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Abstract

In this paper, we introduce the concept of sequential bipolar metric spaces which is a generalization
of bipolar metric spaces and bipolar b−metric spaces and in view of this concept we prove some fixed
point theorems for a class of covariant and contravariant contractive mappings over such spaces.
Supporting example have been cited in order to validity of the underlying space. Moreover, our fixed
point results are applied to well-posedness of fixed point problems.
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1. Introduction and Preliminaries

In recent years fixed point theory is one of the important research area in Mathematics, partic-
ularly in functional analysis. To investigate fixed points of mappings, researchers find interest to
work in finding solutions of natural problems in and around the globe with also development of fixed
point theory over a variety of topological structured metric spaces. Starting from the late nineties
much work has been progressed in the development of fixed point theory either by considering (i)
generalization of the underlying spaces or (ii) relaxing or generalizing the type of mappings or (iii) by
the combination of both (i) and (ii) (See [2]-[5], [7], [8], [10], [11], [14], [15], [17], [18]). In surveying
the literatures of fixed point theory one can find its applications in different areas of Mathematics
namely boundary value problems, nonlinear differential and integral equations, nonlinear functional
equations, nonlinear matrix equations, homotopy theory etc.

In the year 2016, Mutlu and Gürdal have introduced the concept of bipolar metric spaces which
is given below and proved some contractive fixed point theorems and coupled fixed point theorems
on such spaces (See [12],[13]).
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Definition 1.1. [12] Let E and F be two nonempty sets. Suppose that a function d : E×F → [0,∞)
satisfies the following conditions:

(B1) d(ξ, η) = 0 if and only if ξ = η;
(B2) d(ξ, η) = d(η, ξ) for all ξ, η ∈ E ∩ F ;
(B3) d(ξ1, η2) ≤ d(ξ1, η1) + d(ξ2, η1) + d(ξ2, η2) for all (ξ1, η1), (ξ2, η2) ∈ E × F.

The function d is called a bipolar metric on (E,F ) and the triplet (E,F, d) is called a bipolar-metric
space.

Recently Roy and Saha [16] have generalized bipolar metric spaces by introducing the concept
of bipolar conetvs b−metric space and by exhibiting some topological properties on such spaces. In
the same article Roy and Saha had been able to prove Cantor’s intersection theorem and also proved
several fixed point theorems. The definition of bipolar conetvs b−metric is given below:

Definition 1.2. [16] Let E be a real Hausdorff topological vector space with a solid cone K and � be
the partial ordering on E induced by K. Also let P and Q be two nonempty sets and db : P ×Q→ K
be a function, satisfies the following properties:

i) db(ξ, η) = θE if and only if ξ = η;
ii) db(ξ, η) = db(η, ξ) for all ξ, η ∈ P ∩Q;
iii) db(ξ1, η2) � s[db(ξ1, η1) + db(ξ2, η1) + db(ξ2, η2)] for all ξ1, ξ2 ∈ P and η1, η2 ∈ Q, where the

coefficient s ≥ 1.
Then db is called a bipolar conetvs b−metric on (P,Q) and the triplet (P,Q, db) is called a bipolar
conetvs b−metric space.

Recently Bajović et al. (See [1]) have modified the fixed point theorems proved by Roy et al.
[16].

Remark 1.3. If we take E = R with the usual cone K = [0,∞) then (P,Q, db) gives us a bipolar
b−metric space.

M. Jleli and B. Samet have given in their article [9] the following definition of generalized metric
space. The sequences on such spaces play a vital role and triangle inequality is not needed to define
such a metric structure.

Let A be a non-empty set and dJS : A× A→ [0,∞] be a mapping. For any ξ ∈ A, let us define
the set

C(dJS, A, ξ) = {{ξn} ⊂ A : lim
n→∞

dJS(ξn, ξ) = 0}. (1.1)

Definition 1.4. [9] Let dJS : A×A→ [0,∞] be a mapping which satisfies the following conditions:
(i) dJS(ξ, η) = 0 implies ξ = η for all ξ, η ∈ A;
(ii) for every ξ, η ∈ A, we have dJS(ξ, η) = dJS(η, ξ);
(iii) if (ξ, η) ∈ A×A and {ξn} ∈ C(dJS, A, ξ) then dJS(ξ, η) ≤ p lim supn→∞ dJS(ξn, η), for some

p > 0.
The pair (A, dJS) is called a generalized metric space, usually known as JS−metric space.
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2. Introduction to sequential bipolar metric space

In this section we introduce the notion of sequential bipolar metric spaces and prove some fixed
point theorems in such spaces.

