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Abstract

In this paper, we study an initial value problem for a class of nonlinear fractional neutral func-
tional differential equations with infinite delay involving a Caputo fractional derivative. Existence,
uniqueness, and continuous dependence results are established by using a variety of tools of fractional
calculus including Banach’s contraction principle and Schaefer’s fixed point theorem.
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1. Introduction

Studies on the theory of fractional differential equations (FDEs) became an important branch of
the theory of differential equation, which steadily attracted many authors and has been grown as
a new field of applied mathematics and many applications, such as mechanics, physics, chemistry,
biology, and engineering. For more details, see the monographs of Kilbas et al. [18] , Miller and Ross
[20], Podlubny [21] and Samko et al. [22], and the papers of Delboso and Rodino [11], Diethelm et
al. [12], El-Sayed et al. [14], Lakshmikantham [19], Usta [24, 25], Yu and Gao [27], Zhou [29], Zhou
and Jiao [30], Zhou et al. [31], and the references therein.

On the other hand, fractional neutral functional differential equations (FNFDEs) arise in many
areas of applied mathematics. For this reason, they have largely been studied during the last few
decades. The literature related to ordinary FNFDEs with finite delay and infinite delay is very
extensive, thus, we refer the reader to [2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 23], that contains a comprehensive
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description of such equations. Similarly, for more on partial neutral functional differential equations
and related issues, we refer to Abbas et al. [1], Hale [15], Hermndez [16] and Yan [26]. The study of
FNFDEs with infinite delay is a widespread and interesting topic in the literature and it is the main
motivation of our paper. Among these interesting works, for example, Agarwal et al. [7] studied the
Caputo-type problem

cDα[y(t)− g(t, yt)] = f(t, yt), t ∈ [t0,∞), (1.1)

yt0 = ψ ∈ C, (1.2)

where 0 < α < 1,cDα is a Caputo fractional derivative, f, g : [t0,∞) × C −→ Rn are suitable
functions, and C = C([−τ, 0],Rn) be the space of continuous functions on [−τ, 0]. The authors used
the Krasnoselskii’s fixed point theorem to obtain existence of mild solutions to (1.1)-(1.2) with finite
delay. In [3], the authors considered the problem with infinite delay

cDα[y(t)− g(t, yt)] = f(t, yt), t ∈ [0, b], (1.3)

y0 = ψ ∈ B, t ∈ (−∞, 0], (1.4)

where 0 < α < 1, B is called a phase space, f, g : [0, b] × B −→ R (b > 0) are appropriate
functions and cDα is a Caputo fractional derivative. They employed Banach’s fixed point theorem
and Schauder’s fixed point theorem to investigate the existence and continuous dependence results.

Motivated by the above works, in this paper we obtain sufficient conditions for the existence,
uniqueness, and continuous dependence of solutions for initial value problem for FNFDEs (1.3)-(1.4)
with infinite delay involving a Caputo fractional derivative.

This paper is organized as follows. Section 2 introduces some definitions, Lemmas, preliminary
facts and list the hypotheses about the properties of fractional calculus. In Section 3, we prove the
existence and uniqueness of solutions to problem (1.3)–(1.4). The continuous dependence of solution
to such equations is discussed in Section 4 on space C([0, b]). Finally, the conclusion is given in
Section 5.

2. preliminaries

In this section, we give some notations, definitions, lemmas and preliminary facts that related to
the fractional calculus and the phase space.

Let [0, b] a compact real interval and C([0, b],R) be the Banach space of all continuous real
functions p : [0, b]→ R with the norm ‖p‖∞ = sup{|p(t)| : t ∈ [0, b]}. Cn([0, b],R) denotes the set of
mappings having n times continuously differentiable on [0, b], ACn([0, b],R) (n ∈ N0) is the space of
functions p such that p ∈ Cn([0, b],R) and p(n−1) ∈ AC([0, b],R), and denote by L1[0, b] the space of

all real functions p such that |p(t)| is Lebesgue integrable on [0, b] in which |p(t)| =
∫ b

0
|p(t)| dt <∞.

