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Abstract

In this manuscript, we initiate an almost α-F -contraction and an almost α-F -weak contraction in the
setting of partial metric spaces and establish adequate conditions for the existence of fixed points.
The obtained results generalize the classical and recent results of the literature, which are validated
by suitable examples. As applications of these established results, we solve a nonlinear fractional
differential equation and a boundary value problem.
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1. Introduction

Matthews [12] exhibited the idea of a partial metric space which is a productive instrument in develop-
ing some procedures that emerge normally in the fields of software engineering and is a generalization
of normal metric space portrayed in 1906 by Maurice Frèchet. Inspired by the requirements of com-
puter science, researchers generalized Banach’s contraction to a partial metric space which allowed
the possibility of non-zero self-distances. In fact, partial metrics are more adaptable having broader
topological properties than that of metrics and create partial orders. It is essential from a realistic
perspective that the fixed point exists which is possibly unique and we are capable to establish that
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fixed point.
Acknowledging the work of Berinde [3, 4], Wardowski [23] and Samet et al.[19], we familiarize with
an almost α-F -contraction and an almost α-F -weak contraction in the framework of partial metric
space and then establish adequate hypotheses for the existence of a single fixed point. Also, inspired
by the fact that fractional nonlinear differential equations are of great significance in the numerous
fields of science and engineering, we give an application of our result in establishing a solution of the
fractional differential equations satisfying periodic boundary conditions. Further, prompted by the
reality that concentrating solar energy to produce electricity in bulk is one of the technologies best
suited to mitigate climate change in a reasonable manner as well as reducing the consumption of
fossil fuels, we solve a boundary value problem emerging while transforming solar energy to electrical
energy.

2. Main Results

Now we familiarize with an almost α-F -contraction and an almost α-F -weak contraction in the
framework of partial metric space and then establish a fixed point of mappings satisfying these
contractions. For the sake of convenience, we assume that an expression -∞.0 has the value -∞.
Also p̃w(ρ, σ) = p̃(ρ, σ)−min{p̃(ρ, ρ), p̃(σ, σ)}.

Definition 2.1. A mapping T : X → X of a partial metric space (X, p̃) is known as an almost α-
F - contraction if there exist τ > 0, L ≥ 0 and functions F ∈ F and α : X ×X → {−∞} ∪ (0,+∞)
so that for ρ, σ ∈ X satisfying p̃(Tρ, Tσ) > 0, the subsequent inequality holds

τ + α(ρ, σ)F (p̃(Tρ, Tσ)) ≤ F (p̃(ρ, σ)) + Lp̃w(σ, Tρ).

Definition 2.2. A mapping T : X → X of a partial metric space (X, p̃) is known as an almost α- F -
weak contraction if there exist τ > 0 , L ≥ 0 and functions F ∈ F and α : X×X → {−∞}∪(0,+∞)
so that for ρ, σ ∈ X satisfying p̃(Tρ, Tσ) > 0, the subsequent inequality holds

τ + α(ρ, σ)F (p̃(Tρ, Tσ)) ≤ F

(
max

{
p̃(ρ, σ), p̃(ρ, Tρ), p̃(σ, Tσ),

p̃(ρ, Tσ) + p̃(σ, Tρ)

2

})
+ Lp̃w(σ, Tρ).

In each of the above definitions, a self map T is α-admissible ([19], [24]) and F is a family of the
functions [23] F : R+ → R so that:

(F1) µ < ν ⇒ F (µ) < F (ν), µ, ν ∈ R+,

(F2) for each sequence {µn} in R+, limn→∞ µn = 0 iff limn→∞ F (µn) = −∞,

(F3) limµ→0+ µ
kF (µ) = 0, k ∈ (0, 1).

Example 2.3. 1. F (µ) = lnµ, µ > 0,

2. F (µ) = lnµ+ µ, µ > 0,

3. F (µ) = − 1√
µ
, µ > 0,

4. F (µ) = ln(µ2 + µ), µ > 0.

Here, it is worth mentioning that on changing the elements of F , we may deduce distinct contractions
existing in the literature.
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Theorem 2.4. Let T : X → X be a continuous almost α-F -weak contraction on a 0-complete partial
metric space (X, p̃) so that α(ρ0, Tρ0) ≥ 1, ρ0 ∈ X. Then T has a fixed point ρ∗ ∈ X such that the
sequence {T nρ0}n∈N is convergent to ρ∗, ρ0 ∈ X.

