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Abstract

By introducing independent parameters and applying the weight coefficients, we use Hermite-Hadamard’s
inequality and give a more accurate Hardy-Hilbert’s inequality in the whole plane with a best pos-
sible constant factor. Furthermore, the equivalent forms, a few particular cases and the operator
expressions are considered.
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1. Introduction

Assuming that p > 1,%+— = 1,a,,b, > 0,0 <> >
well-known Hardy-Hilbert’s inequality as follows (cf. [1]):

00 1/ / oo 1/q
sz—i—n Sin(:-/p) (Z“ﬁ> <2bi> ) (1.1)

n=1 m=1 n=1

< ooand 0 <> 7 b1 < 0o, we have the

fln n=1"n

where, the constant factor m is the best possible. In 1934, Hardy proved the following more
accurate inequality of (1.1)) (cf. [2]):

1/ / o 1/q
ZZm+n—1 s1n7r/p <Zap) (;bg> ’ (1.2)

n=1m=1
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where, the constant factor - ( 7 is still the best possible.

)
If f(x), (x) > 0,0 < f fP(x)dz < oo and 0 < [° g%(x)dz < oo, then we have the integral
analogue of (1.1)) as follows (cf. [2]):

//Ooo %‘q;y)dxdy < ST (/OOO fp(m)dx> " (/Ooo gq(x)dx) " (13)

Inequalities (|1.1)-(1.3) are important in analysis and its applications (cf. [2], [3]). In 2007, Yang [4]
first gave a Hilbert-type integral inequality in the whole plane as follows:

/ / 1+6x+y d dy

<BGA P [ epmit (1.4)

where the constant factor B(3,3) (A > 0) is the best possible. A lot of generalizations and improve-

ments of inequalities ([1.1])-(|1.4) were provided by [5]-[24].
In 2016, Yang and Chen [23] gave a more accurate Hardy-Hilbert’s inequality in the whole plane

as follows:
>y

[n|=1[m|=1

(Im — §|+|n—77|)

< 2B (A, Ao) Z Im — Pt gp Z In — |2 e | (1.5)

Im[=1 In|=1

where, the constant factor 2B (A1, A2) (0 < A, Ao < 1T, A1+ X=X\, &,n €0, %]) is the best possible.

In this article, by introducing independent parameters and applying the weight coefficients, we
use Hermite-Hadamard’s inequality and give a new extension of in the whole plane with a best
possible constant factor similar to ((1.5)). Furthermore, the equivalent forms, a few particular cases
and the operator expressions are considered.

2. A few definitions and lemmas

In the following, we agree that p > 1, I%#—% =1, A, >0, M+ =XA<1,¢ne0,1], a3 (0,
and ) )
ese?y
ko \)= ——— ' (~= ) 2.1
’Y( 1) ASian()\l//\) Y Oé,ﬁ) ( )
Definition 2.1. For |z|,|y| > %, we define
1
k(x,y) = : (2.2)

o =&+ (x =) COSOz]A +[ly—nl+ - n)cos@]’\
In particular, for a = 8 =75, we set
1

1
hw,y) = PP (el 1yl > 5)- (2.3)
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Definition 2.2. Define the weight coefficients as follows:

[[m — €] + (m — &) cos o™

w(Ag,m) = k(m ,Im| € N,
e ;;( AT ——
)\1 Z k |n—77|+( n)COSB]AZ ’Tl| eN
" Im|=1 ’m El+ (m — g)COSO‘]l . ’
where, erol:l... — ]_71 _|_Zj Lo (G=myn).

