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Abstract

An existence result of renormalized solutions for nonlinear parabolic Cauchy-Dirichlet problems
whose model 

∂b(x, u)

∂t
− divA(x, t, u,∇u)− div Φ(x, t, u) = f in Ω× (0, T )

b(x, u)(t = 0) = b(x, u0) in Ω
u = 0 on ∂Ω× (0, T ).

is given in the non reflexive Musielak spaces, where b(x, ·) is a strictly increasing C1-function for
every x ∈ Ω with b(x, 0) = 0, the lower order term Φ is a non coercive Carathéodory function
satisfying only a natural growth condition described by the appropriate Musielak function ϕ and f
is an integrable data.
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1. Introduction

Modular spaces are the adequate setting to model many physical problems, the more general
structures are Musielak spaces which generalize classical Sobolev spaces, exponent variable spaces
and Orlicz spaces. Let Ω be a bounded open subset of RN , N ≥ 2, ΩT = Ω × (0, T ) where T is a
positive real number and ϕ is a Musielak function. Let A(u) := −div A(x, t, u,∇u) be a so-called
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Leray-Lions type operator whose prototype is the p-Laplacian operator and b : Ω × R → R is a
Carathéodory function such that b(x, ·) is a strictly increasing C1-function for any fixed x ∈ Ω with
b(x, 0) = 0.

Consider the following Cauchy-Dirichlet boundary value parabolic problem
∂b(x, u)

∂t
+ A(u)− div Φ(x, t, u) = f in ΩT

b(x, u)(t = 0) = b(x, u0) in Ω
u = 0 on ∂Ω× (0, T ).

(1.1)

where u0 ∈ L1(Ω), f ∈ L1(ΩT ).
The problem (1.1) has been studied in different particular cases, we recall some contributions

in this directions. In the classical Sobolev spaces, for Φ ≡ 0, b is a maximal monotone graph on
R and A(x, t, s, ξ) is independent of s, existence and uniqueness of a renormalized solution have
been proved by Blanchard and Murat in [18] and by Blanchard and Porretta in the case where
A(x, t, s, ξ) is independent of t in [20]. In [1], Bennouna et al. have studied problem (1.1) for a

measure µ = f − div(F ), with f ∈ L1(ΩT ), F ∈ (Lp
′
(ΩT ))N and Φ satisfies the condition

|Φ(x, t, s)| ≤ c(x, t)|s|γ,

with c(x, t) ∈ Lτ (ΩT ) for some τ =
N + p

p− 1
and γ =

N + 2

N + p
(p − 1). A renormalized solution to the

elliptic case has been rigourously studied by Dal Maso et al. in [25] for a general measure data f .
In Orlicz spaces, Azroul et al. have proved in [13] existence of renormalized solution, where Φ

depends only on u (without dependence on x) and b(x, u) = b(u), the same result has been given by
Redwane in [40] where b(x, u) depends on x and u. Then, Moussa and Rhoudaf [38] have studied
existence of renormalized solution for problem (1.1) in the case f ∈ L1(ΩT ) under a growth condition
on Φ prescribed by an N -function P that increases essentially less rapidly than the Orlicz function
M defining the framework spaces,

|Φ(x, t, s)| ≤ P
−1

(P (|s|)) with P ≺≺M. (1.2)

The previous result has been enhanced in [22] under the likely growth condition in the elliptic case,

|Φ(x, s)| ≤ γ(x) +M
−1

(M(|s|)), with γ ∈ EM(Ω). (1.3)

In Musielak spaces, for b(x, u) = u, an existence and uniqueness results were given in [2] under the
more restrictive assumption

|Φ(x, t, s)| ≤ γ(x, t)ϕ−1
x (ϕ(x,

α0

δ
|s|)) and ‖γ‖L∞(ΩT ) <

α

α0 + 1
, (1.4)

with 0 < α0 < 1, where δ is the constant in the integral Poincaré type inequality and α is the
constant of coercivity of the problem. An existence result of entropy solution, for the elliptic case,
has been given in [23].

The approach of this paper is how to deal with the existence of renormalized solutions for problem
(1.1) in Musielak spaces where Φ satisfies only the natural growth condition

|Φ(x, t, s)| ≤ γ(x, t) + ϕ−1
x (ϕ(x, |s|)), where γ ∈ Eϕ(ΩT ). (1.5)
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without assuming any restriction on the Musielak function ϕ neither on its complementary ϕ, the
described problem lives in non reflexive Musielak spaces. We avoid to use the concept of Musielak
function grows essentially more slowly than another, we use a more technical method unlike as in
[38, 2].

In dealing with this problem, we have encountered some difficulties, essentially, under the natural
growth assumption (1.5), it’s difficult to prove existence of solution for the regularized problem and
proving its convergence, which are the basic results in the proof of such solutions. The improvement in
the main proofs follows thanks to an algebraic trick combined with the convexity of ϕ and Young’s
inequality on a well-chosen positive quantities. Also, we use some new results of the Log-Hölder
continuity restriction on the modular function ϕ.

This article is organized as follows, in section 2, we recall some well-known preliminaries, re-
sults and properties of Musielak-Orlicz-Sobolev spaces and inhomogeneous Musielak-Orlicz-Sobolev
spaces. Section 3 is devoted to basic assumptions, problem setting and the proof of the main result.

2. Preliminaries

In this section we list briefly some definitions and facts about Musielak-Orlicz-Sobolev spaces.
For further definitions and properties we refer the reader to [35, 15, 39].

2.1. Musielak-Orlicz function

Let Ω be an open subset of RN and let ϕ be real-valued function defined in Ω×R+ and satisfying
the following conditions
(a) ϕ(x, .) is an N-function, i.e., convex, nondecreasing, continuous, ϕ(x, 0) = 0, ϕ(x, t) > 0 for all
t > 0 and

lim
t→0

sup
x∈Ω

ϕ(x, t)

t
= 0 for almost all x ∈ Ω,

lim
t→∞

inf
x∈Ω

ϕ(x, t)

t
=∞ for almost all x ∈ Ω.

(b) ϕ(., t) is a measurable function.

A function ϕ(x, t), which satisfies the condition (a) and (b), is called a Musielak-Orlicz function.
For a Musielak-Orlicz function ϕ(x, t) we put ϕx(t) = ϕ(x, t) and we associate its nonnegative
reciprocal function with respect to t and ϕ−1

x that is,

ϕ−1
x (ϕ(x, t)) = ϕ(x, ϕ−1

x (t)) = t.

For any two Musielak-Orlicz functions ϕ and γ we introduce the following ordering:
(c) If there exists two positive constants c and T such that for almost all x ∈ Ω

ϕ(x, t) ≤ γ(x, ct) for t ≥ T,

then we write ϕ ≺ γ and we say that γ dominates ϕ globally if T = 0 and near infinity if T > 0.
(d) If for every positive constant c and almost everywhere x ∈ Ω we have

lim
t→0

(
sup
x∈Ω

ϕ(x, ct)

γ(x, t)

)
= 0 or lim

t→∞

(
sup
x∈Ω

ϕ(x, ct)

γ(x, t)

)
= 0,

then we write ϕ ≺≺ γ at 0 or near ∞ respectively, and we say that ϕ increases essentially more
slowly than γ at 0 or near ∞ respectively.
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We recall that the Musielak function ϕ is said to satisfy the ∆2-condition (or doubling condition)
if for some k > 0, and a non-negative function c, integrable on Ω, we have

ϕ(x, 2t) ≤ kϕ(x, t) + c(x) for all x ∈ Ω and all t ≥ 0.

Remark 2.1. [26, 10] If γ ≺≺ ϕ, then for all ε > 0 there exists a constant k(ε) such that:

γ(x, t) ≤ k(ε)ϕ(x, εt) for all t ≥ 0 and a.e x ∈ Ω.

Example 2.2. We give some examples of Musielak-Orlicz functions:

1. ϕ(x, t) = ϕ(t), (classical Orlicz spaces),

2. ϕ(x, t) = tp(x), such that sup
x∈Ω

p(x) <∞ (variable exponent Lebesgue spaces),

3. ϕ(x, t) = tp(x) log(1 + t),

4. ϕ(x, t) = t(log(1 + t))p(x),

5. ϕ(x, t) = (exp(t))p(x) − 1.

2.2. Musielak-Orlicz-Sobolev spaces

For a Musielak function ϕ and a measurable function u : Ω→ R we define the functional

%ϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|) dx.

The set Kϕ(Ω) =
{
u : Ω → R measurable : %ϕ,Ω(u) < ∞

}
is called the Musielak class (or the

Musielak-Orlicz class or generalized Orlicz class). The Musielak space (or Musielak-Orlicz space or
generalized Orlicz space) Lϕ(Ω) is the vector space generated by Kϕ(Ω), that is the smallest linear
space containing the set Kϕ(Ω). Equivalently

Lϕ(Ω) =
{
u : Ω→ R measurable : %ϕ,Ω(

u

λ
) <∞ for some λ > 0

}
.

For a Musielak function ϕ we put

ϕ(x, s) = sup
t≥0

{
st− ϕ(x, t)

}
.

