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Abstract

In this paper we prove several sharp inequalities that are new versions and extensions of Jensen and
H — H inequalities. Then we apply them on means.
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1. Introduction

Let o be a positive measure on X such that p(X) = 1. If f is a real-valued function in L'(u),
a < f(zr) <bforall x € X, and ¢ is convex on (a,b), then

w(/deu) </X(900f)du (1.1)

o (5 [ 1) < [ oo N

The inequality (1.1]) is known as Jensen’s inequality.
Let f : [a,b] — R be a convex function, then the inequality
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is known in the literature as Hermite-Hadamard inequality (H — H inequality). It is well known that
Jensen and H — H inequalities play an important role in non-linear analysis. In recent years there
have bean many extensions, generalizations and refinements of these inequalities; see [9], 12, 13|, [14]
and the references therein.

In this paper we prove several sharp integral inequalities that are new versions of and
inequalities. Then we apply these inequalities on means. For the statement of the main results we
introduce some notations and terminologies.

Definition 1.1. A function M : (0,00) x (0,00) — (0,00) called a mean if
1. M(z,y) = M(y, )
2. M(z,z) =x
3. x < M(z,y) <y, whenever x <y
4. M(ax,ay) = aM(z,y) for all a > 0.

Example 1.2.
a+b

)

1. The Arithmetic mean A(a,b) =

2. The Geometric mean G(a,b) = v/ab,

—b
3. The logarithmic mean L(a,b) = lrlZm(a #b),

4. The generalized logarithmic mean

|

bn+1 _ an+1 T
) @b,

N (=

1
AN
5. The Identric mean I(a,b) = — (—) (a #0),

e \a®
It is well- known that
min{a, b} < G(a,b) < L(a,b) < I(a,b) < A(a,b) < max{a, b}

Recently, the identric mean I(a,b) has been the subject of intensive research. In particular, many
remarkable inequalities for L(a,b) and I(a,b) can be found in the literature, see |4, [5] 6] [7, 8, 10} 1T}
15]. We define

n+1 n+1 n

a _ bn —an o 1 kan—k% a
Qulod) = o S a1 2 )T @D,
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By easy calculations we can see that @),,, P, and T}, are means.
In this paper we prove that

G(a,b) < L(a,b) < I(a,b) < Py(a,b) < A(a,b) < T,,(a,b) < L,(a,b)
and

L(a,b) < Qn(a,b) < P,(a,b)

2. Main results

Theorem 2.1. Let p be a positive measure on X such that p(X) < oo. If f is a non-negative
function in LY (u)(a > 1), then

W (/x fd”) " (/X f"_ldu)a < pu(X) (/X f"du) "
N /x fe Dy (2.1)

Proof . For proving the first part, considering the convexity of t*~*(a > 1) on [0, 00) and Jensen’s

inequality, we hoe
(s [ 1) < ﬁ/ a
= G o)™ < gy ()’
- gy (o)< (/X )

1 1
For the proof of second part let — + — =1, (p,q > 1). By Holder’s inequality we have
p q

=

|-

Q
M)

So

(/X f‘“‘ldu)a < (/X fp(“‘”du)z(u(X))?

Put ¢ =a > 1, then p = Ll > 1. Therefore
a JR—

( / f‘“‘ldu>a< ( / f‘“du)alu(X)

The proof of third part is similar to the proof of first part and therefore omitted. [J
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Corollary 2.2. Let a > 1, then
(i) C1 < Co1 < Cy < Cya-r), where

1
o - <a?+a§‘+...+a§>a

n

1 the mean power of positive numbers ay,as,...,a, of the order a.
(ii) (a1 +ag+...+a,)* <n*Haf+as+ ...+ a2

1
Proof . (i) Let X = {xy,z9,..., 2.}, p({:}) = - and f(z;) = a;. Then (2.1)) becomes

(cn +a2+ —i—an)a(a_l) <
n

-1 -1 1\ @
al” +ay + ...+ al
n

/
R

aff—i—ag“—{—...—i—ag)al

:>CL1+CL2+...—|—CLTL

1 -1 “1\ a-

< ai” +ay  +...+a, '

n n
L 1 D\ ata
(a5 a5+ +a2)°‘<<a?(a 4. tan® ))( ’
AN ~
n n

Hence Cy < Cazq < Cq < Chamny.-

(i) C1 < Cy = C¢ < CF. So
<a1+a2+...—|—an>a at +a§ + ...+ a

N

n n

[0}

= (a1 +ag+...+a,)* <n*(af+as +...+a%).