Proof . Suppose ρ0 ∈ X be so that α(ρ0, Tρ0) ≥ 1. Define a sequence {ρn} in X as ρn+1 = Tρn
n ∈ N. If there exists n0 ∈ N so that ρn0+1 = ρn0 , then Tρn0 = ρn0 and the proof is finished. Let,
ρn+1 6= ρn n ∈ N. Therefore by given hypotheses, we obtain

α(ρ0, ρ1) = α(ρ0, Tρ0) ≥ 1.

Using α-admissibility of T ,we get,

α(Tρ0, Tρ1) = α(ρ1, ρ2) ≥ 1.

Again following the above steps, we get,

α(Tρ1, Tρ2) = α(ρ2, ρ3) ≥ 1,

and so on. By mathematical induction, we get

α(ρn, ρn+1) ≥ 1, n ∈ N. (2.1)

Since T is an almost α- F - weak contraction, we attain

F (p̃(ρn, ρn+1)) = F (p̃(Tρn−1, Tρn)) ≤ α(ρn−1, ρn)F (p̃(Tρn−1, Tρn)),

i.e.,

τ + F (p̃(ρn, ρn+1)) ≤ τ + α(ρn−1, ρn)F (p̃(Tρn−1, Tρn))

≤ F

(
max

{
p̃(ρn−1, ρn), p̃(ρn−1, Tρn−1), p̃(ρn, Tρn),

p̃(ρn−1, Tρn) + p̃(ρn, Tρn−1)

2

})
+Lp̃w(ρn, Tρn−1)

≤ F

(
max

{
p̃(ρn−1, ρn), p̃(ρn−1, ρn), p̃(ρn, ρn+1),

p̃(ρn−1, ρn+1) + p̃(ρn, ρn)

2

})
+Lp̃w(ρn, ρn).

By using triangular inequality in partial metric space, we get

p̃(ρn−1, ρn+1) ≤ p̃(ρn−1, ρn) + p̃(ρn, ρn+1)− p̃(ρn, ρn).

or
p̃(ρn−1, ρn+1) + p̃(ρn, ρn)

2
≤ p̃(ρn−1, ρn) + p̃(ρn, ρn+1)

2

≤ max

{
p̃(ρn−1, ρn), p̃(ρn, ρn+1)

}
.

Also p̃w is a metric on X, therefore

p̃w(ρn, ρn) = p̃(ρn, ρn)−min

{
p̃(ρn, ρn), p̃(ρn, ρn)

}
= 0.
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Hence,

τ + F (p̃(ρn, ρn+1)) ≤ F

(
max

{
p̃(ρn−1, ρn), p̃(ρn, ρn+1)

})
. (2.2)

If

max

{
p̃(ρn−1, ρn), p̃(ρn, ρn+1)

}
= p̃(ρn, ρn+1),

then from equation (2.2), we have

F (p̃(ρn, ρn+1) ≤ F (p̃(ρn, ρn+1))− τ,

which is impossible. So

max

{
p̃(ρn−1, ρn), p̃(ρn, ρn+1)

}
= p̃(ρn−1, ρn), n ∈ N.

Consequently, we attain

F (p̃(ρn, ρn+1)) ≤ F (p̃(ρn−1, ρn))− τ , n ∈ N

⇒ F (p̃(ρn, ρn+1)) ≤ F (p̃(ρn−2, ρn−1))− τ − τ
≤ F (p̃(ρn−2, ρn−1))− 2τ.

On generalizing

F (p̃(ρn, ρn+1)) ≤ F (p̃(ρ0, ρ1))− nτ , n ∈ N. (2.3)

As n→∞, we attain

F (p̃(ρn, ρn+1)) = −∞.