ϕ is called the Musielak function complementary to ϕ (or conjugate of ϕ) in the sense of Young with
respect to s.
we say that a sequence of function un ∈ Lϕ(Ω) is modular convergent to u ∈ Lϕ(Ω) if there exists a
constant λ > 0 such that

lim
n→∞

%ϕ,Ω

(un − u
λ

)
= 0.

In the space Lϕ(Ω) we can define two norms, the first is called the Luxemburg norm, that is

‖u‖ϕ,Ω = inf
{
λ > 0 :

∫
Ω

ϕ(x,
|u(x)|
λ

) dx ≤ 1
}
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and the second so-called the Orlicz norm, that is

|‖u|‖ϕ,Ω = sup
‖v‖ϕ≤1

∫
Ω

|u(x) v(x)| dx,

where ϕ is the Musielak function complementary to ϕ. These two norms are equivalent and we have
a Musielak class Kϕ(Ω) is a convex subset of the Musielak space Lϕ(Ω).
The closure in Lϕ(Ω) of the set of bounded measurable functions with compact support in Ω is
denoted by Eϕ(Ω). It is a separable space and (Eϕ(Ω))∗ = Lϕ(Ω). We have Eϕ(Ω) = Kϕ(Ω) if and
only if Kϕ(Ω) = Lϕ(Ω) if and only if ϕ satisfies the ∆2-condition for large values of t or for all values
of t, according to whether Ω has finite measure or not.
We define

W 1Lϕ(Ω) =
{
u ∈ Lϕ(Ω) : Dαu ∈ Lϕ(Ω),∀|α| ≤ 1

}
W 1Eϕ(Ω) =

{
u ∈ Eϕ(Ω) : Dαu ∈ Eϕ(Ω), ∀|α| ≤ 1

}
where α = (α1, ..., αN), |α| = |α1| + ... + |αN | and Dαu denote the distributional derivatives. The
space W 1Lϕ(Ω) is called the Musielak-Sobolev space. For u ∈ W 1Lϕ(Ω), let

%ϕ,Ω(u) =
∑
|α|≤1

%ϕ,Ω(Dαu) and ‖u‖1
ϕ,Ω = inf

{
λ > 0 : %ϕ,Ω(

u

λ
) ≤ 1

}
these functionals are convex modular and a norm onW 1Lϕ(Ω) respectively. The pair 〈W 1Lϕ(Ω), ‖u‖1

ϕ,Ω〉
is a Banach space if ϕ satisfy the following condition

there exists a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) > c.

The space W 1Lϕ(Ω) is identified to a subspace of the product Π|α|≤1Lϕ(Ω) = ΠLϕ; this subspace
is σ(ΠLϕ,ΠEϕ) closed.

We denote by D(Ω) the Schwartz space of infinitely smooth function with compact support in
Ω and by D(Ω) the restriction of D(RN) on Ω. The space W 1

0Lϕ(Ω) is defined as the σ(ΠLϕ,ΠEϕ)
closure of D(Ω) in W 1Lϕ(Ω) and the space W 1

0Eϕ(Ω) as the (norm) closure of the Schwarz space
D(Ω) in W 1Lϕ(Ω).

For two complementary Musielak functions ϕ and ϕ we have

i)The Young inequality:

ts ≤ ϕ(x, t) + ϕ(x, s) for all t, s ≥ 0, x ∈ Ω.

ii)The Hölder inequality:∣∣∣ ∫
Ω

u(x) v(x) dx
∣∣∣ ≤ 2‖u‖ϕ,Ω ‖v‖ϕ,Ω, for all u ∈ Lϕ(Ω), v ∈ Lϕ(Ω).

We say that a sequence of function un converges to u for the modular convergence in W 1Lϕ(Ω)
(respectively in W 1

0Lϕ(Ω)) if we have

lim
n→∞

%ϕ,Ω

(un − u
λ

)
= 0, for some λ > 0.
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Define the following space of distributions

W−1Lϕ(Ω) =
{
f ∈ D

′
(Ω) : f =

∑
|α|≤1

(−1)|α|Dαfα where fα ∈ Lϕ(Ω)
}

and
W−1Eϕ(Ω) =

{
f ∈ D

′
(Ω) : f =

∑
|α|≤1

(−1)|α|Dαfα where fα ∈ Eϕ(Ω)
}
.

2.3. Inhomogeneous Musielak-Orlicz-Sobolev spaces

Let Ω be a bounded open subset of RN , T > 0 and set ΩT = Ω × (0, T ). For each α ∈ NN ,
denote by Dα

x the distributional derivative on ΩT of order α with respect to the variable x ∈ Ω. The
inhomogeneous Musielak-Orlicz-Sobolev spaces are defined as follows,

W 1,xLϕ(ΩT ) =
{
u ∈ Lϕ(ΩT ) : Dα

xu ∈ Lϕ(ΩT ) for all |α| ≤ 1
}
,

and
W 1,xEϕ(ΩT ) =

{
u ∈ Eϕ(ΩT ) : Dα

xu ∈ Eϕ(ΩT ) for all |α| ≤ 1
}
.

The last space is a subspace of the first one, and both are Banach spaces under the norm,

‖u‖ =
∑
|α|≤1

‖Dα
xu‖ϕ,ΩT .

We can easily show that they form a complementary system when Ω satisfies the segment property.
These spaces are considered as subspaces of the product space ΠLϕ(ΩT ) which have as many copies
as there is α-order derivatives, |α| ≤ 1. We shall also consider the weak topologies σ(ΠLϕ,ΠEϕ)
and σ(ΠLϕ,ΠLϕ)). If u ∈ W 1,xLϕ(ΩT ) then the function : t 7→ u(t) = u(t, ·) is defined on (0, T )
with values in W 1Lϕ(Ω). If, further, u ∈ W 1,xEϕ(ΩT ) then the concerned function is a W 1Eϕ(Ω)-
valued and is strongly measurable. Furthermore the following imbedding holds: W 1,xEϕ(ΩT ) ⊂
L1(0, T ;W 1Eϕ(Ω)). The spaceW 1,xLϕ(ΩT ) is not in general separable, if u ∈ W 1,xLϕ(ΩT ), we can not
conclude that the function u(t) is measurable on (0, T ). However, the scalar function t 7→‖ u(t) ‖ϕ,Ω
is in L1(0, T ). The space W 1,x

0 Eϕ(ΩT ) is defined as the (norm) closure in W 1,xEϕ(ΩT ) of D(ΩT ).
It is proved that when Ω has the segment property, then each element u of the closure of D(ΩT )
with respect of the weak* topology σ(ΠLϕ,ΠEϕ) is a limit, in W 1,xLϕ(ΩT ), of some subsequence
(un) ⊂ D(ΩT ) for the modular convergence; i.e., if, for some λ > 0, such that for all |α| ≤ 1;∫

ΩT

ϕ
(
x,
|Dα

xun −Dα
xu|

λ

)
dx dt −→ 0 as n −→∞.

This implies that (un) converges to u in W 1,xLϕ(ΩT ) for the weak topology σ(ΠLϕ,ΠLϕ). Conse-
quently,

D(ΩT )
σ(ΠLϕ,ΠEϕ)

= D(ΩT )
σ(ΠLϕ,ΠLϕ)

.

This space will be denoted by W 1,x
0 Lϕ(ΩT ). Furthermore,

W 1,x
0 Eϕ(ΩT ) = W 1,x

0 Lϕ(ΩT ) ∩ ΠEϕ.

We have then the following complementary system(
W 1,x

0 Lϕ(ΩT ), F,W 1,x
0 Eϕ(ΩT ), F0

)
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F being the dual space of W 1,x
0 Eϕ(ΩT ). It is also, except for an isomorphism, the quotient of ΠLϕ

by the polar set W 1,x
0 Eϕ(ΩT )⊥, and will be denoted by F = W−1,xLϕ(ΩT ) and it is shown that,

W−1,xLϕ(ΩT ) =
{
f =

∑
|α|≤1

Dα
xfα : fα ∈ Lϕ(ΩT )

}
,

this space will be equipped with the usual quotient norm

‖f‖ = inf
∑
|α|≤1

‖fα‖ϕ,ΩT ,

where the infimum is taken on all possible decompositions

f =
∑
|α|≤1

Dα
xfα, fα ∈ Lϕ(ΩT ).

The space F0 is then given by,

W−1,xLϕ(ΩT ) =
{
f =

∑
|α|≤1

Dα
xfα : fα ∈ Eϕ(ΩT )

}
,

and is denoted by F0 = W−1,xEϕ(ΩT ).

2.4. Some technical lemmas

Definition 2.3. [32] Recall that an open domain Ω ⊂ RN has the segment property if there exist a
locally finite open covering Oi of the boundary ∂Ω of Ω and a corresponding vectors yi such that if
x ∈ Ω ∩Oi for some i, then x+ tyi ∈ Ω for 0 < t < 1.

