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Abstract

This paper deals with the solution of unconstrained optimization problems on parallel computers
using quasi-Newton methods. The algorithm is based on exploiting parallelism in function and
derivative evaluation costs and linear algebra calculations in the standard sequential algorithm. A
computational problem is reported for showing that the parallel algorithm is superior to the sequential
one.
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1. Introduction

Optimization has many applications in all areas of computer science, mathematics, engineering,
economics, medicine and statistics that can be modelled as optimization problem. Several studies
have been reported by many researchers for decades for solving optimization problems [1, 7, 24, 26].
Quasi-Newton methods are a class of numerical methods for solving the unconstrained optimization
problem

min f(x), x ∈ Rn, (1.1)

where f : Rn −→ R is a nonlinear continuously differentiable real–valued function. The unconstrained
optimization consists of determining the values that will minimize a function f(x) of several variables.
Since there are practical applications of the unconstrained optimization, a large amount of effort has
been spent on the development of efficient serial algorithms for solving problem (1.1) [6, 13, 25, 37].
Parallel computing technology have made it possible to solve problem (1.1) with large number of
variables and more rapidly and effectively.
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In sequential optimization methods the expensive computational costs can be found in two main
sources, the evaluation of f(x) and its derivatives, and the linear algebra computations if the number
of variables is large. For the cost from the evaluation of f(x) and its derivatives, one can be parallelize
each of these evaluations. The effectiveness of this technique depends on the availability of the parallel
version of f(x) and its derivatives, and how fully it parallelizes the evaluation. The linear algebra
computations contain the calculation of the search direction, which include the update of the Hessian
matrix or its inverse and finding the stepsize that may include one-dimensional optimization problem.
Our interest here is the parallel extension to the quasi-Newton methods which are suitable for the
solution of large-scale optimization problems. This approach will be appropriate whenever a good
parallel implementation of f(x) is available or not, and when the remaining costs of the optimization
algorithm (linear algebra) are significant.

Since we are interested in performing different operations on different data in the same time, the
proposed parallel algorithms need multiple instruction, multiple data (MIMD) computer. while we
don’t require a single instruction, multiple data (SIMD) computer that perform the same operation
on different data simultaneously. MIMD computers can be classified according to their memory
organization as shared memory where all processors share access to a global memory and distributed
memory where each processor has its own local memory and there is no globally shared memory
since they are connected across interconnection network . When a processor needs data from the
local memory of the others to perform local computations, message passing has to be performed via
the interconnection network. Both kinds are suitable for the algorithm described here, but it may be
more appropriate to use shared memory MIMD computers when n is not large due to communication
or synchronization costs.

There are many parallel unconstrained optimization algorithms such as non-derivative parallel
methods [4, 5, 27, 28, 33, 34], first derivative parallel methods[3, 29, 30, 31, 36], second derivative
parallel methods [8, 14] and parallel variable transformation algorithm [9].

Non-derivative parallel methods are based on the comparison of objective function values and
there is no use of the derivatives. The construction of these methods has tow techniques, direct
search and conjugate direction. Chazan and Miranker [4] describe a nongradient method similar
in nature to Powell [22] and Zangwill [39] methods which requires no derivative computation and
is a conjugate direction method. Powell and Zangwill algorithms as well as most unconstrained
optimization algorithms usually proceed by a sequence of univariate minimizations. They proposed
that this sequence can be performed simultaneously with degree of simultaneity as high as the
dimension of the problem.

Sloboda [27, 28] proposed a method of conjugate directions for minimization not requiring the
gradient information. He modified the projection method which used to solve linear algebraic systems
by a suitable choice of an argument to become a new method of conjugate directions for minimize
a strictly convex function. The method can be used on parallel computers where the minimizations
on parallel directions are independent from the computational point of view and each processor of
a multiprocessor system has to store only one vector [27]. In [32] Sutti has proposed a sequential
conjugate direction algorithm for minimizing continuously differentiable strictly convex functions
without using derivatives. The parallel algorithm has been given in [33, 34]. Dennis and Torczon [5]
give a derivative–free approaches for unconstrained optimization that can be implement on parallel
machines. The proposed algorithms are based on the simplex method [18]. Their experiments show
that the speed–up is almost linear with the addition of more processors.