In what following, for any function y defined on (−∞, b] and any t ∈ [0, b], we denote by yt the
element of B defined by yt(s) = y(t+ s), for −∞ < s ≤ 0, and let the functional space Λ defined by

Λ = {y : (−∞, b]→ R; y |(−∞,0]∈ B, y |[0,b] is a continuous on [0, b]},

where y |[0,b]is the restriction of y to [0, b].

Definition 2.1. ([18]) The left sided Riemann-Liouville fractional integral of order α > 0 with the
lower limit zero for a function p : [0, b]→ R is given by

Iα0 p(t) =
1

Γ(α)

∫ t

0

(t− s)α−1p(s)ds, t > 0,

provided that the right side is pointwise defined on [0, b], where Γ(.) is the gamma function.
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Definition 2.2. ([18]) Let n − 1 < α < n and p ∈ L1([0, b],R). The left sided Riemann-Liouville
fractional derivative of order α with the lower limit zero for a function p is defined by

Dα
0 p(t) =

dn

dtn
In−α0 p(t), t > 0,

where n = [α] + 1, and [α] denotes the integer part of the real number α. Moreover, Dα
0 I

α
0 p(t) = p(t).

Definition 2.3. ([28]). Let n− 1 < α < n and p ∈ ACn([0, b],R). The left sided Caputo fractional
derivative of order α with the lower limit zero for a function p is determined as

cDα
0 p(t) = Dα

0

(
p(t)−

n−1∑
k=0

p(k)(0)

k!
tk

)
,

where n = [α] + 1 for α /∈ N0, n = α for α ∈ N0. In particular, when 0 < α < 1, we have
cDα

0 p(t) = Dα
0 (p(t)− p(0)). Moreover, if cDα

0 p(t) ∈ AC[0, b] , then

Iα0
cDα

0 p(t) = p(t)− p(0).

Note that, cDα
0A = 0, where A is a constant function.

Lemma 2.4. ([18]) Assume that α, β ≥ 0 and p(t) ∈ L1[0, b]. Then Iα0 I
β
0 p(t) = Iα+β

0 p(t) and cDα
0 I

αp(t) =
p(t), for any t ∈ [0, b].

Definition 2.5. A function y ∈ Λ is said to be a solution of (1.3)–(1.4) if y satisfies the equation
cDα

0 [y(t)− g(t, yt)] = f(t, yt), t ∈ [0, b], with initial condition y0 = ψ, y |[0,b]∈ C[0, b]∩L1[0, b] and ∂g
∂t

is exists.

Lemma 2.6. ([28]) (Banach contraction principle). Let K be a non-empty closed
subset of a Banach space Λ, then each contraction mapping T : K −→ K has a unique fixed point.

Lemma 2.7. ([28]) (Schaefer’s fixed point theorem). Let Λ be a Banach space and let T : Λ −→ Λ
be a completely continuous mapping of Λ such that the set {x ∈ Λ : x = λTx, for some 0 < λ < 1}
is bounded. Then T has at least one fixed point.

In this paper, we suppose that the space (B, ‖.‖B) is a seminormed space of functions mapping
(−∞, 0] into R and satisfying the following essential axioms that were presented by Hale and Kato
[15] and discussed in detail by Hino et al. [17]:

(H1) If y : (−∞, b]→ R, such that y ∈ C([0, b],R) and y0 ∈ B, then for every t ∈ [0, b] the following
statements hold:

(i) yt ∈ B;

(ii) |y(t)| ≤ H ‖yt‖B for some H > 0 which is equivalent to ‖ψ(0)‖ ≤ H ‖ψ‖B for every ψ ∈ B;

(iii) ‖yt‖B ≤M(t) sup
0≤s≤t

|y(s)|+N(t) ‖y0‖B , where M(.), N(.) : R+ → R+ with M continuous and N

locally bounded, such that M and N are independent of y(.). Denote by Mb = sup{M(t) : t ∈
[0, b]} and Nb = sup{N(t) : t ∈ [0, b]}.