Lemma 2.4. Let Ω be a bounded Lipschitz domain in RN and let ϕ and ϕ be two complementary
Musielak functions which satisfy the following conditions

(i) There exists a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c;

(ii) There exists a constant A > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1
2
,

ϕ(x, t)

ϕ(y, t)
≤ t

( A

log( 1
|x−y| )

)

for all t ≥ 1;

(iii)

∫
Ω

ϕ(x, λ) dx <∞, for all λ > 0;

(iv) There exists a constant C > 0 such that ϕ(x, 1) ≤ C a. e. in Ω.
Under these assumptions, D(Ω) is dense in Lϕ(Ω) with respect to the modular topology, D(Ω)

is dense in W 1
0Lϕ(Ω) for the modular convergence and D(Ω) is dense in W 1Lϕ(Ω) for the modular

convergence.

Proof . For the convenience to the reader, the new proof of this previews Lemma is given by
Benkirane et al. in [8]. � Consequently, the action of a distribution in W−1Lϕ(Ω) on an element u
of W 1

0Lϕ(Ω) is well defined.
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Lemma 2.5. [14] Suppose that Ω satisfies the segment property and let u ∈ W 1
0Lϕ(Ω). Then,

there exists a sequence (un) ⊂ D(Ω) such that un → u for the modular convergence in W 1
0Lϕ(Ω).

Furthermore, if u ∈ W 1
0Lϕ(Ω) ∩ L∞(Ω) then

‖un‖∞ ≤ (N + 1)‖u‖∞.

Lemma 2.6. [6, Lemma 1] If un → u for the modular convergence (with every λ > 0) in Lϕ(ΩT ),
then un → u strongly in Lϕ(ΩT ).

Lemma 2.7. Let F : R→ R be uniformly lipschitzian, with F (0) = 0. Let ϕ be a Musielak function
and let u ∈ W 1Lϕ(Ω) (resp. W 1Eϕ(Ω)). Then, F (u) ∈ W 1Lϕ(Ω) (resp. W 1Eϕ(Ω)). Moreover, if
the set of discontinuity points D of F ′ is finite, then

∂

∂xi
F (u) =

 F ′(u)
∂u

∂xi
a.e. in {x ∈ Ω : u(x) /∈ D}

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Lemma 2.8. [9] (The Nemytskii operator) Let Ω be an open subset of RN with finite measure
and let ϕ and ψ be two Musielak functions. Let f : Ω× Rp1 → Rp2 be a Caratheodory function such
that

|f(x, s)| ≤ c(x) + k1ψ
−1
x (ϕ(x, k2|s|)),

for almost every x ∈ Ω and all s ∈ Rp1, where k1, k2 are real positive constant and c ∈ Eψ(Ω). Then

the Nemytskii operator Nf , defined by Nf (u)(x) = f(x, u(x)) is continuous from
(
P(Eϕ(Ω), 1

k2
)
)p1

=∏{
u ∈ Lϕ(Ω) : d(u,Eϕ(Ω)) < 1

k2

}
into

(
Lψ(Ω)

)p2
for the modular convergence.

Furthermore, if c ∈ Eγ(Ω) and γ ≺≺ ψ then Nf is strongly continuous from
(
P(Eϕ(Ω), 1

k2
)
)p1

into(
Eγ(Ω)

)p2
.

Lemma 2.9. Let uk, u ∈ Lϕ(Ω). If uk → u for the modular convergence, then uk → u for σ(Lϕ, Lϕ).

Lemma 2.10. [5] Let Ω be a bounded open subset of RN , N ≥ 2, satisfying the segment property,
then {

u ∈ W 1,x
0 Lϕ(ΩT ) :

∂u

∂t
∈ W−1,xLϕ(ΩT ) + L1(ΩT )

}
⊂ C

(
[0, T ], L1(Ω)

)
.

Lemma 2.11. Let wn, w ∈ Lϕ(Ω) and Let vn, v ∈ Lϕ(Ω). If wn → w and vn → v modularly in
Lϕ(Ω) and Lϕ(Ω) respectively, then

lim
n→∞

∫
Ω

wnvn dx =

∫
Ω

wv dx.

Proof . Since wn → w and vn → v modularly in Lϕ(Ω) and Lϕ(Ω) respectively, then let λ, µ > 0
such that

lim
n→∞

∫
Ω

ϕ
(
x,
wn − w

λ

)
dx = 0 and lim

n→∞

∫
Ω

ϕ
(
x,
vn − v
µ

)
dx = 0.

On the other hand, note that

wnvn − wv = (wn − w)(vn − v) + wnv + wvn − 2wv.
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By Young’s inequality we get

1

λµ

∣∣∣ ∫
Ω

(wnvn − wv) dx
∣∣∣ ≤ ∫

Ω

ϕ
(
x,
wn − w

λ

)
dx+

∫
Ω

ϕ
(
x,
vn − v
µ

)
dx

+
1

λµ

∣∣∣ ∫
Ω

(wnv + wvn − 2wv) dx
∣∣∣.

Passing to the limit as n→∞, the desired result follows. �

Lemma 2.12. [7](Integral Poincaré’s type inequality in Musielak spaces). Let Ω be a
bounded open subset of RN . Under the assumptions of lemma 2.4, and by assuming that ϕ(x, t)
depends only on N − 1 coordinates of x, there exists a positive constant δ > 0 which depends only on
Ω such that ∫

Ω

ϕ(x, |u(x)|) dx ≤
∫

Ω

ϕ(x, δ|∇u(x)|) dx ∀u ∈ W 1
0Lϕ(Ω).

Lemma 2.13. If fn ⊂ L1(Ω) with fn → f ∈ L1(Ω) a. e. in Ω, fn, f ≥ 0 a. e. in Ω and∫
Ω

fn(x) dx→
∫

Ω

f(x) dx, then fn → f in L1(Ω).

3. Basic assumptions and main result

Through this paper Ω is a bounded open subset of RN , N ≥ 2, ΩT = Ω × (0, T ) where T is a
positive real number and ϕ is a Musielak function. Consider b : Ω×R→ R a Carathéodory function
such that for every x ∈ Ω, b(x, s) is a strictly increasing C1-function with b(x, 0) = 0 and for any

k > 0, there exists λk > 0, a function Ak ∈ L∞(Ω) and a function Ãk ∈ Lϕ(Ω) such that,

λk ≤
∂b(x, s)

∂s
≤ Ak(x) and

∣∣∣∇x

(∂b(x, s)
∂s

)∣∣∣ ≤ Ãk(x). (3.1)

Let A : D(A) ⊂ W 1,x
0 Lϕ(ΩT )→ W−1,xLϕ(ΩT ) be an operator of Leray-Lions type of the form:

Au := −divA(x, t, u,∇u),

Our main goal in this study is to prove existence of renormalized solutions in the setting of Musielak
spaces for the nonlinear parabolic problem

∂b(x, u)

∂t
− divA(x, t, u,∇u)− div Φ(x, t, u) = f in ΩT

b(x, u)(t = 0) = b(x, u0) in Ω
u = 0 on ∂Ω× (0, T ).

(3.2)

where A : ΩT × R × RN → RN is a Carathéodory function satisfying, for almost every (x, t) ∈ ΩT

and for all s ∈ R, ξ, η ∈ RN(ξ 6= η) the following conditions

(H1) There exists a function c(x, t) ∈ Eϕ(ΩT ) and some positive constants k1, k2 and a Musielak
function ψ ≺≺ ϕ such that

|A(x, t, s, ξ)| ≤ c(x, t) + ϕ−1
x (ψ(x, k1|s|)) + ϕ−1

x (ϕ(x, k2|ξ|)).

(H2) The vector A is strictly monotone(
A(x, t, s, ξ)−A(x, t, s, η)

)
·
(
ξ − η

)
> 0.
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(H3) A is coercive, there exists a constant α > 0 such that

A(x, t, s, ξ) · ξ ≥ αϕ(x, |ξ|).

For the lower order term, we assume Φ : ΩT × R → RN be a non coercive Carathéodory function
satisfying a natural growth:

(H4) For all s ∈ R and for almost every x ∈ Ω,

|Φ(x, t, s)| ≤ γ(x, t) + ϕ−1
x (ϕ(x, |s|)), with γ ∈ Eϕ(ΩT ).

For that concerns the right hand, f ∈ L1(ΩT ), u0 ∈ L1(Ω).

Lemma 3.1. [38] Under assumptions (H1)-(H3), let (Zn) be a sequence in W 1,x
0 Lϕ(ΩT ) such that

Zn ⇀ Z in W 1,x
0 Lϕ(ΩT ) for σ(ΠLϕ(ΩT ),ΠEϕ(ΩT )), (3.3)(

A(x, t, Zn,∇Zn)
)
n

is bounded in
(
Lϕ(ΩT )

)N
, (3.4)

lim
n,s→∞

∫
ΩT

(
A(x, t, Zn,∇Zn)−A(x, t, Zn,∇Z1s)

)
·
(
∇Zn −∇Z1s

)
dxdt = 0, (3.5)

where 1s denotes the characteristic function of the set Ωs =
{
x ∈ Ω : |∇Z| ≤ s

}
. Then,

∇Zn → ∇Z a.e. in ΩT , (3.6)

lim
n→∞

∫
ΩT

A(x, t, Zn,∇Zn)∇Zn dx dt =

∫
ΩT

A(x, t, Z,∇Z)∇Z dx dt, (3.7)

ϕ(x, |∇Zn|) −→ ϕ(x, |∇Z|) in L1(ΩT ). (3.8)

In what follows, we will use the following real function of a real variable, called the truncation at
height k > 0,

Tk(s) = max
(
− k,min(k, s)

)
=

{
s if |s| ≤ k

k
s

|s|
if |s| > k.

