
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,901 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
Convergence theorems of a new multiparametric family of Newton-like method in Banach space | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 335-362 اصل مقاله (512.57 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.17555.1948 | ||
نویسندگان | ||
Chandni Kumari؛ P K Parida* | ||
Department of Mathematics, Central University of Jharkhand, Ranchi-835205, India | ||
تاریخ دریافت: 20 فروردین 1398، تاریخ پذیرش: 07 مهر 1399 | ||
چکیده | ||
In this work, we have considered a new multi-parametric family of modified Newton-like methods(MNL) of order three to approximate a zero of a nonlinear operator in $\mathbb{B}$-space (Banach space). Here, we studied the semilocal convergence analysis of this family of methods by using a new type of majorant condition. Note that this majorant condition generalizes the earlier majorant conditions used for studying convergence analysis of third order methods. Moreover, by using second-order directional derivative of the majorizing function we obtained an error estimate. We also established relations between our majorant condition and assumption based on Kantorovich, Smale-type and Nesterov-Nemirovskii-type, that will show our result generalize these earlier convergence results. | ||
کلیدواژهها | ||
Multi-parametric family of modified Newton-like (MNL) methods؛ Majorant conditions؛ Majorizing function؛ Nesterov-Nemirovskii condition؛ Kantorovich-type assumption؛ Smale-type assumption | ||
مراجع | ||
[1] I. K. Argyros, Newton-like methods and non-discrete mathematical induction, Studia Sci. Math. Hungar. 28 (1993) 417–426. [2] A. Sergio, I. K. Argyros, M. A. Hern´andez-ver´on and N. Romero, Expanding the applicability of some high order Househ¨older-like methods, E. Algor. 10 (2017) 64. [3] I. K. Argyros and R. Hongmin, Ball convergence theorems for Halley’s method in Banach space, J. Appl. Math. Comput. 38 (2012) 453–465. [4] I. K. Argyros and S. K. Khattri, An improved semilocal convergence analysis for the Chebyshev method, J. Appl. Math. Comput. 42 (2013) 509–528. [5] J. A. Ezquerro, J. M. Guti´errez, M. A. Hern´andez and M. A. Salanova, Chebyshev-like Methods and Quadratic equations, Revue d’analyse num´erique et de Th´eorie del´approximation, 28 (1999) 23–35 . [6] W. Gander, On Halley’s iteration method, Amer. Math. Month. 92 (1985) 131-–134 . [7] D. Han and X. Wang, The error estimates of Halley’s method, Numer. Math. JCU Engl. Ser. 6 (1997) 231–240. [8] M. A. Hern´andez and M. A. Salanova, Index of convexity and concavity, Appl. Halley Method, Appl. Math. Comput. 103 (1999) 27–49 . [9] M. A. Hern´andez and N. Romero, On a characterization of some Newton-like methods of R-order at least three, J. Comput. Appl. Math. 183 (2005) 53–66. [10] M. A. Hern´andez and N. Romero, On a new multiparametric family of Newton-like methods, Appl. Num. Anal. Comp. Math. 2(1) (2005) 78–88. [11] M. A. Hern´andez and N. Romero, General study of iterative processes of R-order at least three under the weak convergence condition, J. Optim Theory Appl. 133 (2007) 163–177. [12] J. B. Hilliart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms, Part 1. Springer, Berlin,1993. [13] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982. [14] C. Kumari and P. K. Parida, Local convergence analysis for Chebyshev’s method, J. Appl. Math. Comput. 59(1–2) (2019) 405–421. [15] R. Lin, Q. Wu, M. Chen, L. Liu and P. Dai, Semilocal Convergence Theorem for a Newton-like Method, East A. J. Appl. Math. 7 (2017) 482–494. [16] Y. Ling and X. Xu, On the semilocal convergence behavior for Halley’s method, Comput. Optim. Appl. 58 (2014) 597–618. [17] P. K. Parida and D. K. Gupta, Semilocal convergence of a third order Chebyshev-type method under a mild differentiability condition, Int. J. Comput. Math. 87 (2010) 3405–3419. [18] P. K. Parida and D. K. Gupta, Recurrence relations for a Newton-like method in Banach spaces, J. Comput. Appl. Math. 206 (2007) 873–887. [19] P. K. Parida and D. K. Gupta, A Newton-like method in Banach spaces under mild differentiability conditions, Kodai Math. J. 31 (2008) 414–430. [20] P. K. Parida and D. K. Gupta, Semilocal convergence of a family of third order methods in Banach spaces under H¨older continuous second derivative, Nonlinear Anal. Theory, Meth. Appl. 69 (2008) 4163–4173. [21] P. K. Parida and D. K. Gupta,Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces, J. Math. Anal. Appl. 345 (2008) 350–361. [22] P. K. Parida and D. K. Gupta, On the R-order convergence of a third order method in Banach spaces under mild differentiability conditions, Int. J. Comput. Meth. 6 (2009) 291–306. [23] H. Kumar and P. K. Parida, Three step Kurchatov method for nondifferentiable operators, Int. J. Appl. Comput. Math. 3(4)(2017) 3683–3704. [24] H. Kumar and P. K. Parida,On semilocal convergence of two step Kurchatov method, Int. J. Comput. Math. 96(8) (2019) 1548–1566. [25] L. B. Rall, Computational Solution of Nonlinear Operator Equations, E. Robert Krieger, New York, 1969. [26] X. Wang, Convergence on Newton’s method and inverse function theorem in Banach space, Math. Comput. 68 (1999) 169–186. [27] X. Wang and J. Kou, Convergence for a family of modified Chebyshev methods under weak condition, Numer. Algor. 66 (2014) 33–48. | ||
آمار تعداد مشاهده مقاله: 15,701 تعداد دریافت فایل اصل مقاله: 570 |