
that

lim
n→∞

d(xn, xn+1) = r.
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We claim that r = 0. Suppose on contrary that r > 0, then by (3.5) we have

d(xn+1, xn+2)

d(xn, xn+1)
≤ β(d(xn, xn+1) < 1,

which yields that lim
n→∞

β(d(xn, xn+1) = 1. Since β ∈ F , we get that

lim
n→∞

d(xn, xn+1) = 0. (3.6)

We now show that {xn} is a Cauchy sequence. Suppose on contrary that it is not. Thus there exists
ε > 0 such that for all k > 0, m(k) > n(k) > k with the (smallest number satisfying the condition
below) d(xm(k), xn(k)) ≥ ε and d(xm(k)−1, xn(k)) < ε. Then we have

ε ≤ d(xm(k), xn(k))

≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k))

≤ d(xm(k), xm(k)−1) + ε.

Letting k →∞ in the above inequality, we have

lim
k→∞

d(xm(k), xn(k)) = ε. (3.7)

By using (3.6) and (3.7), we obtain

lim
k→∞

d(xm(k)−1, xn(k)−1) = ε.

By Lemma 2.14, α(xm(k)−1, xn(k)−1) ≥ 1, thus

d(xm(k), xn(k)) = d(Txm(k)−1, Txn(k)−1)

≤ α(xm(k)−1, xn(k)−1)d(Txm(k)−1, Txn(k)−1). (3.8)

Since T is a Z(α,G)-Geraghty contraction, we have

ζ(α(xm(k)−1, xn(k)−1)d(Txm(k)−1, Txn(k)−1), β(M(xm(k)−1, xn(k)−1))M(xm(k)−1, xn(k)−1)) ≥ CG.

This implies

CG
≤ ζ(α(xm(k)−1, xn(k)−1)d(Txm(k)−1, Txn(k)−1), β(M(xm(k)−1, xn(k)−1))M(xm(k)−1, xn(k)−1))

< G(β(M(xm(k)−1, xn(k)−1))M(xm(k)−1, xn(k)−1), α(xm(k)−1, xn(k)−1)d(Txm(k)−1, Txn(k)−1)).

Using (G1), we obtain

α(xm(k)−1, xn(k)−1)d(Txm(k)−1, Txn(k)−1)) < β(M(xm(k)−1, xn(k)−1))M(xm(k)−1, xn(k)−1), (3.9)

where

M((xm(k)−1, xn(k)−1))

= max{d(xm(k)−1, xn(k)−1), d((xm(k)−1, Txm(k)−1), d(xn(k)−1, Txn(k)−1)}
= max{d(xm(k)−1, xn(k)−1), d(xm(k)−1, xm(k)), d(xn(k)−1, xn(k))}.
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If M(xm(k)−1, xn(k)−1) = d(xm(k)−1, xm(k)), we have

α(xm(k)−1, xn(k)−1)d(xm(k), xn(k)) < β(d(xm(k)−1, xm(k)))d(xm(k)−1, xm(k))

< d(xm(k)−1, xm(k)),

a contradiction. Similarly, we have contradiction when M(xm(k)−1, xn(k)−1) = d(xn(k)−1, xn(k)). Thus
we conclude that M(xm(k)−1, xn(k)−1) = d(xm(k)−1, xn(k)−1). So

d(xm(k), xn(k))

d(xm(k)−1, xn(k)−1)
≤ β(d(xm(k)−1, xn(k)−1) < 1.

Letting k →∞ in above inequality, we derive that

lim
k→∞

β(d(xm(k)−1, xn(k)−1)) = 1.

This implies
lim
k→∞

d(xm(k)−1, xn(k)−1) = 0.

Hence ε = o, which is a contradiction. Thus we conclude that {xn} is a Cauchy sequence. It follows
from completeness of X that there exists x∗ ∈ X such that

lim
n→∞

xn = x∗.

Since T is α-continuous and α(xn, xn−1) ≥ 1, we get lim
n→∞

xn+1 = lim
n→∞

Txn = Tx∗ and so x∗ = Tx∗.

This completes the proof. �

Theorem 3.4. Let (X, d) be a complete metric space, α : X ×X → [0,∞) and T : X → X be two
mappings. Suppose that the following conditions are satisfied:

(1) T is Z(α,G)-Geraghty contraction;

(2) T is triangular α-admissible;

(3) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(4) if xn is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x∗ ∈ X as n→∞, then
there exist a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ 1 for all k.