Now, we give the definition of a renormalized solution for problem (3.2).

Definition 3.2. A measurable function u defined on ΩT is said a renormalized solution for problem
(3.2) if

Tk(u) ∈ W 1,x
0 Lϕ(ΩT ) ∀k ≥ 0, and b(x, u) ∈ L∞(0, T, L1(Ω)), (3.9)

lim
m→∞

∫
{m≤|u(x,t)|≤m+1}

A(x, t, u,∇u)∇u dxdt = 0, (3.10)

and if, for every function r (renormalization) in W 1,∞(R) with compact support, we have

∂Br(x,u)
∂t

− div (r(u)A(x, t, u,∇u)) + r′(u)A(x, t, u,∇u)∇u
−div (r(u)Φ(x, t, u)) + r′(u)Φ(x, t, u)∇u = fr(u),

in D′(ΩT ),

(3.11)

where Br(x, τ) =

∫ τ

0

∂b(x, s)

∂s
r′(s) ds and Br(x, u)(t = 0) = Br(x, u0) in Ω.
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Remark 3.3. [38, 40] For every r ∈ W 2,∞(R) nondecreasing function such that supp(r′) ⊂ [−k, k]
and (3.1), we have

λk|r(s1)− r(s2)| ≤ |Br(x, s1)−Br(x, s2)| ≤ ‖Ak‖L∞(Ω)|r(s1)− r(s2)|,

for almost every x ∈ Ω and for every s1, s2 ∈ R.

Lemma 3.4. Let ϕ be a Musielak function log-Hölder continuous, then there exists two Orlicz func-
tions q and Q such that
(i) For all (x, t) ∈ Ω× R+

q(t) ≤ ϕ(x, t) ≤ Q(t),

(ii) One has also

ϕ−1
x (ϕ(x, t)) ≤ Q

−1
(Q(t)) for all (x, t) ∈ Ω× R+,

where Q and ϕ are the complementary functions of Q and ϕ respectively.
(iii) [34] q(t) ≤ ϕ(x, t)⇐⇒ ϕ(x, t) ≤ q(t).

Proof . (i) For the construction of q, one can consult [34], for Q, let (Ωi)
N
i=1 be a finite partition

of Ω such that diamΩi ≤ 1
2
. Let us fix an element xi in each part Ωi. Let x ∈ Ω, there exists

i ∈ {1, ..., N} such that x ∈ Ωi. We have for all t ≥ 1 and a.e x ∈ Ω

ϕ(x, t) ≤ ϕ(xi, t)t
( A

log( 1
|x−xi|

)
)

≤ ϕ(xi, t)t
A

log 2 ≤
N∑
i=1

ϕ(xi, t)t
A

log 2 .

Put Q(t) =
N∑
i=1

ϕ(xi, t)t
A

log 2 which is an N -function.

(ii) Let s, t ∈ R+ and x ∈ Ω. We have ϕ(x, t) ≤ Q(t), then

st− ϕ(x, t) ≥ st−Q(t).

Passing to the sup over t ≥ 0

sup
t≥0
{st− ϕ(x, t)} ≥ sup

t≥0
{st−Q(t)}.

That means
ϕ(x, s) := ϕx(s) ≥ Q(s), for all s ∈ R+.

It follows that for all s ∈ R+,

ϕ−1
x (s) ≤ Q

−1
(s)

Taking s = ϕ(x, t), since Q
−1

is an increasing function, we have ∀t ∈ R+,

ϕ−1
x (ϕ(x, t)) ≤ Q

−1
(ϕ(x, t)) ≤ Q

−1
(Q(t)).

�

Remark 3.5. (R1) Since Ω is bounded, condition (i) of the previous lemma implies condition (iii)
of lemma 2.4.

(R2) If we assume that

∫
Ω

ϕ(x, c) dx <∞ for all constant c, we don’t need to use the N-function q.
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The following theorem is our main result.

Theorem 3.6. Suppose that the modular function ϕ verifies the hypotheses (i) and (ii) of lemma
2.4 the assumptions (H1)− (H4) hold true and f ∈ L1(ΩT ), then there exists at least a renormalized
solution for problem (3.2) in the sense of definition 3.2 .

The proof of the above theorem is divided into five steps.
Step 1: Approximate problems.

Let fn be a sequence of regular function in C∞0 (ΩT ) which converges strongly to f in L1(ΩT ) and
such that ‖fn‖L1 ≤ ‖f‖L1 and for each n ∈ IN∗, put

bn(x, s) = Tn(b(x, s)) +
1

n
s,

An(x, t, s, ξ) = A(x, t, Tn(s), ξ) a.e (x, t) ∈ ΩT ,∀s ∈ R,∀ξ ∈ RN ,

and
Φn(x, t, s) = Φ(x, t, Tn(s)) a.e (x, t) ∈ ΩT ,∀s ∈ R,

And let u0n ∈ C∞0 (Ω) such that

‖ bn(x, u0n) ‖L1≤‖ b(x, u0) ‖L1 and bn(x, u0n) −→ b(x, u0) in L1(Ω).

Considering the following approximate problem
∂bn(x, un)

∂t
− divA(x, t, un,∇un)− div Φn(x, t, un) = fn in ΩT

bn(x, un)(t = 0) = bn(x, u0) in Ω
un = 0 on ∂Ω× (0, T ).

(3.12)

Let zn(x, t, un,∇un) = An(x, t, un,∇un) + Φn(x, t, un), which satisfies (A1), (A2), (A3) and (A4) of
[4]. Indeed, it remains to verify (A4), to do this we use Young’s inequality as follows

|Φn(x, t, un)∇un| ≤ |γ(x)||∇un|+ ϕ−1
x (ϕ(x, |Tn(un)|))|∇un|

=
α2

α + 2

α + 2

α2
|γ(x, t)||∇un|

+
α + 1

α
ϕ−1
x (ϕ(x, |Tn(un)|)) α

α + 1
|∇un|

≤ α2

α + 2

(
ϕ
(
x,
α + 2

α2
|γ(x)|

)
+ ϕ

(
x, |∇un|

))
+ ϕ

(
x,
α + 1

α
ϕ−1
x (ϕ(x, |Tn(un)|))

)
+ ϕ

(
x,

α

α + 1
|∇un|

)
.

While
α

α + 1
< 1, using the convexity of ϕ and the fact that ϕ and ϕ−1

x ◦ ϕ are increasing functions,

one has

|Φn(x, t, un)∇un| ≤
α2

α + 2
ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
+

α2

α + 2
ϕ
(
x, |∇un|

)
+ ϕ

(
x,
α + 1

α
ϕ−1
x (ϕ(x, n))

)
+

α

α + 1
ϕ
(
x, |∇un|

)
.
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Since γ ∈ Eϕ(ΩT ), ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
∈ L1(Ω) and thanks to lemma 3.4,

ϕ
(
x,
α + 1

α
ϕ−1
x (ϕ(x, n))

)
≤ q

(α + 1

α
Q
−1

(Q(n))
)
,

then we get

Φn(x, t, un)∇un ≥ −
( α2

α + 2
+

α

α + 1

)
ϕ
(
x, |∇un|

)
− fixed L1function.

Using this last inequality and (H3) we obtain

zn(x, t, un,∇un)∇un ≥
(
α− α2

α + 2
− α

α + 1

)
ϕ
(
x, |∇un|

)
− fixed L1function

≥ α2

(α + 1)(α + 2)
ϕ
(
x, |∇un|

)
− fixed L1function.

Thus, from [4, 37], the approximate problem (3.12) has at least one weak solution un ∈ W 1,x
0 Lϕ(ΩT ).

Step 2: A Priori Estimates.

Proposition 3.7. Suppose that the assumptions (H1) − (H4) hold true and let (un)n be a solution

of the approximate problem (3.12). Then, for all k > 0, there exists two constants Ck, Ĉk (not
depending on n), such that:

‖ Tk(un) ‖W 1,x
0 Lϕ(ΩT )≤ Ck, (3.13)∫

Ω

Bn
k (x, un)(σ) dx ≤ Ĉk + k

(
‖f‖L1(ΩT ) + ‖b(x, u0‖L1(Ω)

)
, (3.14)

for almost any σ ∈ (0, T ) where Bn
k (x, τ) =

∫ τ

0

Tk(s)
∂bn(x, s)

∂s
ds, and

lim
k→∞

meas
{

(x, t) ∈ ΩT : |un| > k
}

= 0. (3.15)

Proof. Testing the approximate problem (3.12) by Tk(un)1(0,σ), one has for every σ ∈ (0, T )∫
Ω

(
Bn
k (x, un)(σ)−Bn

k (x, u0n)
)
dx+

∫
Ωσ

A(x, t, un,∇un)∇Tk(un) dx dt

+

∫
Ωσ

Φn(x, t, un)∇Tk(un) dx dt =

∫
Ωσ

fnTk(un) dx dt.
(3.16)

First, let us remark that Φn(x, t, un)∇Tk(un) is different from zero only on the set {|un| ≤ k} where
Tk(un) = un. From (H4) and then Young’s inequality for an arbitrary α > 0 (the constant of
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coercivity), we have∫
Ωσ

Φn(x, t, un)∇Tk(un) dx dt

≤
∫

Ωσ

|γ(x)||∇Tk(un)| dx dt

+

∫
Ωσ

ϕ−1
x (ϕ(x, |Tk(un)|))|∇Tk(un)| dx dt

=
α2

α + 2

∫
Ωσ

α + 2

α2
|γ(x)||∇Tk(un)| dx dt

+

∫
Ωσ

α + 1

α
ϕ−1
x (ϕ(x, |Tk(un)|)) α

α + 1
|∇Tk(un)| dx dt

≤ α2

α + 2

(∫
Ωσ

ϕ
(
x,
α + 2

α2
|γ(x)|

)
dx dt+

∫
Ωσ

ϕ
(
x, |∇Tk(un)|

)
dx dt

)
+

∫
Ωσ

ϕ
(
x,
α + 1

α
ϕ−1
x (ϕ(x, |Tk(un)|)

)
dx dt

+

∫
Ωσ

ϕ
(
x,

α

α + 1
|∇Tk(un)|

)
dx dt.