Using (F2) we get,

lim
n→∞

p̃(ρn, ρn+1) = 0. (2.4)

Using (F3), we claim that there exists k ∈ (0, 1) so that,

lim
n→∞

(p̃(ρn, ρn+1))kF (p̃(ρn, ρn+1)) = 0. (2.5)

Therefore from equation (2.3), for n ∈ N, we attain that

(p̃(ρn, ρn+1))k
(
F (p̃(ρn, ρn+1))− F (p̃(ρ0, ρ1))

)
≤ −(p̃(ρn, ρn+1))knτ ≤ 0. (2.6)

Using equations (2.4) and (2.5) and taking limit as n→∞ in equation (2.6), we attain

lim
n→∞

n(−(p̃(ρn, ρn+1))k) = 0.

So there exists n1 ∈ N and n(p̃(ρn, ρn+1))k ≤ 1, n ≥ n1, i.e.,

p̃(ρn, ρn+1) ≤ 1

n
1
k

, n ≥ n1. (2.7)
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For m > n > n1

p̃(ρn, ρm) ≤
m−1∑
i=n

p̃(ρi, ρi+1)−
n−2∑
n

p̃(ρi+1, ρi+1)

≤
m−1∑
i=n

p̃(ρi, ρi+1) <
∞∑
i=n

p̃(ρi, ρi+1) ≤
∞∑
i=1

1

i
1
k

.

By p-series test,
∑∞

i=1
1

i
1
k

is convergent as 1
k
> 1, Hence

lim
n,m→∞

p̃(ρn, ρm) = 0,

i.e., {ρn} is a 0-Cauchy sequence. Exploiting 0-completeness of partial metric space (X, p̃), there
exists ρ∗ ∈ X so that limn→∞ ρn = ρ∗. But T is a continuous, therefore

p̃(ρ∗, Tρ∗) = lim
n→+∞

p̃(ρn, Tρn) = lim
n→+∞

p̃(ρn, ρn+1) = 0,

i.e., ρ∗ is a fixed point of T. Further, limn→∞ T
nρ0 = limn→∞ T

n−1ρ1 = limn→∞ T
n−2ρ2 = ... =

limn→∞ ρn = ρ∗. This finishes the proof. �

Example 2.5. Let X = R, where (X, p̃) is a 0-complete partial metric space with partial metric

p̃(ρ, σ) =


max{ρ, σ}, ρ 6= σ

0, ρ = σ.

The mapping Tρ = ρ
2

, for all ρ ∈ X is continuous. Let us define the function α by

α(ρ, σ) =


1, ρ ≥ σ

0, otherwise.

Clearly, T is an almost α- F - weak contraction mapping, for all ρ, σ ∈ X, τ = 0.01, L = 1 and
F (α) = − 1

α
. Also, for ρ0 = 1, we have

α(1, T1) = α(1,
1

2
) = 1.

Further,

α(ρ, σ) ≥ 1⇒ ρ ≥ σ ⇒ Tρ ≥ Tσ ⇒ α(Tρ, Tσ) ≥ 1.

Thus, T is α-admissible. Now a sequence {ρn} = { 1
n
}n∈N is 0-Cauchy as limn→∞ p̃(

1
n
, 0) = p̃(0, 0) =

limn→∞ p̃(
1
n
, 1
m

) and converges to a point in X as X is 0-complete. Consequently, all the postulates
of Theorem (2.4) are verified and 0 is the fixed point of T .

Theorem 2.6. Let T : X → X be a continuous almost α-F -contraction on a 0-complete partial
metric space (X, p̃) so that α(ρ0, Tρ0) ≥ 1, ρ0 ∈ X. Then T has a fixed point ρ∗ ∈ X so that the
sequence {T nρ0}n∈N is convergent to ρ∗,ρ0 ∈ X.
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Proof . The proof is identical to Theorem (2.4).�

Theorem 2.7. Let T : X → X be an almost α-F -weak contraction on a 0-complete partial metric
space (X, p̃) satisfying the subsequent hypotheses:

(i) there exists ρ0 ∈ X so that α(ρ0, Tρ0) ≥ 1,

(ii) if {ρn} is a sequence in X so that ρn → ρ as n→ +∞ and α(ρn, ρn+1) ≥ 1, then α(ρn, ρ) ≥ 1,
n ∈ N.