First derivative parallel methods assume that the gradient of the objective function is available.
Quasi-Newton methods are effective methods for solving minimization problems. For finding a min-
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imum of a function f(x) using quasi-Newton methods we generate a sequence of points,

xk+1 = xk − αkHkgk, (1.2)

where gk = ∇f(xk), Hk is the inverse of the Hessian matrix of f evaluated at xk, and αk is a scalar
chosen such that f is minimized along the direction −Hkgk. These methods use only first derivatives
to make an approximation Hk to the inverse of the Hessian matrix at each step instead of performing
the computational work of evaluating and inverting Hessian matrix.

Straeter [31] suggested a parallel variable metric algorithm which is based on updating the inverse
of the Hessian by a symmetric rank one update formula. Let ρ be the degree of parallelism, then
the algorithm is defined as follows: the function and its gradient are computed in parallel at ρ
different values of the independent variable; then the metric is modified by ρ rank-one corrections;
and finally, a single univariant minimization is carried out in the Newton-like direction. He showed
that the algorithm has a quadratic termination for any positive definite quadratic function. Van
Laarhoven [36] classify Straeter’s ideas [31] for parallel unconstrained optimization and apply them to
Huang’s class [12] of updating formulas. Huang’s class contains Davidon-Fletcher-Powell (DFP) and
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formulas. He found that Straeter’s rank-one updating
formula appears to be the only parallel extension within Huang’s class with the property of quadratic
termination. Hence he developed a parallel extension of Broyden’s rank-one updating formula [2]
and prove quadratic termination.

In [3] the authors examine quasi-Newton methods for solving the unconstrained optimization
problem on parallel computers. They try to parallelize both the function evaluation costs and the
linear algebra calculations in the BFGS method. They also develop a class of new methods that
fall in between the BFGS method and a finite difference Newton’s method where the evaluation of
the function, gradient, and part of the finite difference Hessian at each iteration is required. Still
[29, 30] presented a parallel formulation of the BFGS method for unconstrained minimization by
decomposing the iteration and update equations with an orthonormal basis. The numerical results
indicate that the algorithm is effective in solving convex problems but are subject to the usual
limitations of quasi-Newton methods. Bad initial approximations can cause the iterates to traverse
infeasible regions or to diverge. To improve robustness he suggested to add a line search strategy
which admits to parallel use and does not produce unnecessary function evaluations.

Second derivative parallel methods assume that the gradient and the Hessian of the objective
function are available. In [8] a parallel Newton method is given for the minimization of a twice
continuously differentiable uniformly convex function. The algorithm generates a sequence of points
which converges superlinearly to a minimizer. The principle idea of the algorithm is to perform the
calculation of the gradient vector, Hessian matrix, search direction and stepsize in parallel. They
claim that the steps of the parallel algorithm never fail. This algorithm can be implemented in
multiprocessor systems [23]. But it may never get the actual Hessian even it is positive definite. In
[14] a parallel variant of the Newton method for unconstrained optimization, which uses as many
finite differences of gradients as possible to update the inverse Hessian matrix is described. The
method is based on the Gauss-Seidel type of updating for quasi–Newton methods which proposed
by Straeter [31]. It incorporates the finite-difference approximations via the symmetric rank-one
updates analysed by Van Laarhoven [36].

In [15] a parallel version called parallel gradient distribution is proposed. The parallel theorem
allows each one of the parallel processors to use simultaneously a different algorithm, such as a
descent, Newton, quasi-Newton, or conjugate gradient algorithm. Each processor can perform one
or many steps of a serial algorithm on a portion of the gradient of the objective function assigned
to it, independently of the other processors. At last a synchronization step is performed which, for
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differentiable convex functions, consists of taking a strong convex combination of the points found
by the processors. A more general synchronization step, applicable to convex as well as nonconvex
functions, consists of taking the best point found by the processors or any point that is better. Multi-
step, multi-directional parallel variable metric methods for unconstrained optimization are given in
[21]. These algorithms generate variable metric directions at each iteration, different line search and
scaling strategies are then applied in parallel along each search direction.