(3.17)

Since γ ∈ Eϕ(ΩT ), then
α2

α + 2

∫
Ωσ

ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
dx dt = γ0 and while

α

α + 1
< 1, using the

convexity of ϕ and from lemma 3.4,∫
Ωσ

ϕ
(
x,
α + 1

α
ϕ−1
x (ϕ(x, |Tk(un)|)

)
dx dt ≤

∫
Ωσ

q
(α + 1

α
Q
−1

(Q(k)
)
dx dt = Cα

k <∞

Then (3.17) becomes ∫
Ωσ

Φn(x, t, un)∇Tk(un) dx dt

≤ γ0 + Cα
k +

α2

α + 2

∫
Ωσ

ϕ
(
x, |∇Tk(un)|

)
dx dt

+
α

α + 1

∫
Ωσ

ϕ
(
x, |∇Tk(un)|

)
dx dt.

(3.18)

On the other hand, we have ‖fn‖L1 ≤ ‖f‖L1 , which implies that∫
ΩT

fnTk(un) dx dt ≤ k‖f‖L1 . (3.19)

Concerning the first integral in (3.16), we have by construction of Bn
k (x, un),∫

Ω

Bn
k (x, un)(σ) dx ≥ 0 (3.20)

and

0 ≤
∫

Ω

Bn
k (x, u0n) dx ≤ k

∫
Ω

|bn(x, u0n)| dx ≤ k‖b(x, u0)‖L1(Ω). (3.21)
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Combining (3.16), (3.18), (3.19), (3.20) and (3.21) we get∫
Ωσ

A(x, t, Tk(un),∇Tk(un))∇Tk(un) dx dt

≤ γ0 + kCb,f + Cα
k +

α2

α + 2

∫
Ωσ

ϕ
(
x, |∇Tk(un)|

)
dx dt

+
α

α + 1

∫
Ωσ

ϕ
(
x, |∇Tk(un)|

)
dx dt,

(3.22)

where Cb,f = ‖f‖L1(Ω) + ‖b(x, u0)‖L1(Ω). Thanks to (H3), we deduce∫
Ωσ

(
α− α2

α + 2
− α

α + 1

)
ϕ
(
x, |∇Tk(un)|

)
dx dt ≤ γ0 + kCb,f + Cα

k . (3.23)

Since
(
α− α2

α + 2
− α

α + 1

)
=

α2

(α + 1)(α + 2)
> 0, finally we have∫

ΩT

ϕ
(
x, |∇Tk(un)|

)
dx dt ≤ (γ0 + kCb,f + Cα

k )
(α + 1)(α + 2)

α2
= Ck. (3.24)

To prove (3.14), we combine (3.16), (3.18), (3.19), (3.21), (3.22) and (3.24) with Ĉk = γ0 + Cα
k +

( α2

α+2
+ α

α+1
)Ck. Finally, we prove (3.15), to this end, since Tk(un) is bounded in W 1,x

0 Lϕ(ΩT ) there
exists λ > 0 and a constant C0 such that∫

ΩT

ϕ
(
x,
|Tk(un)|

λ

)
dx dt ≤ C0

By using young’s inequality, we obtain

meas
{
|un| > k

}
=

1

k

∫
{|un|>k}

k dx dt ≤ 1

k

∫
ΩT

|Tk(un)| dx dt

≤ λ

k

(∫
ΩT

ϕ
(
x,
|Tk(un)|

λ

)
dx dt+

∫
ΩT

ϕ(x, 1) dx dt
)

≤ λ

k

(
C0 + q(1)|ΩT |

)
∀n, ∀k > 0,

−→ 0 as k −→∞.

(3.25)

Which implies (3.15).

Lemma 3.8. Let un be a solution of the approximate problem (3.12), then:
(i) un −→ u a.e. in ΩT ,
(ii) bn(x, un) −→ b(x, u) a.e. in ΩT ,
(iii) b(x, u) ∈ L∞(0, T ;L1(Ω)).

Proof. For (i) and (ii), we argue as in [40, Proposition 5.3], we take a C2(R) nondecreasing function

Γk such that Γk(s) =

{
s for |s| ≤ k

2
k for |s| ≥ k

and multiplying the approximate problem (3.12) by Γ′k(un)

we obtain

∂Bn
Γ(x, un)

∂t
= div

(
A(x, t, un,∇un)Γ′k(un)

)
−A(x, t, un,∇un)Γ′′k(un)∇un

+div
(

Γ′k(un)Φn(x, t, un)
)
− Γ′′k(un)Φn(x, t, un)∇un + fnΓ′k(un),

(3.26)
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where Bn
Γ(x, τ) =

∫ τ

0

∂bnk(x, s)

∂s
Γ′k(s) ds.

Remarking that ϕ−1
x ◦ ϕ is an increasing function, γ ∈ Eϕ(ΩT ), supp(Γ′k), supp(Γ

′′
k) ⊂ [−k, k] and

using Young’s inequality we get∣∣∣ ∫
ΩT

Γ′k(un)Φn(x, t, un) dx dt
∣∣∣

≤ ‖Γ′k‖L∞
(∫

ΩT

|γ(x, t)| dx dt+

∫
ΩT

ϕ−1
x (ϕ(x, |Tk(un)|) dx dt

)
≤ ‖Γ′k‖L∞

(∫
ΩT

(
ϕ(x, |γ(x, t)|) + ϕ(x, 1)

)
dx dt+

∫
ΩT

ϕ−1
x (ϕ(x, k) dx dt

)
≤ ‖Γ′k‖L∞

(∫
ΩT

(
ϕ(x, |γ(x, t)|) + ϕ(x, 1)

)
dx dt+

∫
ΩT

Q
−1

(Q(k) dx dt
)

< C1,k,

(3.27)

and (here, we use also estimate (3.24))∣∣∣ ∫
ΩT

Γ′′k(un)Φn(x, t, un)∇un dx dt
∣∣∣

≤ ‖Γ′′k‖L∞
(∫

ΩT

|γ(x, t)| dx dt+

∫
ΩT

ϕ−1
x (ϕ(x, |Tk(un)|)|∇Tk(un)| dx dt

)
≤ ‖Γ′′k‖L∞

[ ∫
ΩT

(
ϕ(x, |γ(x, t)|) + ϕ(x, 1)

)
dx dt+

∫
ΩT

ϕ(x, k) dx dt

+

∫
ΩT

ϕ(x, |∇Tk(un)|) dx dt
]

< C2,k,

(3.28)

where C1,k and C2,k are two positive constants independent of n. Then each term in the right-hand
side of (3.26) is bounded either in L1(ΩT ) or in W−1,xLϕ(ΩT ), which implies that

∂Bn
Γ(x, un)

∂t
is bounded in L1(ΩT ) +W−1,xLϕ(ΩT ). (3.29)

Moreover, due to the properties of Γ′k and (3.1), we have

|∇Bn
Γ(x, un)| ≤ ‖Ak‖L∞(Ω)|∇Tk(un)|‖Γ′k‖L∞(Ω) + k‖Γ′k‖L∞(Ω)Ãk(x),

which implies by (3.13), that

Bn
Γ(x, un) is bounded in W 1,x

0 Lϕ(ΩT ).

Arguing as in [40, 18, 19], we get (i) and (ii) of lemma 3.8.
To prove (iii), using (ii), we pass to the limit inferior in (3.14) as n −→ +∞, we get

1

k

∫
Ω

Bk(x, u)(σ) dx ≤ Ĉk
k

+
(
‖f‖L1(ΩT ) + ‖b(x, u0‖L1(Ω)

)
,

for almost any σ ∈ (0, T ). Tanks to the definition of Bk(x, s) and the convergence of
1

k

∫
Ω

Bk(x, u)

to b(x, u) as k goes to +∞, this gives that b(x, u) ∈ L∞(0, T ;L1(Ω)).
The next lemma will be used later, proving it now.
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Lemma 3.9. Let un be a solution of the approximate problem (3.12), then:
(i) {A(x, t, Tk(un),∇Tk(un))}n is bounded in (Lϕ(ΩT ))N ,

(ii) lim
m→+∞

lim
n→+∞

∫
{m≤|un|≤m+1}

A(x, t, un,∇un)∇un dx = 0.