Then T has a fixed point x∗ ∈ X and T is a Picard operator, that is, T nx1 converges to x∗ .
Proof . Following the arguments those given in Theorem 3.3, we conclude that the sequence xn
defined by xn+1 = Txn for all n ≥ 0, converges to x∗ ∈ X. By condition (4) we deduce that there
exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ 1 for all k. Also

d(xn(k)+1, Tx
∗) = d(Txn(k), Tx

∗)

≤ α(xn(k), x
∗)d(Txn(k), Tx

∗). (3.10)

Since T is Z(α,G)-Geraghty contraction, we have

CG ≤ ζ(α(xn(k), x
∗)d(Txn(k), Tx∗), β(M(xn(k), x

∗))M(xn(k), x
∗))

< G(β(M(xn(k), x
∗))M(xn(k), x

∗)), α(xn(k), x
∗)d(Txn(k), Tx

∗)).
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By definition of G, we get that

α(xn(k), x
∗)d(Txn(k), Tx

∗) < β(M(xn(k), x
∗))M(xn(k), x

∗)). (3.11)

From (3.10) and (3.11), we have

d(xn(k)+1, Tx
∗) < β(M(xn(k), x

∗))M(xn(k), x
∗)), (3.12)

where

M(xn(k), x
∗) = max{d(xn(k), x

∗), d(xn(k), Txn(k)), d(x∗, Tx∗)}
= max{d(xn(k), x

∗), d(xn(k), xn(k)+1), d(x∗, Tx∗)}.

Letting k →∞ in the above inequality, we get that

lim
k→∞

M(xn(k), x
∗) = d(x∗, Tx∗). (3.13)

Suppose d(x∗, Tx∗) > 0. By definition of β and (3.12), we have

d(xn(k)+1, Tx
∗) < M(xn(k), x

∗).

Letting k →∞ in the above inequality and using (3.13), we obtain that

d(x∗, Tx∗) < d(x∗, Tx∗),

a contradiction. Thus d(x∗, Tx∗) = 0, that is, x∗ = Tx∗. �

For the uniqueness of fixed point, we consider the following hypothesis:
(U) For all x, y ∈ Fix(T ), there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1. Here, Fix(T )

denotes the set of fixed points of T .

Theorem 3.5. Adding condition (U) to the hypothesis of Theorem 3.3 (resp. Theorem 3.4), we
obtain that x∗ is the unique fixed point of T .
Proof . From Theorem 3.3 (resp. Theorem 3.4), we have a fixed point, namely x∗ ∈ X of T . For
uniqueness, suppose there is another fixed point of T , say, y∗ ∈ X. Then, by assumption (U), there
exists z ∈ X such that

α(x∗, z) ≥ 1 and α(y∗, z) ≥ 1.

Since T is a α-admissible, we have

α(x∗, T nz) ≥ 1 and α(y∗, T nz) ≥ 1,

for all n. Hence we have

d(x∗, T nz) = d(Tx∗, TT n−1z) (3.14)

≤ α(x∗, T n−1z)d(Tx∗, TT n−1z). (3.15)

Since T is a Z(α,G)-Geraghty contraction, we have

CG ≤ ζ(α(x∗, T n−1z)d(Tx∗, TT n−1z), β(M(x∗, T n−1z))M(x∗, T n−1z)

< G(β(M(x∗, T n−1z))M(x∗, T n−1z), α(x∗, T n−1z)d(Tx∗), TT n−1z)).
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By definition of G, we have

α(x∗, T n−1z)d(Tx∗, TT n−1z) < β(M(x∗, T n−1z))M(x∗, T n−1z),

where

M(x∗, T n−1z) = max{d(x∗, T n−1z), d(x∗, Tx∗), d(T n−1z, TT n−1z)}
= d(x∗, T n−1z).

Hence we have

α(x∗, T n−1z)d(Tx∗, TT n−1z) < β(d(x∗, T n−1z))d(x∗, T n−1z). (3.16)

Inequality (3.14) together with (3.16) gives

d(x∗, T nz) < β(d(x∗, T n−1z))d(x∗, T n−1z). (3.17)

By definition of β, (3.17) gives
d(x∗, T nz) < d(x∗, T n−1z),

for all n ∈ N. Thus the sequence d(x∗, T nz) is non increasing, and so there exists u ≥ 0 such that
lim
n→∞

d(x∗, T nz) = u. From (3.17), we have

d(x∗, T nz)

d(x∗, T n−1z)
≤ β(d(x∗, T n−1z)),

and so lim
n→∞

β(d(x∗, T n−1z)) = 1. Consequently, we have lim
n→∞

(d(x∗, T n−1z)) = 0, and hence lim
n→∞

T nz =

x∗. Similarly, we can find that lim
n→∞

T nz = y∗. By uniqueness of limit, we obtain x∗ = y∗. �

Example 3.6. Let X = [0,∞) and d : X ×X → R be defined by d(x, y) = |x− y| for all x, y ∈ X.
Let ζ(t, s) = 8