A general framework called parallel variable transformation algorithm is presented in [9]. The
basic idea of the algorithm is to transform the variables into more than one space of smaller dimension
simultaneously and compute candidate solutions on the latter spaces in parallel. The candidate
solutions obtained are then used to generate an improved solution to the original problem. The
parallel gradient distribution algorithm [15] is shown to be a special instances of the parallel variable
transformation algorithm. A framework of the parallel variable transformation type algorithm, called
the PVT-MYR algorithm, for minimizing a nonsmooth convex function is proposed in [19], which is
constructed by converting an original objective function into a continuously differentiable function
using the Moreau-Yosida regularization [16, 38]. A multithreaded parallel dual population genetic
algorithm for unconstrained function optimizations on multi–core system is proposed in [35].

Secant methods are generally used on serial computers when the analytic Hessian matrix is
unavailable or is too expensive to compute , and n is not too large. They use an approximation to
the Hessian matrix that is updated by analyzing successive gradient vector and require n2 storage
and O(n2) arithmetic operations per iteration [10].

In this paper, we concern with building quasi-Newton methods that are appropriate for parallel
computers. We develop a parallel algorithm for a class of quasi-Newton methods for unconstrained
minimization where the Hessian matrix is a function of a scalar parameter, all of which is positive
definite and possess the quadratic convergence property. Also the DFP and BFGS matrices as well
as Broyden family are special cases of this parametric family.

This paper is organized as follows: in Section 2, a description of a family of parallel quasi-Newton
algorithms is introduced. The validity and reliability of the algorithm for solving unconstrained
optimization problems on parallel computers is examined in Section 3. Finally, the paper ends with
a conclusion in Section 4.

2. A family of parallel quasi-Newton algorithms

In this section we discuss the parallelization of a family of symmetric rank-two algorithms when it
is applied to the solution of problem (1.1). The unconstrained optimization algorithms are iterative,
which means that we can build a sequence of points that converges to a solution of the problem.
They consisting of choosing the search direction which determining the rate of convergence of the
algorithm and the stepsize which is important for the amount of calculations in an iteration.

2.1. The sequential method

Quasi-Newton methods maybe the widely used method for solving multivariate problem (1.1). It
is suitable for problems where the number of variables is small enough that make the cost of storing
an n× n matrix, and performing O(n2) arithmetic operations per iteration, is acceptable; otherwise
conjugate direction methods are the appropriate ones.

The iterative procedure of the used quasi-Newton method can be described as follows:

Algorithm 2.1.
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Initialization

Start with an initial point x0 ∈ Rn, g0 = ∇f(x0) and a n× n positive definite symmetric
matrix H0 to approximate the inverse of the Hessian matrix of f . In the absence of additional
information, H0 is taken as the identity matrix I.

At iteration k

calculate search direction dk
set dk = −Hkgk

calculate stepsize αk
repeat

choose value of stepsize αk
evaluate f(xk + αkdk)

until xk + αkdk is acceptable
set xk+1 = xk + αkdk
evaluate gk+1 = ∇f(xk+1) if not already evaluated during line search

Test the new point xk+1 for optimality, if xk+1 is optimal terminate the iterative process,
otherwise continue

update the inverse Hessian matrix approximation Hk+1 [25]

Hk+1 = Hk +
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(2.1)

where σk = xk+1 − xk and yk = gk+1 − gk.

The formula (2.1) represent a class of approximating matrices as a function of a scalar parameter t
that includes the DFP and BFGS methods as special cases. When t = 1 gives DFP formula and

t = 1 +
yTkBkyk +

√
(yTkBkyk)2 + 4σTk yky

T
kBkyk

2σTk yk
(2.2)

is the BFGS method. When

t =
σTk yk + θ(σTk yk + yTkHkyk) +

√
(σTk yk + θ(σTk yk + yTkHkyk))

2 − 4θ(σTk yk)
2

2σTk yk
(2.3)

we can get the Broyden family, where θ ≥ 0. We can easily see that t ≥ 1, if σTk yk > 0 and
yTkHkyk > 0. The significance of the parameter t appear in the search direction that, it will not
vanish and the algorithm stop when gk+1 6= 0 and t ≥ 1.
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This description of the algorithm is appropriate for parallel, since it indicates to the important
characteristics and costs of the method that can be needed in formulation of the parallel algorithm.
There are two main sources of costs in Algorithm 2.1, function and derivative evaluations, and linear
algebra calculations. Finding a suitable stepsize requires calculation of function evaluations at one
or more trial points ending with the successful point xk+1. Algorithm 2.1 has been tested on many
problems, and we found that the successful point xk+1 is the first trial point and in some little cases
more than one is needed. An average of 1.05− 2.98 trial points per iteration is found for many test
problems. The gradient vector is calculated at the successful trial point during or after the search.