(H2) For the function y(.) in (H1), the function t→ yt is continuous from [0, b] into B.

(H3) The space B is complete.
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3. Existence and Uniqueness results

In this section, we prove the existence and uniqueness results to problem (1.3)–(1.4) by using Lemmas
2.6 and 2.7.

In the inception, we need the following lemma to establish our results:

Lemma 3.1. [3] Let 0 < α < 1 and f, g ∈ C[0, b] then the function y ∈ C[0, b] ∩ L1[0, b] solves the
following linear FNFDE

cDα[y(t)− g(t)] = f(t), t ∈ [0, b],

y0 = ψ ∈ B, t ∈ (−∞, 0],

if and only if y satisfies

y(t) =

{
ψ(0)− g(0) + g(t) + 1

Γ(α)

∫ t
0
(t− s)α−1f(s)ds, t ∈ [0, b],

ψ(t), t ∈ (−∞, 0].

Next, we prove the uniqueness result by employing Lemma 2.6.

Theorem 3.2. Assume that f, g : [0, b]× B → R are continuous functions and the following condi-
tions are satiesfied:

(A1) There exists a function δ1 ∈ L1([0, b],R) such that, for any y1, y2 ∈ B

|f(t, y1)− f(t, y2)| ≤ δ1(t) ‖y1 − y2‖B , t ∈ [0, b];

(A2) There exists a function δ2 ∈ C([0, b],R) such that, for any y1, y2 ∈ B

|g(t, y1)− g(t, y2)| ≤ δ2(t) ‖y1 − y2‖B , t ∈ [0, b];

(A3) Mb

(
‖δ2‖∞ + bα−1

Γ(α)
µ∗
)
< 1, where µ∗ =

∫ s
0
δ1(τ)dτ <∞.

Then there exists a unique solution to (1.3)-(1.4) on (−∞, b].

Proof . In view of Lemma 3.1, the function y is a solution to (1.3)-(1.4) if y satisfies

y(t) =

{
ψ(0)− g(0, ψ) + g(t, yt) + 1

Γ(α)

∫ t
0
(t− s)α−1f(s, ys)ds, t ∈ [0, b],

ψ(t), t ∈ (−∞, 0].

Transform the FNFDE (1.3)-(1.4) to a fixed point problem, i.e. y = Φy, where Φ is an operator
Φ : Λ→ Λ defined by

(Φy)(t) =

{
ψ(0)− g(0, ψ) + g(t, yt) + 1

Γ(α)

∫ t
0
(t− s)α−1f(s, ys)ds, t ∈ [0, b],

ψ(t), t ∈ (−∞, 0].

For any function ψ : (−∞, 0]→ R in B, we define the function ψ : (−∞, b]→ R by

ψ(t) =

{
ψ(0), t ∈ [0, b],
ψ(t), t ∈ (−∞, 0].
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Then, we get ψ0 = ψ. For each function v ∈ C([0, b],R) with v(0) = 0, let v : (−∞, b] → R be
the extension of v such that

v(t) =

{
v(t), t ∈ [0, b],
0, t ∈ (−∞, 0].

If y(.) satisfies the integral equation

y(t) = ψ(0)− g(0, ψ) + g(t, yt) +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds, t ∈ [0, b],

then, we can decompose y(.) as y(t) = ψ(t) + v(t), t ∈ (−∞, b], which implies yt = ψt + vt, for every
t ∈ [0, b] and the function v(.) satisfies

v(t) = −g(0, ψ) + g(t, ψt + vt) +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ψs + vs)ds, t ∈ [0, b]. (3.1)

with v0 = 0. Set Λ0 = {v ∈ Λ, z0 = 0}. For v ∈ Λ0 and let ‖.‖Λ0
be seminorm in Λ0 defined by

‖v‖Λ0
= ‖v0‖B + ‖v‖∞ = sup{|v(t)| : t ∈ [0, b]}.