O
Remark 2.3. In general case we can prove that for any o, f € R
a< = C, <Cj
For more detils see ([13], [14l]) and corollary 2.12.
Theorem 2.4. Let b > a >0 andn € N, then
Qn(a,b) < P,(a, b) (2.2)
Proof . In middle part of inequalities(2.1)), put f(z) = =, d] and o = n. Hence

</Cd x"_ldx) ( ”d:}:) N
() e ()
N 1 - n" dn+1 n+1)n 1
(n+1)(d—c) ~ (n+1)» (d*—cM)n
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Multiplying both sides of inequality by d"*! — ¢!, we get
1 dn+1 o Cn+l n n dn+1 _ Cn+l n
<
n+1 d—c (n+1> ( dn —cn )
Now let b» = d and a= = ¢. Thus
1 b —a o n \" (b5 —a"n !
n+1 pr—agr  \n+1 b—a

and Qu(a,b) < Pal(a,b). O

Theorem 2.5. Let b > a >0 and n € N, Then the following inequalities hold:
(1) G(a,b) < I(a,b) < Py(a,b)
(#3) lim P,(a,b) = I(a,b)
n—oo

Proof . By the concavity of p(x) =Inx in (0,00) and Jensen’s inequality we have

1 b 1 by 1 b
In zrdx | > lnzrdy = ——— In zdx
b—a J, b—a J, n(b—a) J,

By easy calculations we see that

b nil okl
In 1 /xrlzdx =1In n b a
b—a/, n+1 b—a

1
1 b b\ n(o—a)
—/ Inzdx = In (b—) “Inen.
n(b—a) J, a®

On the other hand by the right side of H — H inequality we have

1 b
/ 1naj(ﬁj)lna—|—lnb
) Ja 2n

and

So
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(77) we have

b —a'n —a4b 1 . bt —gtt —ph4a
lim n = lim
n—oo (b — a) b—at=0 t
1 . btInb—a'ttina 1 bt
= lim = In —
b— at=0 1 b—a a®

So

, , no\" (0% —a " 1\ T
JLH;oinvb):,}L%(nH)( ) <o)

O

Theorem 2.6. Let [ be conver function on [a,b] and n € N. Then the following inequalities hold:

/ (fflizfi ) b—a / J( n—ll— T ;f (tha™™) (2:3)

The inequalities hold in reversed order if f is concave on [a,b].

Proof . By Jensen’s inequality we have

f(ﬁ/ﬂbm"dx) < ﬁ/ﬂbﬂw
f<<2n;1><z?n—a ) < / fla

For the proof of right side, by change of variable x = tb + (1 — t)a, we get
"dx = ((tb+ (1 —t dt
i [ e = [ g ey

= /0 f (; (k)t’“b’“( - )”_ka”_k> dt

Since Z < )tk (1 —¢)"" =1, by the convexity of f and considering

kl(n — k)!

1
tfA -t =Bk +1,n—k+1)=
[t = Bl =k ) = S
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' k kog(pk, n—k
< (1 =) (B a" ) dt
[ (p)ia-ortseras
=Y (k>f(bka”_k)/ th (1 — )" *at
0

()t

f (¥ ).

