
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,934 |
تعداد دریافت فایل اصل مقاله | 7,656,390 |
An Axisymmetric Lattice Boltzmann Method Simulation of Forced Convection Heat Transfer for Water/Aluminum Oxide Nanofluid through a Tube under Constant Heat Flux on Wall | ||
Journal of Heat and Mass Transfer Research | ||
دوره 8، شماره 1 - شماره پیاپی 15، مرداد 2021، صفحه 71-85 اصل مقاله (1.67 M) | ||
نوع مقاله: Full Length Research Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2021.21718.1312 | ||
نویسندگان | ||
Reza Bahoosh* ؛ Reza Khalili؛ Amin Reza NoghrehAbadi؛ Mohamad Jokari | ||
Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
تاریخ دریافت: 12 آبان 1399، تاریخ بازنگری: 01 اردیبهشت 1400، تاریخ پذیرش: 06 اردیبهشت 1400 | ||
چکیده | ||
Effects of different volumetric fractions and Reynolds number on forced convection heat transfer through water/aluminum oxide nanofluid in a horizontal tube are investigated. The flow regime is laminar and the method of simulation is the axisymmetric lattice Boltzmann method (ALBM). The profiles of velocity and temperature were uniform at the input section, on the tube walls the uniform heat flux was considered; moreover, hydrodynamic, and thermal development conditions at the output section were applied. It was observed that an increase in the volumetric concentration of the nanoparticles added to the forced convection heat transfer coefficient and Nusselt number of the nanofluid, as compared to the base fluid. For a volumetric fraction of 5% and Reynolds number of 100 at the input section of the tube (0.1≤X/D≤7) the forced convection heat transfer coefficient increased by 24.165%, while an average increase of 21.361% was observed along the entire length of the tube (0≤x/D≤30). A comparison between the improvements in heat transfer at the two input temperatures, it was found that the forced convection heat transfer coefficient and Nusselt number will increase further at the lower input temperature; Moreover, with increasing the Reynolds number, the percent improvements in forced convention heat transfer coefficient and Nusselt number increased. | ||
کلیدواژهها | ||
Heat transfer؛ Constant Heat Flux؛ Tube؛ ALBM؛ Nanofluid | ||
عنوان مقاله [English] | ||
شبیه سازی انتقال گرمای جابه جایی واداشته نانو سیال آب/اگسید آلومینیم درون لوله تحت شار گرمایی یکسان در دیواره با استفاده از روش لتیس بولتزمن تقارن محوری | ||
چکیده [English] | ||
اثرات کسرهای حجمی مختلف و عدد رینولدز بر انتقال گرمای همرفت واداشته با نانوسیال اکسید آب / آلومینیوم در یک لوله افقی بررسی شده است. رژیم جریان لایه ای است و روش شبیه سازی شبکه بولتزمن تقارن محوری (ALBM) است. توزیع های سرعت و دما در قسمت ورودی یکنواخت بودند، در دیواره لوله شار حرارت یکنواخت در نظر گرفته شد. افزون بر این ، شرایط مرزی هیدرودینامیکی و گرمایی توسعه یافته در بخش خروجی استفاده شد. مشاهده شد که افزایش غلظت حجمی نانوذرات به ضریب انتقال گرما همرفت واداشته و عدد نوسلت مایع نانوسیال در مقایسه با مایع پایه افزوده می شود. برای کسری حجمی 5٪ و عدد رینولدز 100 در قسمت ورودی لوله (0.1≤X/D≤7) ضریب انتقال حرارت همرفت اجباری 24.165٪ افزایش یافته است، در حالی که متوسط در طول لوله (0≤x/D≤30) 21.361٪ افزایش یافت. با مقایسه بین بهبود انتقال گرما در دو دمای ورودی، مشخص شد که ضریب انتقال گرمای همرفت واداشته و عدد ناسلت در دمای ورودی پایین بیشتر خواهد شد. افزون بر این، با افزایش عدد رینولدز، درصد بهبود در ضریب انتقال گرما واداشته و عدد نوسلت افزایش یافت. | ||
کلیدواژهها [English] | ||
انتقال گرما, شارگرمای یکسان, لوله, ALBM, نانوسیال | ||
مراجع | ||
[1] Das, S.K., Choi, S.U. and Patel, H.E., 2006. Heat transfer in nanofluids—a review. Heat transfer engineering, 27(10), pp.3-19. [2] Wang, X.Q. and Mujumdar, A.S., 2008. A review on nanofluids-part I: theoretical and numerical investigations. Brazilian Journal of Chemical Engineering, 25(4), pp.613-630. [3] Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J. and Lee, S., 1996. Enhanced thermal conductivity through the development of nanofluids (No. ANL/MSD/CP-90462; CONF-961202-94). Argonne National Lab., IL (United States). [4] Lee, S., Choi, S.S., Li, S.A. and Eastman, J.A., 1999. Measuring thermal conductivity of fluids containing oxide nanoparticles. [5] Xuan, Y. and Roetzel, W., 2000. Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 43(19), pp.3701-3707. [6] Wen, D. and Ding, Y., 2004. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International journal of heat and mass transfer, 47(24), pp.5181-5188. [7] Shah, R.K., 1975, December. Thermal entry length solutions for the circular tube and parallel plates. In Proceedings of 3rd national heat and mass transfer conference, 1, pp.11. Indian Institute of Technology Bombay. [8] Noghrehabadi, A. and Pourrajab, R., 2016. Experimental investigation of forced convective heat transfer enhancement of γ-Al 2 O 3/water nanofluid in a tube. Journal of 84 R.Bahoosh / JHMTR 8 (2021) 71- 85 Mechanical Science and Technology, 30(2), pp.943-952. [9] Hassanzadeh, R., Ozbek, A. and Bilgili, M., 2016. Analysis of alumina/water nanofluid in thermally developing region of a circular tube. Thermal Engineering, 63(12), pp.876-886. [10] Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G. and Joseph, D., 2003. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. International Journal of Multiphase Flow, 29(1), pp.117-169. [11] Xuan, Y. and Yao, Z., 2005. Lattice Boltzmann model for nanofluids. Heat and mass transfer, 41(3), pp.199-205. [12] Kefayati, G.R., Hosseinizadeh, S.F., Gorji, M. and Sajjadi, H., 2011. Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. International Communications in Heat and Mass Transfer, 38(6), pp.798-805. [13] Javaherdeh, K. and Ashorynejad, H.R., 2014. Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method. Advanced Powder Technology, 25(2), pp.666-675. [14] Sidik, N.A.C. and Mamat, R., 2015. Recent progress on lattice Boltzmann simulation of nanofluids: A review. International Communications in Heat and Mass Transfer, 66, pp.11-22. [15] Cheng, P., Gui, N., Yang, X., JiyuanTu and Jiang, S., 2018. Application of lattice Boltzmann methods for the multiphase fluid pipe flow on graphical processing unit. The Journal of Computational Multiphase Flows, 10(3), pp.109-118. [16] Goodarzi, M., D’Orazio, A., Keshavarzi, A., Mousavi, S. and Karimipour, A., 2018. Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural convection & mixed convection. Physica A: Statistical Mechanics and Its Applications, 509, pp.210-233. [17] Nazari, M. and Kayhani, M.H., 2016. A Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method. Journal of Heat and Mass Transfer Research, 3(2), pp.115-129. [18] Bahoosh, R., Jafari, M. and Bahrainian, S.S., 2019. GDL construction effects on distribution of reactants and electrical current density in PEMFC. Journal of Heat and Mass Transfer Research, 6(2), pp.105-116. [19] Shomali, M. and Rahmati, A., 2020. Numerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter. Journal of Heat and Mass Transfer Research, 7(1), pp.25-38. [20] Zhou, J.G., 2011. Axisymmetric lattice Boltzmann method revised. Physical review E, 84(3), p.036704. [21] Zhou, J.G., 2008. Axisymmetric lattice Boltzmann method. Physical Review E, 78(3), p.036701. [22] Guo, Z., Han, H., Shi, B. and Zheng, C., 2009. Theory of the lattice Boltzmann equation: lattice Boltzmann model for axisymmetric flows. Physical Review E, 79(4), p.046708. [23] Li, Q., He, Y.L., Tang, G.H. and Tao, W.Q., 2010. Improved axisymmetric lattice Boltzmann scheme. Physical Review E, 81(5), p.056707. [24] Li, Q., He, Y.L., Tang, G.H. and Tao, W.Q., 2009. Lattice Boltzmann model for axisymmetric thermal flows. Physical Review E, 80(3), p.037702. [25] Chang, C., Liu, C.H. and Lin, C.A., 2009. Boundary conditions for lattice Boltzmann simulations with complex geometry flows. Computers & Mathematics with Applications, 58(5), pp.940-949. [26] Ho, C.F., Chang, C., Lin, K.H. and Lin, C.A., 2009. Consistent boundary conditions for 2D and 3D lattice Boltzmann simulations. Computer Modeling in Engineering and Sciences (CMES), 44(2), p.137. [27] Javaherdeh, K. and Ashorynejad, H.R., 2014. Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method. Advanced Powder Technology, 25(2), pp.666-675. [28] Mohamad, A.A., 2011. Lattice Boltzmann Method, London, Springer. [29] Pourrajab R., 2013, Experimental investigation of forced convective heat transfer through channel with nanofluids. Msc Thesis, Shahid Chamran University, Ahvaz, Iran. [30] Pak, B.C. and Cho, Y.I., 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), pp.151-170. [31] Huminic, G. and Huminic, A., 2012. Application of nanofluids in heat exchangers: A review. Renewable and Sustainable Energy Reviews, 16(8), pp.5625-5638. R.Bahoosh / JHMTR 8 (2021) 71- 85 85 [32] Maiga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G. and Galanis, N., 2005. Heat transfer enhancement by using nanofluids in forced convection flows. International journal of heat and fluid flow, 26(4), pp.530-546. [33] Maxwell, J.C., 1873. A treatise on electricity and magnetism, Oxford: Clarendon Press. [34] Bejan, A., 2013. Convection heat transfer. John wiley & sons. [35] Incropera, F.P., Lavine, A.S., Bergman, T.L. and DeWitt, D.P., 2007. Fundamentals of heat and mass transfer. Wiley. [36] Hornbeck, R.W., 1966, January. AN ALL-NUMERICAL METHOD FOR HEAT TRANSFER IN INLET OF A TUBE. In MECHANICAL ENGINEERING, 88(1), pp. 76. 345 E 47TH ST, NEW YORK, NY 10017: ASME-AMER SOC MECHANICAL ENG. | ||
آمار تعداد مشاهده مقاله: 630 تعداد دریافت فایل اصل مقاله: 441 |