9
s− t,G(s, t) = s− t for all s, t ∈ [0,∞), C(G) = 0 and β(t) = 1

1+t
for all t ≥ 0. Then

it is clear that β ∈ F . We define T : X → X by

Tx =

{
1
3
x if 0 ≤ x ≤ 1,

3x otherwise,

and α : X ×X → [0,∞) by

α(x, y) =

{
1 if 0 ≤ x, y ≤ 1,

0 otherwise.

Clearly, T is α-continuous and condition (3) of Theorem 3.3 is satisfied with x1 = 1. Let x, y ∈ X
such that α(x, y) ≥ 1. Then x, y ∈ [0, 1], so Tx, Ty ∈ [0, 1] and thus α(Tx, Ty) = 1. Hence T is
α-admissible. Further, if z = Ty, then α(y, z) ≥ 1, this implies α(x, z) ≥ 1. So T is triangular α-
admissible, hence condition (2) of Theorem 3.3 is satisfied. Finally, if 0 ≤ x, y ≤ 1, then α(x, y) = 1,
and we have

ζ(α(x, y)d(Tx, Ty), β(M(x, y))M(x, y)) =
8

9
β(M(x, y))M(x, y)− α(x, y)d(Tx, Ty)

=
8(M(x, y))

9(1 +M(x, y))
− d(Tx, Ty),
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where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)},

for all x, y ∈ [0, 1].
Case-I: If M(x, y) = d(x, y), then

ζ(α(x, y)d(Tx, Ty), β(M(x, y))M(x, y)) =
8d(x, y)

9(1 + d(x, y))
− d(

x

3
,
y

3
)

=
8|x− y|

9(1 + |x− y|)
− |x

3
− y

3
|

=
8|x− y|

9(1 + |x− y|)
− |x− y|

3

=
8|x− y| − 3(1 + |x− y|)|x− y|

9(1 + |x− y|)

=
|x− y|(5− 3|x− y|)

9(1 + |x− y|)
≥ 0.

Case-II: If M(x, y) = d(x, Tx), then

ζ(α(x, y)d(Tx, Ty), β(M(x, y))M(x, y)) =
8d(x, Tx)

9(1 + d(x, Tx))
− d(

x

3
,
y

3
)

=
8|x− x

3
|

9(1 + |x− x
3
|)
− |x

3
− y

3
|

=
16|x|

9(3 + 2|x|)
− |x− y|

3

≥ 16|x|
9(3 + 2|x|)

− 2|x|
9

=
|x|(10− 4|x|)

9(3 + 2|x|)
≥ 0.

Similarly, if M(x, y) = d(y, Ty), we have

ζ(α(x, y)d(Tx, Ty), β(d(y, Ty))d(y, Ty)) ≥ 0.

Hence for 0 ≤ x, y ≤ 1, T is a generalized Z(α,G)-Geraghty contraction. In either case α(x, y) = 0
and T is a Z(α,G)-Geraghty contraction. Thus all the hypothesis of Theorem 3.3 are satisfied and T
has a fixed point x∗ = 0.

4. Fixed point results in partially ordered metric space

Let (X, d,�) be a partially ordered metric space. Many authors has proved the existence of fixed
point results in the frame work of partially order metric spaces (see for example [23, 1, 20]). In this
section, we obtain some new fixed point results in partially order metric spaces, as an application of
our results given in above section.
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Definition 4.1. [10] Let (X, d,�) be a partially ordered metric space, and let α : X ×X → R be a
function. A map T : X → X is called ordered continuous, for a given x ∈ X and sequence {xn}

xn → x as n→∞ and xn � xn+1 ∀ n ∈ N we have Txn → Tx.

Definition 4.2. Let (X, d,�) be a partially ordered metric space and let x � y for all x, y ∈ X. A
map T : X → X is called ZG-Geraghty contraction if there exists β ∈ F such that for all x, y ∈ X

ζ(d(Tx, Ty), β(M(x, y))M(x, y)) ≥ CG,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Theorem 4.3. Let (X, d,�) be a complete partially ordered metric space with x � y for all x, y ∈ X.
Assume that the following conditions hold true

(1) T is ZG-Geraghty contraction;

(2) T is increasing;

(3) there exists x1 ∈ X such that x1 � Tx1;

(4) T is ordered continuous.