Proof. (i) We will use the Banach-Steinhaus theorem. Let φ ∈ (Eϕ(ΩT ))N be an arbitrary function.
From (H2) we can write(

A(x, t, Tk(un),∇Tk(un))−A(x, t, Tk(un), φ)
)
·
(
∇Tk(un)− φ

)
≥ 0.

Which gives: ∫
ΩT

A(x, t, Tk(un),∇Tk(un))φ dx

≤
∫

ΩT

A(x, t, Tk(un),∇Tk(un))∇Tk(un) dx

+

∫
ΩT

A(x, t, Tk(un), φ)(φ−∇Tk(un)) dx.

(3.30)

Let us denote by J1 and J2 the first and the second integral respectively in the right-hand side of
(3.30), so that

J1 =

∫
ΩT

A(x, t, Tk(un),∇Tk(un))∇Tk(un) dx.

Going back to (3.22), we obtain

J1 ≤ γ0 + kCb,f + Cα
k +

α2

α + 2

∫
ΩT

ϕ
(
x, |∇Tk(un)|

)
dx dt

+
α

α + 1

∫
ΩT

ϕ
(
x, |∇Tk(un)|

)
dx dt,

(3.31)

And thanks to (3.13), there exists a positive constant CJ1 independent of n such that

J1 ≤ CJ1 . (3.32)

Now we estimate the integral J2, to this end, remark that

J2 =

∫
ΩT

A(x, t, Tk(un), φ)(φ−∇Tk(un)) dx dt

≤
∫

ΩT

|A(x, t, Tk(un), φ)||φ| dx dt+

∫
ΩT

|A(x, t, Tk(un), φ)||∇Tk(un)| dx dt.

On the other hand, let η be large enough, from (H1) and the convexity of ϕ, we get:∫
ΩT

ϕ
(
x,
|A(x, Tk(un), φ)|

η

)
dx dt

≤
∫

ΩT

ϕ
(
x,
c(x) + ϕ−1

x (Ψ(x, k1|Tk(un)|) + ϕ−1
x (ϕ(x, k2|φ|))

η

)
dx dt

≤ 1

η

∫
ΩT

ϕ(x, c(x)) dx dt+
1

η

∫
ΩT

ϕ
(
x, ϕ−1

x (Ψ(x, k1|Tk(un)|))
)
dx dt

+
1

η

∫
ΩT

ϕ
(
x, ϕ−1

x (ϕ(x, k2|φ|))
)
dx dt

≤ 1

η

∫
ΩT

ϕ(x, c(x)) dx dt+
1

η

∫
ΩT

Ψ(x, k1k) dx dt+
1

η

∫
ΩT

ϕ(x, k2|φ|) dx dt.

(3.33)
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Since φ ∈ (Eϕ(ΩT ))N , c(x) ∈ Eϕ(ΩT ), by remark 2.1 and lemma 3.4, we have∫
ΩT

Ψ(x, k1k) dx dt ≤ k(ε)

∫
ΩT

ϕ(x, εk1k) dx dt <∞,

we deduce that {A(x, t, Tk(un), φ)} is bounded in (Lϕ(ΩT ))N and we have {∇Tk(un)} is bounded in
(Lϕ(ΩT ))N , consequently, J2 ≤ CJ2 , where CJ2 is a positive constant not depending on n. And then
we obtain ∫

ΩT

A(x, Tk(un),∇Tk(un))φ dx dt ≤ CJ1 + CJ2 , for all φ ∈ (Eϕ(ΩT ))N . (3.34)

Finally, {A(x, t, Tk(un),∇Tk(un))}n is bounded in (Lϕ(ΩT ))N .
(ii) Testing (3.12) by θm(un) = Tm+1(un)− Tm(un), we have∫

Ω

Bm(x, un)(T ) dx+

∫
ΩT

A(x, t, un,∇un)∇θm(un) dx dt

+

∫
ΩT

Φn(x, t, un)∇θm(un) dx dt =

∫
Ω

Bm(x, u0n) dx

+

∫
ΩT

fnθm(un) dx dt,

(3.35)

where Bm(x, τ) =

∫ τ

0

∂b(x, s)

∂s
θm(s)ds. Since Bm(x, un)(T ) ≥ 0, hence from (H3) and (H4), it follows

α

∫
ΩT

ϕ(x, |∇θm(un)|) dx dt

≤
∫

ΩT

ϕ−1
x (ϕ(x, |un|))|∇θm(un)| dx dt+

∫
ΩT

|γ(x, t)||∇θm(un)| dx dt

+

∫
Ω

Bm(x, u0n) dx+

∫
ΩT

fnθm(un) dx dt.

(3.36)

That means, knowing that ∇θm(un) = ∇un1Em,n a.e. in ΩT where

Em,n :=
{

(x, t) ∈ ΩT : m ≤ |un| ≤ m+ 1
}
,

and following the same argument as in the proof of (3.13) of proposition 3.7, we get

α

∫
ΩT

ϕ(x, |∇θm(un)|) dx dt

≤
∫

ΩT

ϕ−1
x (ϕ(x, |un|))|∇un|1Em,n dx dt+

∫
Em,n

|γ(x, t)||∇θm(un)| dx dt

+

∫
Ω

Bm(x, u0n) dx+

∫
ΩT

fnθm(un) dx dt

≤
∫

ΩT

ϕ
(
x,
α + 1

α
ϕ−1
x (ϕ(x, |un|)

)
1Em,n dx dt+

∫
ΩT

ϕ
(
x,

α

α + 1
|∇θm(un)|

)
dx dt

+
α2

α + 2

(∫
Em,n

ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
dx dt+

∫
ΩT

ϕ
(
x, |∇θm(un)|

)
dx dt

)
+

∫
Ω

Bm(x, u0n) dx+

∫
ΩT

fnθm(un) dx dt.

(3.37)
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let Cα
max := max

(
(α + 1),

(α + 1)(α + 2)

α2

)
, it follows∫

ΩT

ϕ(x, |∇θm(un)|) dx dt

≤ Cα
max

[ ∫
Em,n

ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
dx dt+

∫
Ω

Bm(x, u0n) dx

+

∫
Em,n

q
(α + 1

α
Q
−1

(Q(|un|)
)
dx dt+

∫
ΩT

fnθm(un) dx dt
]
.

(3.38)

Now, let us concentrate on the convergence as n→∞ of each integral in (3.38), which can be treated
by the same way (Lebesgue’s dominated convergence theorem), take for example the first one:∫

{m≤|un|≤m+1}
ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
dx =

∫
Ω

ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
1{m≤|un|≤m+1} dx dt

Put gn = ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
1{m≤|un|≤m+1}, since 1 is continuous, then

gn −→ g = ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
1{m≤|u|≤m+1} a.e. in ΩT .

And we have |gn| ≤ ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
which is integrable on ΩT , since γ ∈ Eϕ(ΩT ). From

Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

∫
ΩT

gn dx dt =

∫
ΩT

lim
n→∞

gn dx dt =

∫
ΩT

ϕ
(
x,
α + 2

α2
|γ(x, t)|

)
1{m≤|u|≤m+1} dx dt.

Passing to the limit as n→∞ in (3.38), we get

limn→∞

∫
ΩT

ϕ(x, |∇θm(un)|) dx dt

≤ Cα
max

[ ∫
{m≤|u|≤m+1}

q
(α + 2

α2
|γ(x)|

)
dx dt+

∫
Ω

Bm(x, u0) dx

+

∫
{m≤|u|≤m+1}

q
(α + 1

α
Q
−1

(Q(|u|)
)
dx dt

+

∫
ΩT

fθm(u) dx dt
]
.

(3.39)

Now, we will pass to the limit as m→∞, by Lebesgue’s theorem each integral in (3.39) goes to zero
as m goes to ∞, which gives

lim
m→∞

lim
n→∞

∫
ΩT

ϕ(x, |∇θm(un)|) dx dt = 0. (3.40)

Our aim here is to prove that lim
m→∞

lim
n→∞

∫
ΩT

Φn(x, t, un)∇θm(un) dx dt = 0, to this end, Young’s

inequality allows us to get∫
ΩT

Φn(x, t, un)∇θm(un) dx dt ≤
∫

ΩT

ϕ(x, |∇θm(un)|) dx dt

+

∫
{m≤|un|≤m+1}

ϕ(x,Φn(x, t, un)) dx dt.
(3.41)
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We have already proved that the first integral in the right-hand side of (3.41) goes to zero as m
and n go to ∞, it remains to show that the second one goes to zero again. indeed, note that, for
n ≥ m + 1 ≥ |un| we have Tn(un) = Tm+1(un) = un, then, from (H4) and the convexity of ϕ we
obtain ∫

{m≤|un|≤m+1}
ϕ(x,Φn(x, t, un)) dx dt

=

∫
{m≤|un|≤m+1}

ϕ(x, |Φ(x, t, Tm+1(un))|) dx dt

≤
∫
{m≤|un|≤m+1}

ϕ(ϕ−1
x (ϕ(x, |Tm+1(un)|)) dx dt

≤
∫
{m≤|un|≤m+1}

ϕ(x, |Tm+1(un)|) dx dt

≤
∫

ΩT

Q(m+ 1) dx dt.

