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Abstract

In this paper, a simple proof is presented for the convergence of the algorithms for the class of relaxed
(u, v)-cocoercive mappings and a-inverse strongly monotone mappings. Based on a-expansive maps,
for example, a simple proof of the convergence of the recent iterative algorithms by relaxed (u,v)-
cocoercive mappings due to Kumam-Jaiboon is provided. Also a simple proof for the convergence of
the iterative algorithms by inverse-strongly monotone mappings due to liduka-Takahashi in a special
case is provided. These results are an improvement as well as a refinement of previously known
results.
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1. Introduction

In this paper, some results for the class of relaxed (u,v)-cocoercive mappings and a-inverse
strongly monotone mappings (in a spacial case) are presented. There are many papers in the literature
on iterative algorithms which are used for example in optimization problems, variational inequality
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problems,; fixed point problems, equilibrium problems, Nash equilibrium problems, game theory,
saddle point problems, minimization problem, feasibility problems, complementarity problems; see
[T5] and the references therein. In this paper, a simple proof for the convergence of recent iterative
algorithms is presented which improve and refine the proof of known results in the literature.

2. Preliminaries

In this paper, it is assumed that C' is a nonempty closed convex subset of a real Hilbert space H
with inner product (.,.) and norm ||.||. Recall the following well known concepts:

(1) a mapping A : C' — H is said to be inverse-strongly monotone [6] [28], if there exist a > 0 such
that
(Az — Ay, —y) > af|Az — AylP?,

for all z,y € C,
(2) a mapping A : C' — H is said to be strongly monotone [30] [T, §1, p. 200], if there exists a

constant o« > 0 such that
(Az — Ay, x —3y) > allr — y|?, (2.1)

(3) a mapping B : C' — H is said to be relaxed (u,v)-cocoercive [6], if there exist two constants
u,v > 0 such that

(Bx — By,x —y) = (—u)||Bx — By|* + vllz — y|I*,

for all z,y € C. For u = 0, B is v-strongly monotone [30]. Clearly, every v-strongly monotone
map is a relaxed (u,v)-cocoercive map,

(4) for amap B : C'— H the classical variational problem is to find a u € C' such that (Bu,v—u) >
0, Vv € C. We denote by VI(C, B) the set of solutions of the variational inequality problem,

(5) let C' be a nonempty closed convex subset of a real Hilbert space H. Let B be a self mapping
on C'. Suppose that there exists a positive integer o such that

1Bz — Byl = aflz —yl,
for all z,y € C, then B is said to be a-expansive.

In this paper, using relaxed (u,v)-cocoercive mappings, a new proof of some recent iterative
algorithms is presented. A similar comment applies for inverse-strongly monotone mappings.

3. Relaxed (u,v)-cocoercive mappings

G. Cai and S. Bu [2], W. Chantarangs, C. Jaiboon, and P. Kumam [3], J.S. Jung [I1], P. Kumam
and C. Jaiboon [15], X. Qin, M. Shang and H. Zhou [22], X. Qin, M. Shang and Y. Su [21], X.
Qin, M. Shang and Y. Su [20], considered some iterative algorithms for finding a common element of
the set of fixed points of nonexpansive mappings and the set of solutions of a variational inequality
VI(C,A), where A is a relaxed (u,v)-cocoercive mapping of C' into H.

Lemma 3.1. Let A be a relazed (m,v)-cocoercive mapping and e-Lipschitz continuous such that
v—me> >0 and VI(C,A) # (0. Then A is a (v — me?)-expansive mapping and VI(C, A) is a
singleton set.
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Proof . To see that VI(C, A) is a singleton set, one can see [23, Proposition 2]. Next, since A is
(m, v)-cocoercive and e-Lipschitz continuous, for each x,y € C| it is concluded that

(Az — Ay, z —y) > (—=m)|| Az — Ay[* + v]|z — y|
(—=me*) [z —yl* + vllz — y|*

= (v —me)|lz —y|I* > 0,

>
>

hence, we have
| Az — Ayl > (v —me*) ||z -y,

so A is (v — me?)-expansive. [J

To see an example, Theorem 3.1 from P. Kumam and C. Jaiboon [15] is considered. To solve the
mixed equilibrium problem for an equilibrium function © : E x E — R, assume [I5, §2, p. 512]
that © satisfies the following conditions:

(H1) © is monotone, i.e., O(z,y) + O(y,z) < 0,Vz,y € E.
(H2) For each fixed y € E,z — O(x,y) is convex and upper semicontinuous.