Then T has a fixed point x∗ ∈ X and T is a Picard operator that is, T nx1 converges to x∗.
Proof . Define α : X ×X → [0,+∞) by

α(x, y) =

{
1, if x � y,

0, otherwise.

Since T is a ZG-Geraghty contraction, we have

CG ≤ ζ(d(Tx, Ty), β(M(x, y))M(x, y))

< G(β(M(x, y))M(x, y), d(Tx, Ty)).

By definition of G, we get

d(Tx, Ty) < β(M(x, y))M(x, y),

so,

α(x, y)d(Tx, Ty) ≤ d(Tx, Ty) < β(M(x, y))M(x, y).

Hence T is Z(α,G)-Geraghty contraction. Since T is increasing, α(x, y) = 1 implies α(Tx, Ty) = 1 for
all x, y ∈ X. Further if z = Ty, then α(y, z) = 1, this implies α(x, z) = 1. Thus, T is triangular α-
admissible. Condition (2) implies that there exists x1 ∈ X such that α(x1, Tx1) = 1, and so condition
(3) of Theorem 3.3 is satisfied. Thus by Theorem 3.3, T has a fixed point in X. �

Continuity of the mapping can be omitted in Theorem 4.3 and fixed point result can be obtain with
an extra condition given in the following theorem:

Theorem 4.4. Let (X, d,�) be a complete partially ordered metric space with x � y for all x, y ∈ X.
Let T : X → X be a mapping satisfying
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(1) T is ZG-Geraghty contraction type mapping;

(2) T is increasing;

(3) there exists x1 ∈ X such that x1 � Tx1;

(4) if xn is a sequence in X such that xn � Txn+1 for all n and xn → x ∈ X as n→∞, then there
exist a subsequence {xn(k)} of {xn} such that xn(k) � x for all k.

Then T has a fixed point x∗ ∈ X and T is a Picard operator that is, T nx1 converges to x∗.
Proof . Define α : X ×X → [0,+∞) by

α(x, y) =

{
1 if x � y,

0 otherwise.

Since T is a ZG-Geraghty contraction, we have

CG ≤ ζ(d(Tx, Ty), β(M(x, y))M(x, y))

< G(β(M(x, y))M(x, y), d(Tx, Ty)).

By the definition of G, we obtain

d(Tx, Ty) < β(M(x, y))M(x, y).

This implies

α(x, y)d(Tx, Ty) ≤ d(Tx, Ty) < β(M(x, y))M(x, y).

Hence T is generalized Z(α,G)-Geraghty contraction. Since T is increasing, α(x, y) = 1 implies
α(Tx, Ty) = 1 for all x, y ∈ X. Further if z = Ty, then α(y, z) = 1, this implies α(x, z) = 1. Thus,
T is triangular α-admissible. Condition (2) implies that there exists x1 ∈ X such that α(x, Tx) = 1
and so condition (3) of Theorem 3.4 is satisfied. Condition (4) implies that the condition (4) of
Theorem 3.4 is satisfied. Thus, all the conditions of Theorem 3.4 are satisfied. Hence T has a fixed
point in X. �

Remark 4.5. Uniqueness of fixed point follows from Theorem 4.3 (respectively Theorem 4.4) with
the condition
U : For all x, y ∈ Fix(T ) with x � y, there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

5. Application to Differential Equations

Denote by C([0, 1]) the set of all continuous functions defined on [0, 1] and let d : C([0, 1]) ×
C([0, 1])→ R be defined by

d(x, y) = ||x− y||∞ = max
t∈[0,1]

|x(t)− y(t)|. (5.1)

It is well known that (C([0, 1]), d) is a complete metric space. Let us consider the two-point boundary
value problem of the second-order differential equation:

−d
2x

dt2
= f(t, x(t)), t ∈ [0, 1];

x(0) = x(1) = 1, (5.2)
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where f : [0, 1]× R→ R is continuous.The Green function associated to (5.2) is defined by

G(t, s) =

{
t(1− s) if 0 ≤ t ≤ s ≤ 1,
s(1− t) if 0 ≤ s ≤ t ≤ 1.