When the objective function is expensive to evaluate and no analytical procedure is available or it
is difficult to calculate the gradient, the gradient at any point x̂ is approximated by a finite difference
formula. An approximation by the forward-difference approximation, can be given by

∂f(x̂)

∂xi
' f(x̂+ υei)− f(x̂)

υ
(2.4)

where ei is the ith unit vector and υ is a small quantity. A more accurate approximation to the
derivative can be obtained by using the central-difference formula, as

∂f(x̂)

∂xi
' f(x̂+ υei)− f(x̂− υei)

2υ
(2.5)

The forward-difference approximation requires n evaluations of the objective function in addition to
the evaluation at x̂, and a total number 2n evaluations for the central-difference approximation. So
when forward-difference gradients are used, each iteration of the Algorithm 2.1 usually requires n+1
to n+ 3 evaluations of f(x), and a number 2n+ 1 to 2n+ 3 evaluations in case of central-difference
approximations are used.

For the linear algebra computations in Algorithm 2.1, There are two main calculations, the calcu-
lation of the search direction dk, and the calculation of the new inverse Hessian matrix approximation
Hk+1. The calculation of search direction appears to require a small number of n2 operations. The
direction dk is guaranteed to be a descent direction, because the inverse Hessian matrix approxi-
mation (2.1) is symmetric and positive definite. Also the calculation of Hk+1 contains a rank two
update formula that requires a small number of n2 operations. Therefore the linear algebra costs
are small for small n, and hence it is easy for function and derivative evaluation to be the dominant
cost if gradients are replaced by finite difference approximations. But parallelism in linear algebra
calculations of Algorithm 2.1 must be considered for the following reasons:

1. If these calculations are performed sequentially, they may reduce the performance on parallel
computer.

2. There are some problems where number of variables are large and function evaluation cheap
so that the linear algebra costs may be the dominant cost.

2.2. The parallel method

In most problems where f(x) is expensive to evaluate, the gradient is not available analytically [3].
In this case it may be calculated by the finite difference approximation (2.4) or (2.5). The parallelism
in an algorithm that uses finite difference gradients can be seen in the extra evaluations of f(x) that
can be executed concurrently. Equation (2.4) requires n/ρ concurrent function evaluation steps,
and (2.5) involve 2n/ρ concurrent function evaluation steps where ρ is the number of processors.
Determining a stepsize in line search uses only one processor and the remaining ρ− 1 processors are
idle. Let τ be the extra evaluations of f(x) that required for finite difference gradient calculations.
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If ρ is small enough relative to τ that make ρ/τ � 1, the idle processors do not effect on speedup
since each gradient involves many concurrent function evaluation steps while a successful trial point
requires 1 to 3 function evaluation steps.

If ρ = τ and parallelism occur only in the calculation of finite difference gradient, the maximum
speedup that can be archived on problems with expensive function evaluation is at most half of
optimal. The reason behind this is that the approximate gradient can be computed in one concurrent
function evaluation step, and in line search a successful trial point requires at least one function
evaluation. And there is ρ− τ processors are not used by this technique if ρ > τ .

The idle processors in line search can be used according to the approach proposed by many
authors such as [20, 36]. In that approach ρ− 1 processors that are available while evaluating f(x)
at xk + αkdk can be used to evaluate f(x) at other trial points in the search direction dk and may
also in other directions. but this technique changes the optimization algorithm and, sometimes gives
in a better next iterate and thus a smaller total number of iterations being needed to solve the
optimization problem [3].