Thus, (Λ0, ‖v‖Λ0
) is the Banach space. Define an operator T : Λ0 → Λ0 by

(Tv)(t) =

{
−g(0, ψ) + g(t, ψt + vt) + 1

Γ(α)

∫ t
0
(t− s)α−1f(s, ψs + vs)ds, t ∈ [0, b],

0, t ∈ (−∞, 0],
(3.2)

Then, (Tv)0 = 0. It is clear that the operator Φ has a unique fixed point equivalent to T which has
a unique fixed point too, and so we turn to proving that T has a unique fixed point. Now, we show
that T : Λ0 → Λ0 is a contraction map. In fact, by Eq.(3.2), (A1), (A2), Definition 2.1 and (H1)(ii),
then for v, v∗ ∈ Λ0 and t ∈ [0, b], we have

|(Tv)(t)− (Tv∗)(t)|
≤

∣∣g(t, ψt + vt)− g(t, ψt + v∗t)
∣∣

+
1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ψs + vs)− f(s, ψs + v∗s)

∣∣ ds
≤ δ2(t) ‖vt − v∗t‖B + ‖vt − v∗t‖B

1

Γ(α)

∫ t

0

(t− s)α−1δ1(s)ds

≤

(
sup
t∈[0,b]

|δ2(t)|+ Iα−1
0 I1

0δ1(t)

)
‖vt − v∗t‖B

=

(
‖δ2‖∞ +

1

Γ(α− 1)

∫ t

0

(t− s)α−2

∫ s

0

δ1(τ)dτds

)
‖vt − v∗t‖B

≤
(
‖δ2‖∞ +

bα−1

Γ(α)
µ∗
)
‖vt − v∗t‖B

≤
(
‖δ2‖∞ +

bα−1

Γ(α)
µ∗
)
M(t) sup

0≤τ≤t
|v(τ)− v∗(τ)|+N(t) ‖v0 − v∗0‖B

≤
(
‖δ2‖∞ +

bα−1

Γ(α)
µ∗
)
Mb ‖v − v∗‖Λ0

.
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Consequently,

‖Tv − Tv∗‖Λ0
≤
(
‖δ2‖∞ +

bα−1

Γ(α)
µ∗
)
Mb ‖v − v∗‖Λ0

.

By the condition (A3), we conclude that T is a contraction mapping. As consequence of Lemma
2.6, then v is the fixed point of T , which is the unique solution to the equation (3.1) on [0, b].
Setting y = ψ + v , then y is the unique solution to the problem (1.3)-(1.4) on (−∞, b]. The proof is
completed. �

Before given our second result, we list the following hypotheses:

(A4) f : [0, b] × B → R is a continuous and there exists a function η ∈ L1([0, b],R), such that, for
each t ∈ [0, b] and y ∈ B

|f(t, y)| ≤ η(t) ‖y‖B ,
∫ t

0

η(s)ds := µ <∞.

(A5) g : [0, b] × B → R is continuous and completely continuous and for any bounded set in Λ0,
the set {t → g(t, yt) : y ∈ B} is equicontinuous in C([0, b],R) and there exists a function
σ ∈ C([0, b],R), such that, for all t ∈ [0, b] and y ∈ B

|g(t, y)| ≤ σ(t) ‖y‖B .

We give an existence result based on the Schaefer’s fixed point theorem.

Lemma 3.3. The operator T : Λ0 → Λ0 is completely continuous.

Proof . Consider the operator T : Λ0 → Λ0 defined by (3.2 ) and let Br = {v ∈ Λ0 : ‖v‖Λ0
≤ r} ⊂ Λ0.