Assume that the following conditions hold:

(i) there exist a function ξ : R× R→ R such that

|f(t, a)− f(t, b)| ≤ max {|a− b|, |a− Ta|, |b− Tb|}

for all t ∈ [0, 1] and a, b ∈ R with ξ(a, b) > 0, where T : C[0, 1]→ C[0, 1] is defined by

Tx(t) =

∫ 1

0

G(t, s)f(s, x(s))ds;

(ii) there exists x0 ∈ C[0, 1] such that ξ(x0(t), Tx0(t)) ≥ 0 for all t ∈ [0, 1];
(iii) for each t ∈ [0, 1] and x, y ∈ C[0, 1], ξ(x(t), y(t)) > 0 implies ξ(Tx(t), T y(t)) > 0;
(iv) for each t ∈ [0, 1], if {xn} is e sequence in C[0, 1] such that xn → x in C[0, 1] and ξ(xn(t), xn+1(t)) >

0 for all n ∈ N, then ξ(xn(t), x(t)) > 0 for all n ∈ N.

We now prove that existence of a solution of the mentioned second-order differential equation.

Theorem 5.1. Under assumptions (i)− (iv), (5.2) has a solution in C2([0, 1]).
Proof . It is well known that x ∈ C2([0, 1]) is a solution of (5.2) is equivalent to x ∈ C([0, 1]) is a
solution of the integral equation (see [11])

x(t) =

∫ 1

0

G(t, s)f(s, x(s))ds, t ∈ [0, 1]. (5.3)

Let T : C[0, 1]→ C[0, 1] be a mapping defined by

Tx(t) =

∫ 1

0

G(t, s)f(s, x(s))ds. (5.4)

Suppose that x, y ∈ C([0, 1]) such that ξ(x(t), y(t)) ≥ 0 for all t ∈ [0, 1]. By applying (i), we obtain
that

|Tu(x)− Tv(x)|

=

∫ 1

0

G(t, s)f(s, x(s))ds−
∫ 1

0

G(t, s)f(s, y(s))ds

=

∫ 1

0

G(t, s)[f(s, x(s))− f(s, y(s))]ds

≤

(∫ 1

0

G(t, s)ds

)(∫ 1

0

|f(s, x(s))− f(s, y(s))|ds

)

≤

(∫ 1

0

G(t, s)ds

)(∫ 1

0

(max{|x(s)− y(s)|, |x(s)− Tx(s)|, |y(s)− Ty(s)|}ds

)

≤ sup
t∈[0,1]

(∫ 1

0

G(t, s)ds

)(∫ 1

0

(max

{
sup
s∈[0,1]

|x(s)− y(s)|,

sup
s∈[0,1]

|x(s)− Tx(s)|, sup
s∈[0,1]

|y(s)− Ty(s)|

}
ds

)
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≤ sup
t∈[0,1]

(∫ 1

0

G(t, s)ds

)
(max {||x− y||∞, ||x− Tx||∞, ||y − Ty||∞})

∫ 1

0

ds

≤ sup
t∈[0,1]

(∫ 1

0

G(t, s)ds

)
(M(x, y)).

Since
∫ 1

0
G(t, s)ds = −(t2/2) + (t/2), for all t ∈ [0, 1], we have

supt∈[0,1](
∫ 1

0
G(t, s)ds) = 1/8. It follows that

||Tx− Ty||∞ ≤
1

8
M(x, y). (5.5)

Let ζ(t, s) = 1
4
s− t,G(s, t) = s− t for all s, t ∈ [0,∞), C(G) = 0 and β(t) = 1

2
for all t ≥ 0. Then it

is clear that β ∈ F . Also define

α(x, y) =

{
1 if ξ(x(t), y(t)) > 0, t ∈ [0, 1],
0 otherwise.

Now

ζ(α(x, y)d(Tx, Ty), β(M(x, y))M(x, y)) =
1

4
β(M(x, y))M(x, y)− α(x, y)d(Tx, Ty)

=
1

8
M(x, y)− d(Tx, Ty), (5.6)

Then from (5.5)
ζ(α(x, y)d(Tx, Ty), β(M(x, y))M(x, y)) ≥ 0.

Therefore the mapping T is a Z(α,G)-Geraghty contraction.
From (ii) there exists x0 ∈ C[0, 1] such that α(x0, Tx0) ≥ 1. Next by using (iii), we get the

following assertions holding for all x, y ∈ C[0, 1]

α(x, y) ≥ 1 ⇒ ξ(x(t), y(t)) > 0 for all t ∈ [0, 1]

⇒ ξ(Tx(t), T y(t)) > 0 for all t ∈ [0, 1]

⇒ α(Tx, Ty) ≥ 1,

hence T is α-admissible.
Applying Theorem (3.3), we obtain that T has a fixed point in C([0, 1]); say x. Hence, x is a

solution of (5.2). �
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