Lemma 2.3. We have the following inequalities:
kjﬁ(/\l)(l - 0<)‘27m)) < w()‘%m) < kﬁ(/\l)7 |m| €N,

where,

(14n)(1+cos B) No—1

A TA [m—gM+(m—g)cosa Y 2~
O(A = —sin(——
( Q’m) S >/0 1+ u

d
T ( A Y

:o< L A)e(o,l).
[lm — &[4 (m — &) cos o ™

Proof . For |z| > 1, we set

k(z,y) = k( '(z,y)

1 1
T -+ (- cosal + [y —m)eosp P T 2
k(z,y) = k®(2,y)
_ 1 1
T le—€l+ (@ —&cosal + [y —mcosf+ DI 2
wherefrom,
1
EV (2, —y) = ’
) = T o= € eoal + [y + ML —cos
We find

Im — £| + (m — €) cosa]™

— [(n —n)(cos g — 1))~
A1

= €1 (m = cosal
e oo
_ [lm—¢& 4+ (m—&)cos a])‘l > k(l)(m, —n)
(1 —cos B)1—* — (n 4 n)t—>2

[[m — & + (m — &) cosa]™ <~ k@) (m,n)
(14 cos B)t—2 (n—m)t=Ae

_|_

n=1
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(2.8)
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For fixed |m| € N,0 < A < 1, in virtue of 0 < Ay < 1 and
d k9 (m,(=1)y) d* k9D(m, (-1)'y) 1
— — ,— . >0 (y>=,i=12), 2.10
2y Ty— e = S apy— om0V ) (2.10)

it follows that both k(i“; AyQ

Hermite-Hadamard’s inequality (cf. M), we find

nd A2 (T yA)Q are strict decreasing and strict convex in (%,oo) By

[Im — & + (m — &) cosa]™ [ kD (m, —y)
Wham) < T By /1/2 rm
[lm — €| + (m — &) cosa]™ [ k@ (m,y)
d
* (14 cos )1~ /1/2 (y —m)i=>

_lm =&+ (m— &) cosal [,

= (1 — COS ﬁ)l—)@ L (y T 7])1_>\2
[fm — &+ (m— &) cosal™ [ k@ (m,y)
* (14 cos B)1—*2 /77 (y — )= dy. (2.11)

Setting u = |m(fz|’jr)((71r;c§)s‘f) )Sa(u ‘m( q Jr)((;;rcg)si )Sa) in the above first (second) integral, by simplifi-

cations, we have
1 1 oyl
Ao, m) < —d
w(Ae,m) (1—COSB+1+COSB)/O Trar

P2/ V-
)\Sln2ﬁ/ 1+4uv

_ 2mesc®f 2mesc?f
T asinm(Ao/N)  Asinm(A/A) ka(A1). (2.12)

On the basis of monotonicity, we still have

Al poo
— — k) —
) > IO malt =K,
(1 —cosB)!— R
lm =&+ (m =€) cosa]™ /°° KD (m.y)
(1 4 cos )= 1 (=)t
S (R S / ) LAy
~“\1l—-cosf 1+cosp (tm(teoss) 1+ u?
m—g[+(m—€) cos &
A
2 m m COs &
= kg(\1) — 2csc 5/ 1+u/\du
= kg(A)(1 = 0(Ag,m)) >0, (2.13)
where, 6(A2,m) is indicated by (2.7) and (A2, m) < 1. It follows that
(1+4n) (1+cos 8)
>\ A m— m— COos &
0 < 8(Ag,m) < —sin(u) / I ey
s A S
1 1 re
_ A sin(ﬂ)\l) (1+n)(1+cosp) ‘ (2.14)
Ao A |m — &+ (m — &) cos
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Hence, (2.6) and (2.7]) are valid. OJ

In the same way, we still have

Lemma 2.4. We have the following inequalities:
ka(A) (1 — 0(A1,n)) < @(A1,n) < ka(M), |n| €N,

where,
(1+&)(1+cos a) A —1

~ A T Tn—nlr(n-mcosB M~
(A = —sin(—
(A1, n) sin( /0 T

T A
1
=0 (Hn—n\ +<n—n>cosﬁw) € @.1)

du

Lemma 2.5. If § € (0,7),p >0 and ¢ € [0, 3], then we have

[e.o]

1
B0 = 2 o Qe
_ 1+0(1) 1 1
o {(1 — cos §)1+r * (14 cos Q)HP} 000
Proof . We find
—00 1 0
Hy((,0) = n;1 [(n — ¢)(cos§ — 1)]1+0 + ; COSH + 1)]te