To this end, we give the proof in several steps.
Step 1. We show that T is continuous in Λ0.
For any vn, v ∈ Λ0, n = 1, 2, .... with ‖vn − v‖Λ0

→ 0 as n→∞, we obtain vn → v as n→∞.
So, by the continuity of f and g, we have f(s, ψs + (vn)s → f(s, ψs + vs) and g(t, ψt + (vn)t) →

g(t, ψt + vt), as n→∞. Consequentely, we obtain

sup
s∈[0,b]

∣∣f(s, ψs + (vn)s − f(s, ψs + vs)
∣∣→ 0, as n→∞, (3.3)

and
sup
t∈[0,b]

∣∣g(t, ψt + (vn)t)→ g(t, ψt + vt)
∣∣→ 0, as n→∞. (3.4)

On the other hand, By Eq.(3.2), then for every t ∈ [0, b] and vn, v ∈ Λ0, we have

|(Tvn)(t)− (Tv)(t)|
≤

∣∣g(t, ψt + (vn)t)− g(t, ψt + vt)
∣∣

+
1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ψs + (vn)s)− f(s, ψs + vs)

∣∣ ds.
The last inequality with Eq.(3.3) and Eq.(3.4) gives ‖Tvn − Tv‖Λ0

→ 0, as n → ∞, where
∫ t

0
(t −

s)α−1ds <∞. Therefore, T is continuous.
Step 2. We show that T (Br) is uniformly bounded.
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Indeed, it is enough to show that for any r > 0 there exists a positive constant ` > 0 such that
‖Tv‖Λ0

≤ `. By Eq.(3.2), (A4), (A5) and Definition 2.1, then for every v ∈ Br and t ∈ [0, b], we have

|(Tv)(t)|

≤ |g(0, ψ)|+
∣∣g(t, ψt + vt)

∣∣+
1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ψs + vs)

∣∣ ds
≤ σ(0) ‖ψ‖B + σ(t)

∥∥ψt + vt
∥∥
B +

1

Γ(α)

∫ t

0

(t− s)α−1η(s)
∥∥ψs + vs

∥∥
B ds,

≤ ‖σ‖∞
(
‖ψ‖B +

∥∥ψt + vt
∥∥
B

)
+
∥∥ψt + vt

∥∥
B I

α−1
0 I1

0η(t)

= ‖σ‖∞
(
‖ψ‖B +

∥∥ψt + vt
∥∥
B

)
+
∥∥ψt + vt

∥∥
B

1

Γ(α− 1)

∫ t

0

(t− s)α−2

∫ s

0

η(τ)dτds

≤ ‖σ‖∞
(
‖ψ‖B +

∥∥ψt + vt
∥∥
B

)
+
∥∥ψt + vt

∥∥
B
bα−1

Γ(α)
µ. (3.5)

Since∥∥ψt + vt
∥∥
B ≤

∥∥ψt∥∥B + ‖vt‖B
≤ M(t) sup

0≤τ≤t

∣∣ψ(τ)
∣∣+N(t)

∥∥ψ0

∥∥
B +M(t) sup

0≤τ≤t
|v(τ)|+N(t) ‖v0‖B

≤ Mb |ψ(0)|+Nb ‖ψ‖B +Mb sup
0≤τ≤t

|v(τ)|

≤ MbH ‖ψ‖B +Nb ‖ψ‖B +Mb ‖v‖Λ0

≤ (MbH +Nb) ‖ψ‖B +Mbr (3.6)

: = r0, (3.7)

the inequality Eq.(3.5) becomes

|(Tv)(t)| ≤ ‖σ‖∞ (‖ψ‖B + r0) +
r0b

α−1

Γ(α)
µ := `.

Therefore, ‖Tv‖Λ0
≤ `, for every v ∈ Br. This means that T (Br) is uniformly bounded.