(H3) For each z € E,z — O(x,y) is convex.

Theorem 3.2. (i.e., Theorem 3.1, from [I5], §3, p.515]) Let E be a nonempty closed convez subset of
a real Hilbert space H and let ¢ be a lower semicontinuous and convex functional from E to R. Let ©
be a bifunction from E X E to R satisfying (H1)— (H3), let {T,} be an infinite family of nonexpansive
mappings of E into itself and let B be a &-Lipschitz continuous and relazed (m,v)-cocoercive map of
E into H such that

ri= ﬁF(Tannvz(E,B) £ 0;

here Q is the set of solutions of the mized variational probem (i.e. the set of x’s in E with ©(x,y) +
o(y) —@(x) >0, Yy € E) and F(T,) is the set of fized points of T,,). Let p > 0,y > 0,7 > 0, be
three constants. Let f be a contraction of E onto itself with o € (0,1) and let A be a strongly positive
linear bounded operator on H with coefficient ¥ > 0 and 0 < v < AT - For 24 € H arbitrarily and

a

fixzed w € H, suppose {x,},{yn} and {z,} are generated iteratively by

O(2n, ) + @(x) — p(2n) + (K (20) = K' (), 1(, 2)) > 0,
Yn = apzn + (1 — @)W, Pg (2, — A\ Bzy) ,
Tpi1 = €n (U +Yf(Wazn)) + Brn + (1 — Bu) I — €n(I + pA)) Wy Pep(yn — 70 BYn),

for alln € N and x € E, where W,, is the W-mapping defined by (2.3) in [15, §2, p. 514] and
{en}, {an} and {B,} are three sequences in (0,1). Assume the following conditions are satisfied:
(C1) n: Ex E — H is Lipschitz continuous with constant X > 0 such that:
(a) n(z,y) +n(y,z) =0,Vr,y € E,
(b) n(-,-) is affine in the first variable,
(c¢) for each fized y € E,x — n(y,x) is sequentially continuous from the weak topology to the
weak topology;
(C2) K : E — R is n-strongly convex with constant o > 0 and its derivative K' is not only sequen-
tially continuous from the weak topology to the strong topology but also Lipschitz continuous
with constant v > 0 such that o > A\v;
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(C3) for each x € E, there exists a bounded subset D, C E and z, € E such that, for anyy € E\ D,,

1
Oy, 2:) +(20) = ly) + —{K'(y) = K'(2),n(20,y)) < 0;
(C4) limy_oo0t, = 0, lim,_oo€, = 0 and >° | €, = 00;
(C5) 0 < lim inf, B < lim sup, . Bn < 1;
(C6) limy—oo| A1 — M| = limy 0| Tos1 — Tn| = 0;
v—m. 2
(C7) {1} ,{\n} C la,b] for some a,b with 0 < a <b < el = £)
Then {z,} and {z,} converge strongly to z € T := ()~ F(T,) N QN VI(E,B), provided that S,
(here S, is given in [15, §2, p. 513]) is firmly nonexpansive, which solves the following optimization
problem:

1
OP: Zné@%(Az,x} + §||m —ul* = h(z);
here h is a potential function for ~ f.

Next, in the following remark, a simple proof for some similar results is presented:

Remark 3.3. A simple Proof: (i). Consider Theorem and the &-Lipschitz continuous and
relazed (m,v)-cocoercive mapping B in Theorem [3.4  From condition (C7) we may assume that
(v —mé&?) >0, and hence from Lemma B is (v — me?)-expansive, i.e,

[Bx — By|l > (v —mé&?)l|lx — ], (3.1)

and VI(E,B) is singleton i.e. there exists an element p € E such that VI(E,B) = {p}, hence
I = {p} in Theorem [3.4 The authors prove (see (3.25) in [15, p. 521]) that

lim || Bz, — Bp|| = 0. (3.2)

Now, put x = z, and y = p in (3.1), and from (3.1) and (3.2), we have

lim ||z, — p|| = 0.

Hence, z, — p. As a result one of the main claims of Theorem is established (note I' =
VI(E,B) = {p}). Note the proof in Theorem can be simplified further by using this remark (for
example Step 5 in [18, p. 526-528] is not needed since one can deduce it from (3.33) in [15, p.
524] and the fact that z, — p).