(3.42)

We deduce that ∫
{m≤|un|≤m+1}

ϕ(x, |Φ(x, t, Tm+1(un))|) dx dt

=

∫
ΩT

ϕ(x, |Φ(x, t, Tm+1(un)|) 1{m≤|un|≤m+1}dx dt ≤ C0,m.
(3.43)

Let us denote Gm
n = ϕ(x, |Φ(x, t, Tm+1(un)|) 1{m≤|un|≤m+1} −→ Gm a.e. in Ω where

Gm = ϕ(x, |Φ(x, t, Tm+1(u)|) 1{m≤|u|≤m+1},

since ϕ is continuous and Φ is a Carathéodory function. From (3.43), Gm
n is bounded independently

of n, using Lebesgue’s theorem, it follows, as n −→∞∫
{m≤|un|≤m+1}

ϕ(x, |Φn(x, t, un)|) dx dt −→
∫
{m≤|u|≤m+1}

ϕ(x, |Φ(x, t, u)|) dx dt. (3.44)

And then

lim
m→∞

lim
n→∞

∫
{m≤|un|≤m+1}

ϕ(x, |Φn(x, t, un)|) dx dt = 0 (3.45)

Combining (3.40), (3.41) and (3.45) we get

lim
m→∞

lim
n→∞

∫
ΩT

Φn(x, t, un)∇θm(un) dx dt = 0 (3.46)

At the end, let m,n −→∞ in (3.35), we find

lim
m→∞

lim
n→∞

∫
{m≤|un|≤m+1}

A(x, t, un,∇un)∇un dx dt = 0. (3.47)

Step 3: Almost everywhere convergence of the gradients.
In this step, most parts of the proof of the following proposition are the same argument as in [38].

Proposition 3.10. Let un be a solution of the approximate problem (3.12). Then, for all k ≥ 0 we
have (for a subsequence still denoted by un): as n→ +∞,
(i) ∇un → ∇u a.e. in ΩT ,
(ii) A(x, t, Tk(un),∇Tk(un)) ⇀ A(x, t, Tk(u),∇Tk(u)) weakly in (Lϕ(ΩT ))N ,
(iii) ϕ(x, |∇Tk(un)|)→ ϕ(x, |∇Tk(u)|) strongly in L1(ΩT ).
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Proof. Let θj ∈ D(ΩT ) be a sequence such that θj −→ u in W 1,x
0 Lϕ(ΩT ) for the modular conver-

gence and let ψi ∈ D(Ω) be a sequence which converges strongly to u0 in L1(Ω).

Put Zµ
i,j = Tk(θj)µ + e−µtTk(ψi) where Tk(θj)µ is the mollification with respect to the time of

Tk(θj), notice that Zi
µ,j is a smooth function having the following properties:

∂Zµ
i,j

∂t
= µ(Tk(θj)− Zµ

i,j), Zµ
i,j(0) = Tk(ψi) and |Zµ

i,j| ≤ k,

Zµ
i,j −→ Tk(u)µ + e−µtTk(ψi), in W 1,x

0 Lϕ(ΩT ) modularly as j −→∞,

Tk(u)µ + e−µtTk(ψi) −→ Tk(u), in W 1,x
0 Lϕ(ΩT ) modularly as µ −→∞.

Let now the function hm defined on R for any m ≥ k by:

hm(r) =


1 if |r| ≤ m
−|r|+m+ 1 if m ≤ |r| ≤ m+ 1
0 if |r| ≥ m+ 1.

Put Em,n =
{

(x, t) ∈ ΩT : m ≤ |un| ≤ m + 1
}

and testing the approximate problem (3.12) by the

test function ϕµ,in,j,m = (Tk(un)− Zµ
i,j)hm(un), we get〈∂bn(x, un)

∂t
, ϕµ,in,j,m

〉
+

∫
ΩT

A(x, t, un,∇un)(∇Tk(un)−∇Zµ
i,j)hm(un) dx dt

+

∫
ΩT

A(x, t, un,∇un)(Tk(un)− Zµ
i,j)∇unh′m(un) dx dt

+

∫
Eϕ

Φn(x, t, un)∇unh′m(un)(Tk(un)− Zµ
i,j) dx dt

+

∫
ΩT

Φn(x, t, un)hm(un)(∇Tk(un)−∇Zµ
i,j) dx dt

=

∫
ΩT

fnϕ
µ,i
n,j,m dx dt.

(3.48)

For to be simple, we will denote by ε(n, j, µ, i) and ε(n, j, µ) any quantities such that

lim
i→+∞

lim
µ→+∞

lim
j→+∞

lim
n→+∞

ε(n, j, µ, i) = 0,

lim
µ→+∞

lim
j→+∞

lim
n→+∞

ε(n, j, µ) = 0.

We have the following lemma which can be found in [38, 40].

Lemma 3.11. (cf. [38, 40]) Let ϕµ,in,j,m = (Tk(un)− Zµ
i,j)hm(un), then for any k ≥ 0 we have:〈∂bn(x, un)

∂t
, ϕµ,in,j,m

〉
≥ ε(n, j, µ, i), (3.49)

where <,> denotes the duality pairing between L1(ΩT ) +W−1,xLϕ(ΩT ) and L∞(ΩT ) ∩W 1,x
0 Lϕ(ΩT ).
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To complete the proof of proposition 3.10, we establish the results below, for any fixed k ≥ 0, we
have:

(r1)

∫
ΩT

fnϕ
µ,i
n,j,m dx dt = ε(n, j, µ).

(r2)

∫
ΩT

Φn(x, t, un)hm(un)(∇Tk(un)−∇Zµ
i,j) dx dt = ε(n, j, µ).

(r3)

∫
Em,n

Φn(x, t, un)∇unh′m(un)(Tk(un)− Zµ
i,j) dx dt = ε(n, j, µ).

(r4)

∫
ΩT

A(x, t, un,∇un)(Tk(un)− Zµ
i,j)∇unh′m(un) dx dt ≤ ε(n, j, µ,m).

(r5)

∫
ΩT

[A(x, t, Tk(un),∇Tk(un))−A(x, t, Tk(un),∇Tk(u)1s)]

×[∇Tk(un)−∇Tk(u)1s] dx dt ≤ ε(n, j, µ,m, s).
The proofs of (r1), (r4) and (r5) are the same as in [38, 40].
To prove (r2) and (r3) to this end, we must have the strong convergence of Φn(x, t, Tm+1(un)) in

(Eϕ(ΩT ))N , for n ≥ m+ 1, we have

Φn(x, t, un)hm(un) = Φ(x, t, Tm+1(un))hm(Tm+1(un)) a.e in ΩT .

put Pn = ϕ
(
x,
|Φ(x, t, Tm+1(un))− Φ(x, t, Tm+1(u))|

η

)
. Since Φ is continuous with respect to its third

argument and un −→ u a.e in ΩT , then Φ(x, t, Tm+1(un)) → Φ(x, t, Tm+1(u)) a.e in ΩT as n goes to
infinity, besides ϕ(x, 0) = 0, it follows

Pn −→ 0, a.e in ΩT as n→∞. (3.50)

Using now the convexity of ϕ and (H4), we have for every η > 0 and n ≥ m+ 1:

Pn = ϕ
(
x,
|Φ(x, t, Tm+1(un))− Φ(x, t, Tm+1(u))|

η

)
≤ ϕ

(
x,
|Φ(x, t, Tm+1(un))|+ |Φ(x, t, Tm+1(u))|

η

)
≤ ϕ

(
x,

2

η
|γ(x, t)|+ 2

η
Q
−1

(Q((m+ 1)))
)

= ϕ
(
x,

1

2

4

η
|γ(x, t)|+ 1

2

4

η
Q
−1

(Q((m+ 1)))
)

≤ 1

2
ϕ(x,

4

η
|γ(x, t)|) +

1

2
q(

4

η
Q
−1

(Q((m+ 1)))).