Step 3. We will prove that T (Br) is equicontinuous. By Eq.(3.2) and our hypotheses, then for
each v ∈ Br, and t1, t2 ∈ [0, b], with 0 ≤ t1 < t2 ≤ b, we have

|(Tv)(t2)− (Tv)(t1)|
≤

∣∣g(t2, ψt2 + vt2)− g(t1, ψt1 + vt1)
∣∣

+

∣∣∣∣ 1

Γ(α)

∫ t2

0

(t2 − s)α−1f(s, ψs + vs)−
1

Γ(α)

∫ t1

0

(t1 − s)α−1f(s, ψs + vs)

∣∣∣∣
=

∣∣g(t2, ψt2 + vt2)− g(t1, ψt1 + vt1)
∣∣+
∣∣Iα−1

0 I1
0f(t2, ψt2 + vt2)− Iα−1

0 I1
0f(t1, ψt1 + vt1)

∣∣
=

∣∣g(t2, ψt2 + vt2)− g(t1, ψt1 + vt1)
∣∣+

∣∣∣∣∣ 1
Γ(α−1)

∫ t2
0

(t2 − s)α−2
∫ s

0
f(τ, ψτ + vτ )dτds

− 1
Γ(α−1)

∫ t1
0

(t1 − s)α−2
∫ s

0
f(τ, ψτ + vτ )dτds

∣∣∣∣∣ .
The complete continuity of g imply that∣∣g(t2, ψt2 + vt2)− g(t1, ψt1 + vt1)

∣∣→ 0, as t1 → t2.
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Hence by (A4), Definition 2.1 and Eq.(3.7), we get

|(Tv)(t2)− (Tv)(t1)|

≤ 1

Γ(α− 1)

∫ t1

0

∣∣(t2 − s)α−2 − (t1 − s)α−2
∣∣ ∫ s

0

∣∣f(τ, ψτ + vτ )
∣∣ dτds

+
1

Γ(α− 1)

∫ t2

t1

(t2 − s)α−2

∫ s

0

∣∣f(τ, ψτ + vτ )
∣∣ dτds

≤ 1

Γ(α− 1)

∫ t1

0

∣∣(t2 − s)α−2 − (t1 − s)α−2
∣∣ ∥∥ψs + vs

∥∥
B

∫ s

0

η(τ)dτds

+
1

Γ(α− 1)

∫ t2

t1

(t2 − s)α−2
∥∥ψs + vs

∥∥
B

∫ s

0

η(τ)dτds

≤ µr0

(α− 1)Γ(α− 1)
(tα−1

1 − tα−1
2 ) + 2(t2 − t1)α−1)

≤ 2µr0

Γ(α)
(t2 − t1)α−1.

As t1 → t2, the right-hand side of the above inequality tends to zero. Therefore, T (Br) is
equicontinuous. The equicontinuity for the cases t1 < t2 ≤ 0, and t1 ≤ 0 ≤ t2 evident.

From Steps 1 to 3 with Arzela-Ascoli theorem, we can infer that the operator T : Λ0 → Λ0 is
completely continuous. The proof of Lemma is complete. �

Theorem 3.4. Assume that (A4) and (A5) hold. If(
‖σ‖∞ +

bα−1

Γ(α)
µ

)
Mb < 1. (3.8)

Then there exists at least a solution to (1.3)-(1.4) on (−∞, b].

Proof . In view of Lemma 3.3, the operator T : Λ0 → Λ0 is completely continuous. Now, we need
to show that the set Ω = {v ∈ Λ0 : v = ϑTv, for some 0 < ϑ < 1} is bounded.

Let v ∈ Ω, then v = ϑTv, for some 0 < ϑ < 1. So, for each t ∈ [0, b], we have

1

ϑ
|v(t)| ≤ |g(0, ψ)|+

∣∣g(t, ψt + vt)
∣∣+

1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ψs + vs)

∣∣ ds
≤ ‖σ‖∞

(
‖ψ‖B +

∥∥ψt + vt
∥∥
B

)
+
∥∥ψt + vt

∥∥
B

1

Γ(α)

∫ t

0

(t− s)α−1η(s)ds

≤ ‖σ‖∞ ‖ψ‖B +

(
‖σ‖∞ +

bα−1

Γ(α)
µ

)(
(MbH +Nb) ‖ψ‖B +Mb ‖v‖Λ0

)
.