0
We can write inequalities (2.3 in the following form

1 - n— n—
f(n—i—l;bka k) b—a/f n+1 f(bk.a k)

=0

It shows that inequality is an extension of H — H inequality.
Corollary 2.7. Letb>a >0 andn € N, then

G(a,b) < I(a,b) < Ly(a,b)
Proof . f(z) =Inx is cocave on (0,00). So by we have

! iln(bk k) L /bln:c"dm<ln o —am
n+1c ¢ “b—al, = (n+1)(b—a)

_1
n+1

= In <H bka"k> 2 " (m Inz — x|2)
k=0 —a
<In ] a
k=0

/A

Since kua”_k = (ab)n(njl) and
k=0
n b 1 o\ "
— (xlnx—x|a) = b—aln <;) -n
we obtain

n

n b\ e 1
In(ab)z < In (E) +Ine™ <In o kzzobka”_k

Finally since e” is increasing, we get

@< (L) emg 2 Zb

4 =\ o S n+1 “
B\ T 1

= abg(—) - Zbk”k
a e

369
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O
Corollary 2.8. Letb>a >0 andn € N, Then

Qnla,b) < A(a,b) < L,(a,b) (2.5)

1

Proof . By the concavity of f(z) = z# on [0,00) and theorem [2.6| we have

O

3=

WV

bn+1_an+1 1 b 1 n 1
> d bk n—k\n
<(n—|—1)(b—a)) b—a/axx n+1§( ™)
n pntl _ gntl %

1 1 a+b
:>n+1;( ") > ((n—l—l)(b—a)

= Qnla,b) < A(a,b) < Ly(a,b).

In the following theorem we obtain an another extension of H — H inequality.

Theorem 2.9. Let f be a convez function on [a,b], then

)< (i bf(as)dx)n < [ e %sz:f”‘k(b)f’“(a) (26)

Proof . By the convexity of f, ¢(t) = t™ and Jensen’s inequality we have

a+b):fn(ﬁ/xdx)\(b_ /f dx) <ﬁ/abf”(:c)d:c

For the proof of right side by change of variable x = tb 4 (1 — t)a, we have

O

/f” daz—/f” (th+ (1 — £)a) dt

(tf b) + (1 —1)f(a))" di

1 n

t" FAROIE —t)kf’“(a)> dt

(Z) f- 1 t"’k(l — t)kdt
> (

I
:Nc\

I
M

O

Z)f” QO LI Zf" ) ().

(n+1) Cn+1

Eod

3l

0

0

Corollary 2.10. Let b >a >0 and n € N, then

G(a,b) < L(a,b) < T,(a,b) < Ly(a,b) (2.7)



Several integral inequalities and their applications on means 12 (2021) No. 2, 363-374 371
Proof . By the convexity of f(z) =e” on R, for d > ¢ > 0, n € N and Theorem2.9| we have

S \d—-c/, Sd—c/, \n—i—lkzo

n(etd) < ed _ ec n _ end — enc . 1 €(n+1)d _ 6(n—i—l)c
h S n(d—c) T n+l ed — ec

N ctd < ed — e < end _ one\ n o 1 e(TLJrl)d _ 6(n+1)c %
ez < <[————) <
d—c n(d —c) n+1 ed — ec

Put e? = b and e = a, then

b—a 0 prtl _ gntl \ w
vVab < <|—-—
ab\lnb—lna (n lnb—lna) = ((n—i—l)(b—a))
= G(a,b) < L(a,b) < Ty(a,b) < Ln(a,b).

O

Lemma 2.11. Let p be a positive measure on X such that p(X) < oo. If f is a non-negative
function in L*(p)(a = 1), then

ol <o o fra) o

Proof . Considering the convexity of o(t) = t*, concavity of ¢(t) = ta(a > 1) and Jensen’s
inequalities the assertion is obvious. [J

Corollary 2.12. With the notations of corollary we have C1 < C; < (.

1
Proof . Let X = {zy,29...,2,}, p({z;}) = — and f(x;) = a;. Then(2.8)) becomes
n

X X
n

n

1 1 1 1
af+a§+...+aﬁ> cutat. . Fan (a‘f+ag+.._+ag)a
n

=C gclgca-

1
a

UJ
Corollary 2.13. Letb>a >0 and n € N, then
P,(a,b) < A(a,b) < Ly,(a,b) (2.9)
Proof . Put X = [a,b], f(z) =z, and a = n, then becomes
b
i) - wur)

1 b \" 1 b
(b /:cndx) gb /chx (
—ajg, —ajg,

1 n n+1 n+1 n a + b bn+1 n+1
= . b n — T) < <
{b—a n+1< ‘ } 2 ((b—a n+1)

= Pu(a,) < A(,b) < Lu(a,b).