(3.51)

We put Zη
k (x) =

1

2
ϕ(x,

4

η
|γ(x, t)|) +

1

2
q(

4

η
Q
−1

(Q((m + 1)))), we have Zη
k ∈ L1(ΩT ), since γ ∈

Eϕ(ΩT ). Then by Lebesgue’s dominated convergence theorem we get

lim
n→∞

∫
ΩT

Pn dx dt =

∫
ΩT

lim
n→∞

Pn dx dt = 0. (3.52)

This implies that {Φ(x, t, Tm+1(un))} converges modularly to Φ(x, t, Tm+1(u)) as n→∞ in (Lϕ(ΩT ))N .
Moreover, Φ(x, t, Tm+1(un)) and Φ(x, t, Tm+1(u)) lie in (Eϕ(ΩT ))N , indeed, from (H4) we have for ev-
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ery η > 0 ∫
ΩT

ϕ
(
x,
|Φ(x, t, Tm+1(un))|

η

)
dx dt

≤
∫

ΩT

ϕ
(
x,

1

η
|γ(x, t)|+ 1

η
ϕ−1
x (ϕ(x, |Tm+1(un)|))

)
dx dt

≤
∫

ΩT

ϕ
(
x,

1

2

2

η
|γ(x, t)|+ 1

2

2

η
Q
−1

(Q((m+ 1)))
)
dx dt

≤
∫

ΩT

1

2
ϕ(x,

2

η
|γ(x, t)|) dx dt+

∫
ΩT

1

2
ϕ
(
x,

2

η
Q
−1

(Q((m+ 1)))
)
dx dt

≤
∫

ΩT

1

2
ϕ(x,

2

η
|γ(x, t)|) dx dt+

∫
ΩT

1

2
q
(2

η
Q
−1

(Q((m+ 1)))
)
dx dt

<∞ since γ ∈ Eϕ(ΩT ) and Ω is bounded,

the same for Φ(x, t, Tm+1(u)). Thanks to lemma 2.6, we deduce that Φ(x, t, Tm+1(un)) −→ Φ(x, t, Tm+1(u))
strongly in (Eϕ(ΩT ))N . On the other hand, ∇Tk(un) ⇀ ∇Tk(u) weakly in (Lϕ(ΩT ))N as n goes to
infinity, it follows that

limn→∞

∫
ΩT

Φ(x, t, un)hm(un)[∇Tk(un)−∇Zµ
i,j] dx dt

=

∫
ΩT

Φ(x, t, u)hm(u)[∇Tk(u)−∇Zµ
i,j] dx dt.

(3.53)

Using the modular convergence of Zµ
i,j as j −→ ∞ and then µ −→ ∞, we get (r2). Now we prove

(r3), remark that for n ≥ m+ 1, we have

∇unh′m(un) = ∇Tm+1(un) a.e in ΩT .

By the almost everywhere convergence of un, we have Tk(un) − Zµ
i,j converges to Tk(u) − Zµ

i,j in
L∞(ΩT ) weak-∗ and we have already proved that Φ(x, t, Tm+1(un)) −→ Φ(x, t, Tm+1(u)) strongly in
(Eϕ(ΩT ))N then,

Φ(x, t, Tm+1(un))
(
Tk(un)− Zµ

i,j

)
−→ Φ(x, t, Tm+1(u))

(
Tk(u)− Zµ

i,j

)
,

strongly in Eϕ(ΩT ) as n −→ ∞. Using again the fact that, ∇Tm+1(un) ⇀ ∇Tm+1(u) weakly in
(Lϕ(ΩT ))N as n tends to +∞ we obtain∫

Em,n

Φn(x, t, un)∇unh′m(un)(Tk(un)− Zµ
i,j) dx dt

−→
∫
Em

Φ(x, t, u)∇u(Tk(u)− Zµ
i,j) dx dt as n −→∞.

Using the modular convergence of Zµ
i,j as j −→ +∞ and letting µ tends to infinity, we get (r3). As

a consequence of lemma 3.1, the results of proposition 3.10 follow.
Step 4: Passing to the limit.

The limit u of the approximate solution un of (3.12) satisfies:

lim
m→∞

∫
{m≤|u|≤m+1}

A(x, t, u,∇u)∇u dx dt = 0. (3.54)
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Proof. Fix m > 0 and we can write∫
{m≤|un|≤m+1}

A(x, t, un,∇un)∇un dx dt

=
(∫

ΩT

A(x, t, un,∇un)(∇Tm+1(un)−∇Tm(un)) dx dt
)

=
(∫

ΩT

A(x, t, Tm+1(un),∇Tm+1(un))∇Tm+1(un) dx dt

−
∫

ΩT

A(x, t, Tm(un),∇Tm(un))∇Tm(un)) dx dt
)
.

Using (ii), (iii) of proposition 3.10 and passing to the limit as n goes to infinity for fixed m, we get

limn→∞

∫
{m≤|un|≤m+1}

A(x, t, un,∇un)∇un dx

=

∫
{m≤|u|≤m+1}

A(x, t, u,∇u)∇u dx.

Finally, we pass to the limit as m goes to infinity and then we use (3.47), it follows

limm→∞ limn→∞

∫
{m≤|un|≤m+1}

A(x, t, un,∇un)∇un dx dt

= limm→∞

∫
{m≤|u|≤m+1}

A(x, t, u,∇u)∇u dx dt = 0.

Which give the desired result.
Now, we will pass to the limit. Testing the approximate problem (3.12) by r(un) with r ∈ W 1,∞(R)

having a compact support such that for k > 0, supp(r) ⊂ [−k, k] we get

∂Bn
r (x, un)

∂t
− div (r(un)A(x, t, un,∇un)) + r′(un)A(x, t, un,∇un)∇un

−div (r(un)Φ(x, t, un)) + r′(un)Φ(x, t, un)∇un = fr(un) in D′(ΩT ),
(3.55)

where Bn
r (x, τ) =

∫ τ

0

∂bn(x, s)

∂s
r′(s) ds.

Our aim here is to pass to the limit in each term in the previous equality, let us start by the
terms of the left-hand side:

Limit of the first term
∂Bn

r (x, un)

∂t
, since r is bounded and Bn

r (x, un) −→ Br(x, u) a.e in ΩT and

in L∞(ΩT ) weak*, then

∂Bn
r (x, un)

∂t
−→ ∂Br(x, u)

∂t
in D′(ΩT ) as n→∞.

Remark that, since r and r′ have a compact support in R, there exists k > 0 such that supp(r), supp(r′) ⊂
[−k, k]. For n large enough, we have:

r(un)A(x, t, un,∇un) = r(un)A(x, t, Tk(un),∇Tk(un)) a.e. in ΩT ,

r′(un)A(x, t, un,∇un)∇un = r′(un)A(x, t, Tk(un),∇Tk(un))∇Tk(un) a.e. in ΩT ,

r(un)Φn(x, t, un) = r(Tk(un))Φn(x, t, Tk(un)),
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r′(un)Φn(x, t, un)∇un = r′(Tk(un))Φn(x, t, Tk(un))∇Tk(un).

For the second term of (3.55), Since r(un) → r(u) a.e in ΩT as n → ∞, r is bounded and (ii), (iii)
of proposition 3.10 we have

r(un)A(x, t, Tk(un),∇Tk(un)) ⇀ r(u)A(x, t, Tk(u),∇Tk(u))

weakly in (Lϕ(ΩT ))N for σ(ΠLϕ,ΠEϕ),
then

r(un)A(x, t, un,∇un) ⇀ r(u)A(x, t, u,∇u) weakly in (Lϕ(ΩT ))N .

Concerning the third term of (3.55), Since r′(un) → r′(u) a.e in ΩT as n → ∞, r′ is bounded and
(ii), (iii) of proposition 3.10 we obtain, as n→∞

r′(un)A(x, t, un,∇un)∇un ⇀ r′(u)A(x, t, Tk(u),∇Tk(u))∇Tk(u) weakly in L1(ΩT ).

And then
r′(u)A(x, t, Tk(u),∇Tk(u))∇Tk(u) = r′(u)A(x, t, u,∇u)∇u a.e. in ΩT .

Arguing similarly, we get the limit of the fourth term of (3.55),

r(un)Φn(x, t, un)→ r(u)Φ(x, t, u) strongly in (Eϕ(ΩT ))N .

For the remaining term of the left-hand side, we have r′(un) converges to r′(u) and∇Tk(un) ⇀ ∇Tk(u)
weakly in (Lϕ(ΩT ))N as n → +∞, while Φn(x, Tk(un)) is uniformly bounded with respect to n and
converges a.e. in ΩT to Φ(x, Tk(u)) as n tends to +∞. Therefore

r′(un)Φn(x, t, un)∇un ⇀ r′(u)Φ(x, t, u)∇u weakly in Lϕ(ΩT ).

Concerning the right-hand side of (3.55), due to (i) of lemma 3.8 and the fact that fn converges
strongly to f in L1(ΩT ), we have

fnr(un) −→ fr(u) strongly in L1(ΩT ) as n→∞.

Now, we are ready to pass to the limit as n→∞ in each term of (3.55) to conclude that u satisfies
(3.11). It remains to show that Br(x, u) satisfies the initial condition of (3.12). To do this, recall
that, r′ has a compact support, we have Bn

r (x, un) is bounded in L∞(ΩT ). Moreover, (3.55) and

the above considerations on the behavior of the terms of this equation show that
∂Bn

r (x, un)

∂t
is

bounded in L1(ΩT ) + W−1,xLϕ(ΩT ). As a consequence, an Aubin’s type Lemma (cf [41, Corollary
4] ) and (lemma 2.10) imply that Bn

r (x, un) is in a compact set of C0([0, T ];L1(Ω)). It follows that,
Bn
r (x, un)(t = 0) converges to Br(x, u)(t = 0) strongly in L1(Ω). Due to remark 3.3 and the fact

that bn(x, u0n) −→ b(x, u0) in L1(Ω), we conclude that Bn
r (x, un)(t = 0) = Bn

r (x, u0n) converges to
Br(x, u)(t = 0) strongly in L1(Ω). Then we conclude that Br(x, u)(t = 0) = Br(x, u0) in Ω.

That is the full proof of the main result.
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