For every t ∈ [0, b] and for some ϑ ∈ (0, 1), we obtain

‖v‖Λ0
≤ ϑ ‖σ‖∞ ‖ψ‖B + ϑ

(
‖σ‖∞ +

bα−1

Γ(α)
µ

)(
(MbH +Nb) ‖ψ‖B +Mb ‖v‖Λ0

)
≤ ‖σ‖∞ ‖ψ‖B + (MbH +Nb) ‖ψ‖B

(
‖σ‖∞ +

bα−1

Γ(α)
µ

)
+

(
‖σ‖∞ +

bα−1

Γ(α)
µ

)
Mb ‖v‖Λ0

.

By the inequality (3.8), we get

‖v‖Λ0
≤
‖σ‖∞ ‖ψ‖B + (MbH +Nb) ‖ψ‖B

(
‖σ‖∞ + bα−1

Γ(α)
µ
)

1−
(
‖σ‖∞ + bα−1

Γ(α)
µ
)
Mb

:= L.
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This shows that the set Ω is bounded. As consequence of Lemma 2.7, there exists at least a fixed
point v of T in Λ0 on [0, b]. Thus, y = ψ + v is the solution to (1.3)-(1.4) on (−∞, b], and the proof
is completed. �

4. Dependence on the parameter λ

This section is devoted to discussion of the dependence of solution on the parameter λ for the
problem (1.3)-(1.4), provided that the functions g(t, yt) and f(t, yt) are Lipschitz with respect to yt.

Firstly, we know that Theorem 3.2 remains valid if we consider the following problem

cDα
0 [y(t)− g(t, yt, λ)] = f(t, yt, λ), t ∈ [0, b], (4.1)

y0 = ψ ∈ B, (4.2)

where λ is a real parameter and f, g : [0, b]× B × R→ R are continuous functions satisfies

|f(t, y1, λ)− f(t, y2, λ)| ≤ δ1(t) ‖y1 − y2‖B , t ∈ [0, b], y1, y2 ∈ B; (4.3)

and
|g(t, y1, λ)− g(t, y2, λ)| ≤ δ2(t) ‖y1 − y2‖B , t ∈ [0, b], y1, y2 ∈ B; (4.4)

with

Mb

(
‖δ2‖∞ +

bα−1

Γ(α)
µ∗
)
< 1. (4.5)

Here, δ1, δ2 and µ∗ are defined as in Theorem 3.2.
On the other hand, by Theorem 3.2, if Eq.(4.3), Eq.(4.4) and Eq.(4.5) hold. Then the problem

(4.1)-(4.2) has a unique solution y(t) = y(t, λ) for each λ ∈ R. Now, we show that the solution of
(4.1)-(4.2) depends continuously on the parameter λ if for each t ∈ [0, b] and for any y ∈ B,

|f(t, y, λ1)− f(t, y, λ2)| ≤ δ1(t) |λ1 − λ2| and |g(t, y, λ1)− g(t, y, λ2)| ≤ δ2(t) |λ1 − λ2| , (4.6)

for all λ1, λ2 ∈ R.

Theorem 4.1. Let f, g : [0, b] × B × R→ R are continuous functions. If Eq.(4.3), Eq.(4.4) and
Eq.(4.5) hold. Then there exists a constant κ such that

‖y(., λ1)− y(., λ2)‖C ≤ κ |λ1 − λ2| , ∀λ1, λ2 ∈ R.

Proof . Suppose that λi ∈ R (i = 1, 2) are arbitrary constants and y1(t) = y(t, λ1), y2(t) = y(t, λ2)
are corresponding solutions of the problem (4.1)-(4.2). Let t ∈ [0, b], then there are v1, v2 ∈ C([0, b])
such that y(t, λ1) = ψ(0) + v1(t, λ1), y(t, λ2) = ψ(0) + v2(t, λ2) and satisfying

v1(t, λ1) = −g(0, ψ, λ1) + g(t, ψt + (v1)t, λ1) +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ψ̃s + (v1)s, λ1)ds,

v2(t, λ2) = −g(0, ψ, λ2) + g(t, ψ̃t + (v2)t, λ2) +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ψ̃s + (v2)s, λ2)ds.
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Hence, we have

|y(t, λ1)− y(t, λ2)|
= |v1(t, λ1)− v2(t, λ2)|
≤ |g(0, ψ, λ1)− g(0, ψ, λ2)|+

∣∣g(t, ψt + (v1)t, λ1)− g(t, ψt + (v2)t, λ2)
∣∣

+
1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ψs + (v1)s, λ1)− f(s, ψs + (v2)s, λ2)