Then T has a fixed point ρ∗ ∈ X and the sequence {T nρ0}n∈N is convergent to ρ∗, ρ0 ∈ X.

Proof . Suppose ρ0 ∈ X be so that α(ρ0, Tρ0) ≥ 1 and let ρn = Tρn−1 ,for all n ∈ N. On the
same lines of Theorem 2.4, we obtain that {ρn} is a 0-Cauchy sequence in the 0-complete partial
metric space (X, p̃). So, there exists ρ∗ ∈ X and ρn → ρ∗ as n→ +∞. From the hypothesis (ii) and
equation (2.1), we attain

α(ρn, ρ
∗) ≥ 1, n ∈ N.

Case (I) Let there exists in ∈ N and ρin+1 = Tρ∗ and in > in−1. So,

ρ∗ = lim
n→+∞

ρin+1 = lim
n→+∞

Tρ∗ = Tρ∗,

i.e., ρ∗ is a fixed point of T .

Case (II) Let that there exists n0 ∈ N so that ρn+1 6= Tρ∗, n ≥ n0 , i.e., p̃(Tρn, Tρ
∗) > 0, n ≥ n0.

Utilizing Definition (2.2) and (F1), we get

τ + F (p̃(ρn+1, Tρ
∗)) = τ + F (p̃(Tρn, Tρ

∗))

≤ τ + α(ρn, ρ
∗)F (p̃(Tρn, Tρ

∗))

≤ F

(
max

{
p̃(ρn, ρ

∗), p̃(ρn, Tρn), p̃(ρ∗, Tρ∗),
p̃(ρn, Tρ

∗) + p̃(ρ∗, Tρn)

2

})
+Lp̃w(ρ∗, Tρn)

≤ F

(
max

{
p̃(ρn, ρ

∗), p̃(ρn, ρn+1), p̃(ρ∗, Tρ∗),
p̃(ρn, Tρ

∗) + p̃(ρ∗, ρn+1)

2

})
+Lp̃w(ρ∗, ρn+1).

Now, p̃(ρn, Tρ
∗) ≤ p̃(ρn, ρ

∗) + p̃(ρ∗, Tρ∗)− p̃(ρ∗, ρ∗), therefore

τ + F (p̃(ρn+1, Tρ
∗)) ≤ F

(
max

{
p̃(ρn, ρ

∗), p̃(ρn, ρn+1), p̃(ρ∗, Tρ∗), (2.8)

p̃(ρn, ρ∗) + p̃(ρ∗, Tρ∗)− p̃(ρ∗, ρ∗) + p̃(ρ∗, ρn+1)

2

})
+L

{
p̃(ρ∗, ρn+1)−min{p̃(ρ∗, ρ∗), p̃(ρn+1, ρn+1)}

}
. (2.9)

If p̃(ρ∗, Tρ∗) > 0 and limn→∞ p̃(ρn, ρ
∗) = limn→∞ p̃(ρn+1, ρ

∗) = p̃(ρ∗, ρ∗).
Taking the limit as n→∞ in equation (2.8), we get

τ + F (p̃(ρ∗, Tρ∗))
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≤ F

(
max

{
p̃(ρ∗, ρ∗), p̃(ρ∗, ρ∗), p̃(ρ∗, Tρ∗),

p̃(ρ∗, ρ∗) + p̃(ρ∗, Tρ∗)− p̃(ρ∗, ρ∗) + p̃(ρ∗, ρ∗)

2

})
+ L

{
p̃(ρ∗, ρ∗)−min{p̃(ρ∗, ρ∗), p̃(ρ∗, ρ∗)}

}
≤ F

(
max

{
p̃(ρ∗, ρ∗), p̃(ρ∗, ρ∗), p̃(ρ∗, Tρ∗),

p̃(ρ∗, Tρ∗) + p̃(ρ∗, ρ∗)

2

})
≤ F

(
max

{
p̃(ρ∗, ρ∗), p̃(ρ∗, Tρ∗)

})
≤ F (p̃(ρ∗, Tρ∗)).