Besides function and derivative evaluations, the dominant costs in Algorithm 2.1 at each iteration
are the rank two update of the inverse Hk and the calculation of the search direction dk. These
calculation require O(n2) arithmetic operations and the other calculations in the algorithm require
at most O(n) operations. There are two cases for the update formula, Hessian update and inverse
Hessian update. An utility of using the inverses update is that the calculation of the search directions
becomes simple and cheap. The calculations of the update formula (2.1) can be organized as follows

a = σTk yk, z = Hkyk,

b = yTk z,

c = (1− t)a− tb,

γ =
t(1− t)

c
,

β1 =
t

a
+

(1− t)2

c
, β2 =

t2

c
− (1− t)

b
,

w1 = β1σk − γz, w2 = γσk − β2z,

Hk+1 = Hk + w1σ
T
k − w2z. (2.6)

Hence the dominant costs are one matrix vector multiplication, and a rank-two update formula of a
symmetric matrix, are needed, each one requiring n2 multiplications if the inverse Hessian is stored
as lower or upper triangular matrix. On some parallel computes the full matrix is stored and hence
the total cost of multiplications becomes 3n2.

The inverse updates appears more attractive for parallel computation but in optimization there
is a belief that the unfactored inverse update may be less stable than the factored Hessian update.
Authers in [3] have tested unfactored inverse update and the factored Hessian update experimen-
tally of BFGS method on the test set of [17] and they found that the difference in performance
were negligible, averaging no more than 1 − 2 % overall with little variation on specific problems.
Gradinetti [11] gets similar results. Therefore we use the inverse updates for the construction of
parallel Algorithm 2.1.

The inverse updates seem to be suitable to implement on either shared or distributed memory
multiprocessors. where only matrix-vector multiplications and rank-one updates are required, that
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can be parallelize fully and implemented as block operations. The unfactored inverse approach should
be implemented by storing the full inverse, which increases the number of arithmetic operations per
processor to 3n2/ρ but may reduce the memory access costs on a shared memory multiprocessor and
to avoid excessive communication on a distributed memory multiprocessors [3].

The synchronization costs on a shared memory multiprocessor are small and the parallel algo-
rithm should be efficient for almost any values of ρ. On a distributed memory multiprocessors, the
communication costs per processor per iteration must be less than the costs of floating point opera-
tions for the processor in the iteration for the parallel algorithm to be efficient. Finally, Algorithm
2.1 contains O(n) operations that can be parallelized to obtain a full parallel algorithm which is
appropriate to apply on parallel computers.

3. Illustrative example

The main aim of this section is to illustrate the numerical performance of Algorithm 2.1 on test
problems. We take the discrete integral equation function [17] as an example of test problems, which
has the following form:

fi(x) = xi +
ζ

2

(
(1− ξi)

i∑
j=1

ξj(xj + ξj + 1)3 + ξi

n∑
j=i+1

(1− ξj)(xj + ξj + 1)3

)
, i = 1, 2, ..., n (3.1)

f(x) =
n∑
i=1

f 2
i (x), (3.2)

where x = (x1, x2, ..., xn), ζ =
1

n+ 1
, ξi = iζ. (3.3)

The codes were written with Fortran 90 and OpenMP 3.1 in double precision arithmetic. All the
tests were performed on a PC with AMD Phenom II x4 925 processor. The parallel performance of
Algorithm 2.1 together with the sequential one are reported in Table 1 and Table 2. The algorithm
is tested for both exact gradient calculations and central-difference approximations. The Armijo
condition is used to determine the stepsize. The termination condition is ‖ gk ‖≤ 10−4 where ‖ · ‖
denotes the Euclidean norm of vectors.
Tables 1 and 2 show the computation results, where the columns have the following meanings

Dim: the dimension of the test problem;

T : the total execution time of sequential algorithm in seconds;

Tρ: the total execution time of parallel algorithm in seconds on ρ processors.

Sρ: the speedup obtained with ρ processors.

Eρ: the efficiency obtained with ρ processors.