∣∣ ds
≤ |g(0, ψ, λ1)− g(0, ψ, λ2)|+

∣∣g(t, ψt + (v1)t, λ1)− g(t, ψt + (v2)t, λ1)
∣∣

+
∣∣g(t, ψt + (v2)t, λ1)− g(t, ψt + (v2)t, λ2)

∣∣
+

1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ψs + (v1)s, λ1)− f(s, ψs + (v2)s, λ1)

∣∣ ds
+

1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ψs + (v2)s, λ1)− f(s, ψs + (v2)s, λ2)

∣∣ ds
≤ δ2(0) |λ1 − λ2|+ δ2(t) ‖(v1)t − (v2)t‖B + δ2(t) |λ1 − λ2|

+
1

Γ(α)

∫ t

0

(t− s)α−1δ1(s) ‖(v1)s − (v2)s‖B ds+
1

Γ(α)

∫ t

0

(t− s)α−1δ1(s) |λ1 − λ2| ds

≤
(

2 ‖δ2‖∞ +
bα−1

Γ(α)
µ∗
)
|λ1 − λ2|+

(
‖δ2‖∞ +

bα−1

Γ(α)
µ∗
)
‖(v1)t − (v2)t‖B .

Since

‖(v1)t − (v1)t‖B ≤ M(t) sup
0≤τ≤t

|v1(τ)− v2(τ)|+N(t) ‖(v1)0 − (v2)0‖B

≤ Mb sup
0≤τ≤t

|v1(τ)− v2(τ)|

= Mb ‖v1 − v2‖C

we have

‖y(., λ1)− y(., λ2)‖C

≤
(

2 ‖δ2‖∞ +
bα−1

Γ(α)
µ∗
)
|λ1 − λ2|+

(
‖δ2‖∞ +

bα−1

Γ(α)
µ∗
)
Mb ‖v1 − v2‖C .

=

(
2 ‖δ2‖∞ +

bα−1

Γ(α)
µ∗
)
|λ1 − λ2|+

(
‖δ2‖∞ +

bα−1

Γ(α)
µ∗
)
Mb ‖y(., λ1)− y(., λ2)‖C ,

Eq.(4.5) gives

‖y(., λ1)− y(., λ2)‖C ≤

(
2 ‖δ2‖∞ + bα−1

Γ(α)
µ∗
)

1−
(
‖δ2‖∞ + bα−1

Γ(α)
µ∗
)
Mb

|λ1 − λ2| .

Take κ =

(
2‖δ2‖∞+ bα−1

Γ(α)
µ∗

)
1−

(
‖δ2‖∞+ bα−1

Γ(α)
µ∗

)
Mb

, we obtain

‖y(., λ1)− y(., λ2)‖C ≤ κ |λ1 − λ2| .

Therefore, the solution of (1.3)-(1.4) depends continuously on the parameter λ. The proof is com-
pleted. �
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5. Conclusion

We can conclude that the main results of this article have been successfully achieved, that is,
through of Banach’s contraction principle and Schaefer’s fixed point theorem, extremely important
results within the mathematical analysis. We obtained the existence, uniqueness, and continuous
dependence of solutions of the initial value problem for a nonlinear FNFDEs introduced by the
Caputo fractional derivative. This paper contributes to the growth of the FDEs, especially, involving
a infinite delay. There are some articles that carried out a brief study on existence and uniqueness of
solutions of FDEs, one of the aims of this paper is to contribute so that it can have a greater range
of studies within the mathematical analysis of FNFDEs.
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