(i1). A similar remark applies to the main results in [, [3, (22, (20, [21)].

4. Inverse strongly monotone mappings

J. Chen, L. Zhang, T. Fan [4], S. Takahashi and W. Takahashi [27], H. Iliduka and W.Takahashi
[5], K. R. Kazmi, Rehan Ali and Mohd Furkan [13], X. Qin, M. Shang and Y. Su [21], M. Zhang [30],
S. Shan and N. Huang [25], T. Jitpeera and P. Kumam [7], S. Peathanom and W. Phuengrattana[I8],
Piri [19], X. Qin, M. Shang and Y. Su [20] and M. Lashkarizadeh Bami and E. Soori [16] considered
some iterative methods for finding a common element of a set of fixed points of nonexpansive map-
ping and the set of solutions of a variational inequality VI(C, A), where A is an a-inverse strongly
monotone mapping of C' into H. In this section, a spacial case similar to cocoercive mappings is
studied.
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Lemma 4.1. Let A be an a-inverse strongly monotone mapping and VI(C, A) # 0. Suppose that A
is also an y-expansive mapping. Then VI(C, A) is a singleton.

Proof . Since A is an a-inverse strongly monotone mapping, it is implied that
(Ax — Ay, z —5) > af|Az — Ay||* >0, (4.1)
(so A is monotone). Since A is y-expansive, it is concluded that
Az — Ayl = vz =y (4.2)

Therefore, A is one to one, because if Ax = Ay, then from (4.2), ||z — y|| = 0, and hence x = y. Let
T1,T2 € VI(C, A) Then
(Azy,y —x1) >0, (4.3)

for each y € C', and
<A$27 Y- I'2> > 07 (44)

for each y € C'. Substitute x; in (4.4) and x5 in (4.3)), then (Axy, 20 —21) > 0 and (Azg, 21 —22) > 0.
Adding them, it is implied that
<Al’2 - Al’l, To — I1> S 0. (45)

Since A is monotone, then (Axe — Axq,x9 — 1) > 0, and hence from (4.5)), it is concluded that
<AQ32 — Al’l,xz - I1> = 0. (46)

Then from (4.1)), Azo = Ax; and since A is one to one, it is gotten that o = x1. Then VI(C, A) is
singleton. [J

Remark 4.2. Note in Lemma we can replace (a): A being a y-expansive mapping with A being
one to one, and (b): A being an a-inverse strongly monotone with A being monotone.

Remark 4.3. A simple proof in a spacial case: (i). Consider Theorem 3.1 in [5, §3, p. 343];
note A is an a-inverse strongly monotone mapping there. If we consider an extra condition of -
expansiveness (or A being one to one) in Theorem 3.1 in [5] then from Lemma we have that
VI(C,A) is a singleton and hence in Theorem 3.1 in [5, §3, p. 343] F(S)NVI(C,A) is a singleton,
i.e, F(S)NVI(C,A) = VI(C,A) = {u} for an element uw € C. The authors prove (see line 8 from
below in [5, p. 345]) that

liTan | Az, — Aul| = 0. (4.7)

Now, put x = z,, and y = u and then from (4.7)) and , we have
lim ||z, — u|| = 0.

Hence, x, — u. Therefore we have the main claim of Theorem 3.1 (note F(S)NVI(C,A) =
VI(E,B) = {u}). As a result in this situation one can remove everything in the proof after line 8
from below in [5, p. 345].

(i1). A similar comment applies to the main results in [, [3, [7, (9, [8, [10, (11, [12, [13, (15, [16, [18,
79, 120, (21, (2], 123, 126, [27, (17, (29, [30] is similar to [3].

Remark 4.4. Note that the proof of these algorithms for inverse strongly monotone mappings can
not be simplified like in the proof of algorithms for cocoercive mappings in general. Indeed in Remark
[4.3, a simple proof is just introduced for a special case of these algorithms.
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5. Discussion

In this paper, a simple proof for the convergence of the algorithms of relaxed (u,v)-cocoercive
mappings and a-inverse strongly monotone mappings are presented. Indeed, a refinement of the
proofs of some well known results is presented.

6. Conclusion

In this paper, some refinements of the proofs of some well known results are given. Indeed, the
proofs of these results are made shorter than the original ones for the class of relaxed (u, v)-cocoercive
mappings and a-inverse strongly monotone mappings.
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