U
Now we want to prove that A(a,b) < T,(a,b). For this reason we need the following Lemma.
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Lemma 2.14. Lett > 1 and n > 3, then
n(l+6)"Int < 2"(t" — 1)
Proof . Considerf : [1,00) — R defined by
f@)=n(l4+t)"Int —2"(" — 1)
We have f/(t) = n?(1+¢)" 'Int + nw
that

—n-2""" 1 and f'(1) = 0. By easy calculations, we see

n((2n—1)t—1)(1+t)~1
t2

f'(t) =n*(n—1)(1+t)"%Int + —n(n —1)2"" 2

and f”(1) = 0. Put g(t) = ﬁf”(t), SO
— DA +)" 2t + (2n— Dt —1) (1 +8)" — (n—1)2""
Jgt) = ( —Dt(1+t)" ?Int+n(n—1)(n—-2)(1+t)">Int
n(n—1)(1+t)"2. % +(@2n— 1)1 +t)"
(n—1)(2n -1t —1) (1 +)" % —n(n—1)2""".

Hence
g (1) =2""2[-n?+3n] <0 (n>3)
On the other hand

1 t2
g(t)=—|2tf"(t) + 5 /'(t)

= 0> ¢/(1) = - [27"(1)] = /(1) < 0

It follows that f” attains its maximum at ¢ = 1.
Thus f”(t) < f”(1) = 0. Again it follows that f'(¢) < f’(1) = 0. Finally we deduce that

ft) < f(1)=0.

This shows that
n(l+¢)"Int<2"(t"—1) (t>1,n>3).

O
Corollary 2.15. Letb>a >0 andn > 3, then
A(a,b) < T,(a,b) (2.10)
Proof . If we put t = é > 1 in lemma |2.14] we get
a
n(l—l—é) ln9<2” (b——l)
a a a”
=n(a+b)"(Inb—1Ina) <2"(" —a") =
a+b\" " —a”
< ——F = A(a,b) <T,(a,b).

( 2 ) n(lnb—lna):> (a,5) (a.9)

O

Finally we prove that L(a,b) < Q,(a,b). First we prove the following lemma.
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Lemma 2.16. Lett > 1 and n € N, then
(n+1D{E" -1t —1) <n{t™™ —1)Int
Proof . Let f:[1,00) — R defined by

fO)=m+1D)E" =1t —1) —n{#"™ - 1)Int
=(n+Dt" —(n+ D" = (n+ Dt + (n+1) —nt"Int +nint.

By differentiating and easy calculations we obtain

PO =m+n+ D" —nn+ D — (n+1) —n(n+ )" Int + %

n— n— n— n
= f'(t) =03 " —nn? - D" —n*(n+ D" tnt — =

2
= (1) = (n* — 20° — 0"t —n(n? — 1)(n — 2)t" 3 — n2(n? — D" 2Int + t—Z
It follows that f/(1) = f”(1) = f"”(1) = 0. We have

FO ) = (n® =50t + 30 4+ 3nH)t" 3 — (n® — 5n* 4 503 + 5n? — 6n)t" 4
n— 6n
—n?(n*—1)(n—2)t ?’lnt—t—4

= f@(1) = —2n® — 2n% < 0

It follows that f” attains its maximum at ¢ = 1.

Thus f”(t) < f”(1) = 0. It follows that f” is decreasing on [1,00). Hence f”(t) < f”(1) = 0 and
f’ is decreasing on [1,00), that is f'(t) < f’(1) = 0. Finally we deduce that f is decreasing and
f(t) < f(1) = 0 The proof is complete. [

Corollary 2.17. Letb>a >0 and n € N then

L(a,b) < Qu(a,b). (2.11)

n

b
Proof . If we put t = (—) > 1 in lemma2.16| we obtain
a

b b bt b\

b— br — an b —a
(n+1)( a)( 1a >< Kla (Inb—1na)

a an
b—a b —an
Inb—Ina = (bs —an)(n+ 1)
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