[e.o] [e o]

1 1 1 1
~ (1 —cosf)l*e ; (n+)ttr * (14 cos@)t+e ; (n—)te’

Setting a = W, we have
1 1 = 1
H,((,0) < _
o(60) < |:(1—COS@)1+/’ i (1+cos€)1+ﬂ} CH_; (n— ()t

- {u - cisew " +c§se>1+p1 [‘”/100 %]

1+ [ap - ﬁ — 1] 1 1
p (1 —cos@)r N (14 cos@)l+r

1 (o0}
H 0 >
o(G0) = [(1—cos9)1ﬂ’+ 1+cos€ 1*”]2 n-i-CHp

n=1

1 o
[(1—0059)1+P+ 1+C089 1+P]/ y+§ (y+ O)t+e

_ w1 1 N
) (1 — cosf)tr (1—1—0059)1*/)'

Hence, for p — 0T, we prove that (2.17)) is valid. OJ
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(2.15)

(2.16)

(2.17)
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3. The Main results and operator expressions

Theorem 3.1. Suppose that a,, b, >0 (|m|,|n| € N),

0 < Z [|m — €| + (m — &) cos a2 1P < oo,
|m|=1
0 < > [n—nl+(n—n)cos B < oo,
[n|=1
2m
— /P 1/q _ 2/p 2/q 1
k(A1) = kg (A)k, (A1) JYETWEY csc”/P B esc 1 a. (3.1)
We have the following equivalent inequalities:
I:= Z Z k(m,n)am,by,
|n|=1 |m|=1
- 1/p
<k(\) | Y llm =€+ (m = &) cosaP' ) ap,
|m|=1
~ 1/q
X Z [|n — n| 4+ (n — n) cos B]71—A2)~1pe : (3.2)
In|=1
J = Z [[n —n| 4+ (n — n) cos p]PA27! Z k(m,n)a,,
In|=1 |m|=1
- 1/p
<k [ D lm =&+ (m—§&)cosaPtap | (3.3)
m|=1

Proof . By Hélder’s inequality with weight (cf. [25]) and (2.5]), we find

p
)

Z k(m,n)an,
jml=1

oo

_ Hm—ﬂ—F(m—f)cgsg](l—)\l)/q
={ > k(m.n) (T =1l & (1 — 1) cos B0

[ln —n|+ (n —n)cos 5](1*/\2)/1) p
[|m — & 4 (m — &) cos a](l—/\l)/q}
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(1-X1)p/q
< Z’f |m £l + (m — &) cosal o
[[n—n|+(n—n)cosp]i=r>

p—1

lm|=1

gyl =7l + (= n) cos B redalp
e [ — &+ (m — &) cosali ™

(@
= ol + (=) cos FP

(1-X1)p/q
y Z k(m |m £l + (m — &) cosal o
[In =nl+ (n —n) cos B]' 2

Im[=1

lm|=1

By (2.15)), it follows that

_ _ (1-X2)q/p
J < kl/q )\1 Z Z k’ m, n |n 77‘ +<n W)Cosﬁ] aP

[n|=1[m|=1

_ _ (1 A2)q/p
_ In 1l + (n —n) cos B
~ R ||Zl ||Zlk [lm =&+ (m — §) cosa]' ="

[e.o]

= kMa(\) Z whg, m)[|m — &+ (m — €) cos aP0A) =12,

Im[=1

By and , we have .

Using Holder’s inequality again, we have

I="" |lln=nl+(n—n)cosBI**"7 " k(m,n)an
In|=1 |m|=1

x [n = 1l + (n = ) cos 51722,

oo g

< T lln=nl+ (n—n)cos g1 |

[n|=1

and then we have (3.2)) by using (3.3). On the other hand, assuming that (3.2)) is valid, we set

p—1

= [|In —n| + (n —n) cos pJPr2~* Z k(m,n)a,, . |n] eN.