From Table 1, we can see that parallel algorithm performance is acceptable. On one hand we
see that the total time required by parallel algorithm is less than that of the sequential one, and the
speedup obtained by ρ = 2 or ρ = 3 are greater than 1 for all tests. The maximum speedup obtained
by ρ = 2 was 1.544 for n = 9000 while it was 1.727 for ρ = 3 and n = 9000. Also it can be seen
that the speedup increases with the increment in number of variables n duo to the linear algebra
calculations requires more computations and hence more time when n is increased. For n = 100
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Table 1: Test results for Algorithm 2.1 with exact gradient

Dim T T2 S2 E2 T3 S3 E3

100 0.012 0.009 1.333 0.667 0.008 1.5 0.5
500 0.216 0.176 1.227 0.614 0.162 1.333 0.444
1000 0.829 0.667 1.243 0.622 0.607 1.366 0.455
2000 3.497 2.675 1.307 0.654 2.413 1.449 0.483
5000 22.231 17.203 1.292 0.646 15.383 1.445 0.482
7000 43.699 33.516 1.304 0.652 29.994 1.457 0.486
9000 87.475 56.662 1.544 0.772 50.639 1.727 0.576

Table 2: Test results for Algorithm 2.1 with approximate gradient

Dim T T2 S2 E2 T3 S3 E3

50 0.041 0.025 1.640 0.820 0.020 2.050 0.683
100 0.288 0.154 1.870 0.935 0.107 2.692 0.897
500 44.989 23.233 1.937 0.969 15.520 2.899 0.966
1000 347.671 178.981 1.943 0.972 118.934 2.923 0.974
2000 2860.381 1470.744 1.945 0.973 965.193 2.964 0.988

the speedup is greater than that for n = 500, 1000, 2000, 5000, 7000; because only one processor is
evaluating the function f(x) at the trial points xk + αkdk during the line search and also evaluating
the gradient vector at the successful points. For n = 100 the function and gradient evaluations are 8
and 6 respectively, while they was 10 and 8 for the others. The function and gradient evaluations of
this function is expensive in time that reduce the speedup of the algorithm, which is also the reason
behind that the speedup is not optimum.

On the other hand the maximum efficiency obtained by ρ = 2 is 0.772 and 0.576 for ρ = 3. This
means that, on average, over the course of the execution, each of the processors is idle about 23%
and 42% of the time for ρ = 2 and ρ = 3 respectively. A strategy that can be used to increase the
speedup when the gradient evaluation has approximately the same execution time or less than that
of the function evaluation is to evaluate the function and gradient concurrently during the line search
which save the execution time for gradient calculations. If xk + αkdk is not accepted as a successful
point in line search, then this gradient information is not used by the algorithm, but nothing has
been lost in execution time.

To evaluate the performance of Algorithm 2.1 when gradient approximations are used, we summa-
rize the numerical results of the total execution time, speedup and efficiency for solving the discrete
integral equation problem in Table 2. The approximated gradient calculations is expensive in func-
tion evaluations and can dominate on the calculation costs of Algorithm 2.1 for large number of
variables. These calculations can be distributed between processors and executed in parallel. It can
be seen from Table 2 that the speedup increases with the increment in number of variables n. The
maximum speedup obtained by ρ = 2 was 1.945 while it was 2.964 for ρ = 3. This means that the
speedup is optimal for the two cases and it increases with the increment in number of processors.

The maximum efficiency obtained by Algorithm 2.1 was 0.973 for ρ = 2 and 0.988 for ρ = 3.
The obtained efficiency can be seen to be optimal and each of the processors is idle about 3% and
1% of the time for ρ = 2 and ρ = 3 respectively. It can be seem that Algorithm 2.1 is suitable
for solving the unconstrained optimization problem (1.1) with exact gradient evaluations, but it is
more suitable for solving problem (1.1) when gradient vector is not available analytically and finite
difference gradient are used.
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4. Conclusion

For finding solutions of unconstrained optimization problems on parallel computers, we have
presented a parallel algorithm for a class of quasi-Newton methods. The linear algebra costs have been
parallelize and can be utilize up to n processors since the linear algebra costs may be the dominant
cost for large n and cheap function evaluation. An implementation of the presented algorithm
to unconstrained optimization problem is given. If gradients are evaluated by finite differences,
the function evaluations can be performed in parallel with efficiency achieved up to 98.8%. The
tested problem indicate that the parallel algorithm are efficient and robust in solving large–scale
problems. Finally, we observe that the proposed algorithm is much suitable for solving unconstrained
optimization problems when gradient vector is not available analytically and finite difference gradient
are used.
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