It is not possible as τ > 0, therefore our supposition is wrong and hence p̃(ρ, Tρ∗) = 0 ,i.e., ρ∗ is a
fixed point of T. Further limn→∞ T

nρ0 = limn→∞ T
n−1ρ1 = limn→∞ T

n−2ρ2 = ... = limn→∞ ρn = ρ∗.
This finishes the proof. �

Theorem 2.8. Let T : X → X be an almost α-F -contraction on a 0-complete partial metric space
(X, p̃) satisfying the subsequent hypotheses:

(i) there exists ρ0 ∈ X so that α(ρ0, Tρ0) ≥ 1,

(ii) if {ρn} is a sequence in X so that ρn → ρ as n→ +∞ and α(ρn, ρn+1) ≥ 1, then α(ρn, ρ) ≥ 1,
n ∈ N.

Then T has a fixed point ρ∗ ∈ X and the sequence {T nρ0}n∈N is convergent to ρ∗, ρ0 ∈ X.

Proof .The proof follows on similar lines as in Theorem (2.7). �

3. Applications

Now we exhibit a few utilizations of obtained results to fractional calculus and differential calculus.

3.1. Fractional Calculus

Fractional differential equations emerge in numerous engineering and scientific areas and serve as
an exceptional tool for the explanation of inherited properties of innumerable materials and processes.
However, these nonlinear fractional differential equations are difficult to solve and consequently
efficient technique for solving such equations is required.
Now, we introduce an utilization of Theorem 2.8 to solve a nonlinear fractional differential equation:

cDβ(ρ(u)) + T (u, ρ(u)) = 0, (0 ≤ u ≤ 1, β < 1) (3.1)

by means of boundary conditions ρ(0) = 0 = ρ(1), T : [0, 1] × R → R. The Caputo derivative of
fractional order β is

cDβ(S(u)) =
1

Γ(n− β)

u∫
0

(u− v)n−β−1Sn(v)dv,(n = [β] + 1), n ∈ N,

where S : [0,∞)→ R is a continuous function, Γ is a gamma function and [β] is the integer part of
the real number β . The Green function related to (3.1) is

G(u, v) =


(u(1− v))ξ−1 − (u− v)ξ−1, 0 ≤ v ≤ u ≤ 1

(u(1−v))ξ−1

Γ(ξ)
, 0 ≤ u ≤ v ≤ 1.
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Let X = C([0, 1],R) be the set of all continuous real functions from [0, 1] into R. Then X is a Banach
space and ‖ρ‖∞ = supu∈[0,1] |ρ(u)|, for all ρ ∈ X.
Theorem 3.1. Consider α1 : R × R → R and the nonlinear fractional differential equation (3.1).
Let, for all u ∈ [0, 1] :

1. |T (u, a)− T (u, b)| ≤ e−τ |a− b|, (τ > 0) , for a, b ∈ R.
2. ρ0 ∈ C([0, 1],R) so that α1(ρ0(u), Tρ0(u)) ≥ 0, where

Tρ(u) =

1∫
0

G(u, v)T (v, ρ(v))dv.

3. α1(ρ(u), σ(u)) > 0 implies α1(Tρ(u), Tσ(u)) > 0, for ρ, σ ∈ C([0, 1],R).
4. {ρn} is a sequence in C([0, 1],R) so that ρn → ρ in C([0, 1],R) and α1(ρn(u), ρn+1(u)) > 0,
n ∈ N, then α1(ρn(u), ρ(u)) > 0, n ∈ N.

Then the fractional differential equation (3.1) has at least one solution.