[m[=1

and find

1/p
o0

J= M = ul + (n — ) cos B0

[n|=1

[lm =& 4 (m = §) cos o= ™

]

D=

1173

(3.4)

(3.6)

(3.7)

(3.8)



1174 Huang, Yang
By (3.5)), it follows that J < oo. If J = 0, then (3.5)) is trivially valid. If 0 < J < oo, then we have

0 < Z [|n — 77] + (n — 77) COoS ﬁ]Q(l—h)—lbz —JP =7

[n|=1
> 1/p
< k() Z [lm — €| + (m — €) cos a]p(k,\l),lafn
Im[=1
1/q
Z ‘n - 77‘ + n — 77) COS B]q(lf)\z)*lb(rll :
s 1/p
J = Z Hn - T]| + ('n/ — ’r]) COS ﬁ]q(l_)@)—lbg
|n|=1
> 1/p
< ka(M) Z [|m —&| + (m — &) cos a]p(lf,\l),la% ’ 39)
|m[=1

Hence ({3.3)) is valid, which is equivalent to (3.2). O
Theorem 3.2. With regards to the assumptions of Theorem 3.1, the constant factor k(A1) is the

best possible in (3.3) and (3.3).
Proof . For 0 < & < gy, we set Xl =\ + 35\2 =\ — 2 (€ (0,1)), and
A =[m =&+ (m—§&) cosa]M P
[[m — €| + (m — €) cos a1 (jm]| € N),
byt =ln—n|+ (n—mn)cospP,
[[n = nl + (n —n) cos B>7" (|n| € N).

By (2.0) and (ZI7), we find

1/p
oo
Lo = | Y m—gl+ (m—¢)cosaPt e,
_|m|=1
[ o0 1/q
< | D2 lln =l + (n = ) cos B0y
| In|=1

A

o0

1
- Z [[m —&| + (m — &) cos at*e

Q=

- 1
Z [|n —n| + (n —n) cos g]i+e
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= Hirrosar * o] (o

1+ cosa)lts = (1 —cosa

Q\H

1 1 1/q
8 {(1 + cos 5)1+= + (1— Cosﬁ)1+€:| (1+09(1))7,

I = Z Z k(m, n)dmby,

|n|—1 Im|=1

— Z Zk |m &+ (m— §)COSQ]A1—~5_1

|n\ 1 |m|=1 [ —n| 4+ (n —n) cos B} —*2

_ @(Aa,m)
B |Z [fm — & 4+ (m — &) cos af1+e

o0

v

<)‘27 )
Z [fm — §\+ m — &) cos o)1 te

1

—k‘ﬁ {Z m — & + (m — &) cos a1+
1

S }

imj=1 O (Hm El+ (m — &) cosalr +>\2+1>

B k(M) 1 1
€ {(1—1—005&)”5 - (1—00804)1"'8]
X [(14+0:(1)) —eO(1)]. (3.10)

If there exists a positive number k < k(A;), such that (3.2) is still valid when replacing k(A1) by
k, then in particular, we have

el =¢ Z Z k(m,n)ﬁmgn < ekI,.
|n|=1|m|=1

We obtain from the above results that

kg(A1 + 2) {( ! + L 1+51 [(1+01(1)) —eO(1)]

1+ cosa)lte = (1—cosa)

<k

1 1 1/p
(14 cosa)lte T (1 — cos a)1+5]

" |: 1 N 1 :|1/q
(14 cosB)+s = (1 —cosp)i+e
% (14 01(1))7 (1 + 05(1))7, (3.11)
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and then it follows that
47
Asin (A /)

namely, k()\) = ﬁ?)‘l/)\) csc?? Besc?1a < k. Hence k = k() is the best value of 1’
The constant factor k(A1) in (3.3 is still the best possible. Otherwise we would reach a contra-
diction by (3.6 that the constant factor in (3.2)) is not the best value.(]

esc? Besc® a < 2k esc?Paesc?1 B (e — 0F), (3.12)

Setting p(m) = [[m — &| + (m — &) cosa]Pt=*)=1 (|m| € N), and
Y(n) = ln —n| + (n —n) cos f11 271 (|n| € N),

wherefrom, ¥!'=?(n) = [|n —n| + (n — n) cos B]P2271, we define the real weighted normed function
spaces as follows:

( 1/p
o
b =13 a={an}olall,, = [ D em)|aml <00,
|m|=1
( 1/q
o
Ly =S b={bu}p5=a Bll, = | D ¢(n) [ba? <00,
In|=1
\
1/p
- == § ¢ = {ca}pzts llell, pi-r = Z PP (n) |en]” <00
[n|=1

For a = {am};, =, € lpy, putting ¢, = Zm:l k(m,n)a, and ¢ = {c,}j;_,, it follows by 1} that
el yi-r < k(A1) [all,, , namely ¢ € 1, y1-».

Definition 3.3. Define a Hardy-Hilbert-type operator T' 1, , — 1, y1-» as follows: For a,, > 0,a =
{am}f,f”:l € lp, there exists a unique representation T'a = ¢ € 1, y1-». We also define the following
formal inner product of Ta and b = {bn}quf‘:1 € lyy (b, >0) as follows:

(Ta,b) ZZ/{:mnamn (3.13)

[n|=1[m|=1

Hence, we may rewrite (3.2]) and (3.3) in the following operator expressions:

(Ta,b) < k(M) llall,, 16]]4, » 3.14)
ITall, y1» < kA1) llall,,, - (3.15)
It follows that the operator 1" is bounded with
Tall .ip
= s ot <y (316)
a(#£0)€lp, ||a||p,<p
Since the constant factor k(A1) in (3.3)) is the best possible, we have
2w
T\ = k(A ——_csc/P 2a g, 3.17
Il = ) = 5oy o Bt (317)

By the above result, we may get the following corollary, which contains some known results.
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Corollary 3.4. With regards to the assumptions of theorem 3.1. (i) If ¢ =n =0, then reduces
to

1
mbn
Z Z (|m| 4+ m cos a)* +(|n|+ncosﬁ)>‘a

[n|=1[m|=1

1/p
< k(\) Z (Jm| + m cos a)P=-2)=1gp.
|m|=1
~ 1/q
X Z (Jn| 4 n cos B)21-A2)=1pe ) (3.18)

In|=1

namely, 1s a more accurate inequality of .
(i) If o = B = F in , then we have the following inequality:

>3

)\
In|=1 |m|= L Im = 5| +|n ul

e > pm— 5|p“1“p S =gt | (3.19)
sin(%L)

n
Im|=1 n|=1

In particular, for E =n=0 in , we have the following new inequality:

>3 e

=1 e 1Iml +\n\

1
P oo

< | D S g (3.20

A Lml=1 In|=1

It is obvious that is a more accurate inequality of .
(111) If a_p = ay, and b_,, = b, (m,n€ N), then reduces to

N e e
1 1

(m+ e+ ) <m+5>k+<n+n>k}

00 1/p
2 3 p(1-A1)— p(1-21)-17,p

by,

0o 1/q
X {Z[(n =) (- 77)‘1(”2)1]62} - (3.21)
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Remark 3.5. (i) Taking A\ =1,\ = %,)\2 = %,é =n¢€0,2], (3.21) reduces to

>y )
— m+n—2§ m+n m+n+ 2§

1/p / 1/q
e /p (Zﬁ) (;bg) ; (3.22)

(ii) For £ =n =0, reduces to

ZZWMA

n=1 m=1

1/q

Up T oo
< T [Z mPUI=A)= am] [Z nqﬂ“?)—lbg] . (3.23)
n=1

Asin(E T

Both and are extensions of with parameters.

4. Conclusion

In this paper, by introducing independent parameters and applying the weight coefficients, we
use Hermite-Hadamard’s inequality and give a more accurate Hardy-Hilbert’s inequality in the whole
plane with a best possible constant factor in Theorem 3.1. Furthermore, the equivalent forms, a few
particular cases and the operator expressions are considered. The method of real analysis is very
important, which is the key to prove the equivalent inequalities with the best possible constant factor.
The lemmas and theorems provide an extensive account of this type of inequalities.
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