Proof .Clearly, finding the solution of equation (3.1) is analogous to establishing a fixed point ρ ∈ X.
Now

|Tρ(u)− Tσ(u)| =

∣∣∣∣
1∫

0

G(u, v)[T (v, ρ(v))− T (v, σ(v))]dv

∣∣∣∣
≤

1∫
0

G(u, v)|T (v, ρ(v))− T (v, σ(v))|dv

≤
1∫

0

G(u, v)e−τ |ρ(v)− σ(v)|dv

≤ e−τ‖ρ− σ‖∞ sup
u∈I

1∫
0

G(u, v)dv

≤ e−τ‖ρ− σ‖∞.
i.e.,

‖Tρ(u)− Tσ(u)‖∞ ≤ e−τ‖ρ− σ‖∞
or

p̃(Tρ, Tσ) ≤ e−τ p̃(ρ, σ).

Taking logarithm, we get
log(p̃(Tρ, Tσ)) ≤ log(e−τ p̃(ρ, σ))

or
τ + log(p̃(Tρ, Tσ)) ≤ log(p̃(ρ, σ)).

Let the function F : R+ → R be defined as F (ρ) = ln ρ, then F ∈ F .
Let α : X ×X → {−∞} ∪ (0,∞) be defined by

α(ρ, σ) =


1, if α1(ρ(u), σ(u)) > 0, u ∈ [0, 1],

−∞, otherwise.
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Therefore,
τ + α(ρ, σ)F (p̃(Tρ, Tσ)) ≤ F (p̃(ρ, σ)) ≤ F (p̃(ρ, σ)) + Lp̃w(σ, Tρ),

for all ρ, σ ∈ X with p̃(Tρ, Tσ) > 0 and L ≥ 0. Thus, T is an almost α- F - weak contraction. From
(2) there exists ρ0 ∈ X so that α(ρ0, Tρ0) ≥ 1.
Next, by using (3), we get, for all ρ, σ ∈ X

α(ρ, σ) ≥ 1⇒ α1(ρ(u), σ(u)) > 0⇒ α1(Tρ(u), Tσ(u)) > 0⇒ α(Tρ, Tσ) ≥ 1,

for all u ∈ [0, 1]. Hence T is α-admissible. Finally, using (4) all the postulates of Theorem 2.8 are
verified and consequently, ρ = Tρ and so ρ is a solution of (3.1). �

3.2. Differential Calculus.

Nowadays solar panels are manufactured and encouraged to lessen the enslavement human race
on the fewer merciful fossil fuels. The amount of energy to meet the demand needs an area of about
99858 square km. Consequently, it is essential that the region within Sun Belt should instantly begin
establishing the essential technological requirements for efficient management of energy. Although ,
we are aware of the idea of concentrating solar radiations to create high temperatures and transform
it into electricity for more than a century we did not utilize it .
The sunlight which reached the surface of the earth in one hour is sufficient to power the world for a
period of nearly 12 months. Motivated by this fact, we utilize the results to solve a boundary value
problem emerging in real-life model which converts solar energy to electrical energy. The reformation
of solar energy to electric energy is modelled as a Cauchy problem.

Uq R L C

Differential equation of such a problem can be given as:
d2I
du2

+ R
L
dI
du

= K(u, I(u));

I(0) = 0, I ′(0) = 0,
(3.2)

where K : [0, 1]× R+ → R is a function. The Green function associated to (3.2) is

G(u, v) =


(u− v)eτ(u−v), 0 ≤ v ≤ u ≤ 1

0, 0 ≤ u ≤ v ≤ 1,
(3.3)

where , τ > 0 is determined in terms of R and L. Let X = C([0, 1], R+). For an arbitrary ρ ∈ X, we
define

‖ρ‖τ = sup
u∈[0,1]

{|ρ(u)|e−τu} (3.4)
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and p̃ : X ×X → R+ by

p̃(ρ, σ) = ‖ρ− σ‖τ = sup
u∈[0,1]

{|ρ(u)− σ(u)|e−τu}. (3.5)

Clearly, (X, p̃) is a partial metric space [8]:

Theorem 3.2. Let T : C([0, 1]) → C([0, 1]) be a self mapping of a 0-complete partial metric space
(C([0, 1]), p̃) and α1 : R× R→ R such that:

1. a function K : [0, 1] × R+ → R satisfying |K(v, ρ) − K(v, σ)| ≤ τ 2e−τ p̃(ρ, σ), for τ ∈ R+,
v ∈ [0, 1] and ρ, σ ∈ R+;

2. ρ0 ∈ C([0, 1], p̃) such that α1(ρ0(u), Tρ0(u)) ≥ 0 and T : C([0, 1], p̃)→ C([0, 1], p̃) is defined by

Tρ(u) =

u∫
0

G(u, v)K(v, ρ(v))dv;

3. α1(ρ(u), σ(u)) > 0 implies α1(Tρ(u), Tσ(u)) > 0, for ρ, σ ∈ C([0, 1], p̃);

4. {ρn} is a sequence in C([0, 1], p̃) so that ρn → ρ in C([0, 1], p̃) and α1(ρn(u), ρn+1(u)) > 0,
n ∈ N, then α1(ρn(u), ρ(u)) > 0, n ∈ N.

Then equation (3.2) has a solution.

Proof . Cauchy problem (3.2) is comparable to

ρ(u) =

∫
G(u, v)K(v, ρ(v))dv, v ∈ [0, 1].

Thus, ρ is a solution of (3.2), iff ρ is a fixed point of T . Here

|Tρ(u)− Tσ(u)| ≤
u∫

0

G(u, v)|K(v, ρ(v))−K(v, σ(v))|dv

≤
u∫

0

G(u, v)τ 2e−τ p̃(ρ, σ)dv

≤
u∫

0

τ 2e−τe2τve−2τvp̃(ρ, σ)G(u, v)dv

≤ τ 2e−τ ||p̃(ρ, σ)||τ ×
u∫

0

e2τvG(u, v)dv

≤ τ 2e−τ ||p̃(ρ, σ)||τ ×
(
eτu

τ 2
(eτu − uτ − 1)

)
i.e., |Tρ(u)− Tσ(u)|e−τu ≤ e−τ‖p̃(ρ, σ)‖τ × (eτu − uτ − 1).

Since (eτu − uτ − 1) ≤ 1,

‖Tρ(u)− Tσ(u)‖τ ≤ e−τ‖p̃(ρ, σ)‖τ .
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Hence,
p̃(Tρ, Tσ) ≤ e−τ‖p̃(ρ, σ)‖τ .

Taking logarithm,
ln(p̃(Tρ, Tσ)) ≤ ln[e−τ (‖p̃(ρ, σ)‖τ )]

or
τ + ln(p̃(Tρ, Tσ)) ≤ (ln‖p‖τ ).

Let the function F : R+ → R be defined as F (ρ) = lnρ, ρ ∈ X, then F ∈ F ,
and α : X ×X → {−∞} ∪ (0,∞) as

α(ρ, σ) =


1, if α1(ρ(u), σ(u)) > 0, u ∈ [0, 1],

−∞, otherwise.

Therefore,
τ + α(ρ, σ)F (p̃(Tρ, Tσ)) ≤ F (p̃(ρ, σ)) ≤ F (p̃(ρ, σ)) + Lp̃w(σ, Tρ),

for all ρ, σ ∈ X with p̃(Tρ, Tσ) > 0 and L ≥ 0.
⇒ T is an almost α- F - weak contraction. From (2) there exists ρ ∈ X so that α(ρ, Tρ) ≥ 1. Using
(3), we get for all ρ, σ ∈ X,

α(ρ, σ) ≥ 1⇒ α1(ρ(u), σ(u)) > 0⇒ α1(Tρ(u), Tσ(u)) > 0⇒ α(Tρ, Tσ) ≥ 1,

for all u ∈ [0, 1]. Hence T is α-admissible. Finally, using (4) all the postulates of Theorem (2.8) are
verified. Hence, ρ = Tρ and so ρ is a solution of the problem (3.2). �

4. Conclusion

In this manuscript, we familiarized an almost α-F -contraction and an almost α-F - weak contrac-
tion to establish a fixed point in a 0-complete partial metric space. These novel ideas prompt further
examinations and applications. Our study is encouraged by the possible applications of partial metric
space. These applications perform a central role in some nonlinear processes originating in biology,
economics and numerical physics.
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