Let X and Y be two non-empty sets and Dsb : X × Y → [0,∞] be a function. For ξ ∈ X and
η ∈ Y let us define the following sets

SL(X,Dsb, η) = {{ξn} ⊂ X : lim
n→∞

Dsb(ξn, η) = 0};

SR(Y,Dsb, ξ) = {{ηn} ⊂ Y : lim
n→∞

Dsb(ξ, ηn) = 0}.

Definition 2.1. Let X and Y be two nonempty sets and Dsb : X×Y → [0,∞] satisfies the following
conditions:

(Dsb1) Dsb(ξ, η) = 0 implies ξ = η ∈ X ∩ Y ;
(Dsb2) Dsb(ξ, η) = Dsb(η, ξ) for all ξ ∈ X and η ∈ Y ;
(Dsb3) there exists some k > 0 such that for all ξ1, ξ2 ∈ X and η1, η2 ∈ Y we have

Dsb(ξ1, η2) ≤ k lim sup
n→∞

[Dsb(ξ1, η1) +Dsb(ξn, η1)] for any {ξn} ∈ SL(X,Dsb, η2) and

Dsb(ξ1, η2) ≤ k lim sup
n→∞

[Dsb(ξ2, ηn) +Dsb(ξ2, η2)] for any {ηn} ∈ SR(Y,Dsb, ξ1).

Then Dsb is called sequential bipolar metric and the triplet (X, Y,Dsb) is called sequential bipolar
metric space. If X ∩ Y 6= ∅ then the space is called joint otherwise it is called disjoint. The sets X
and Y are said to be the left pole and the right pole of (X, Y,Dsb) respectively.

Example 2.2. Let X = Un(R) and Y = Ln(R) be the space of all upper triangular matrix of order
n and the space of all lower triangular matrix of order n. Let Dsb : X × Y → R+ be defined by

Dsb(U, V ) =
n∑

i,j=1

(|ui,j|+ |vi,j|)2 for all U = (ui,j)n×n ∈ X and V = (vi,j)n×n ∈ Y.

Clearly conditions (Dsb1) and (Dsb2) are satisfied. Now let A = (ai,j)n×n, U = (ui,j)n×n ∈ X and
B = (bi,j)n×n, V = (vi,j)n×n ∈ Y . If V 6= On×n then SL(X,Dsb, V ) = ∅. If V = On×n and {Uk =

(u
(k)
i,j )n×n} ∈ SL(X,Dsb, On×n) then

Dsb(A,B) +Dsb(Uk, B) =
n∑

i,j=1

(|ai,j|+ |bi,j|)2 +
n∑

i,j=1

(|u(k)i,j |+ |bi,j|)2 for all k ∈ N. (2.1)

Thus lim supk→∞[Dsb(A,B) + Dsb(Uk, B)] =
∑n

i,j=1(|ai,j| + |bi,j|)2 +
∑n

i,j=1 |bi,j|2 ≥
∑n

i,j=1 |ai,j|2 =
Dsb(A,On×n).

Also if A 6= On×n then SR(Y,Dsb, A) = ∅. If A = On×n and {Vk = (v
(k)
i,j )n×n} ∈ SR(Y,Dsb, On×n)

then similar as above we can show that

Dsb(On×n, V ) ≤ lim sup
k→∞

[Dsb(U, Vk) +Dsb(U, V )].

Hence (X, Y,Dsb) is a sequential bipolar metric space.
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Remark 2.3. (i) Any bipolar metric space (X, Y, d) is also sequential bipolar metric space.
verification: Clearly conditions (Dsb1) and (Dsb2) are satisfied. Now if (ξ1, η1), (ξ2, η2) ∈ X × Y

and {ξn} ∈ SL(X, d, η2), {ηn} ∈ SR(Y, d, ξ1) then

d(ξ1, η2) ≤ d(ξ1, ηn) + d(ξ2, ηn) + d(ξ2, η2) and

d(ξ1, η2) ≤ d(ξ1, η1) + d(ξn, η1) + d(ξn, η2) for all n ≥ 1.

By taking n→∞ it is seen that (Dsb3) is satisfied for k = 1.

(ii) Any bipolar b-metric space (X, Y, db) with coefficient s ≥ 1 is also sequential bipolar metric
space.

verification: The conditions (Dsb1) and (Dsb2) are trivially satisfied. Now if (ξ1, η1),
(ξ2, η2) ∈ X × Y and {ξn} ∈ SL(X, db, η2), {ηn} ∈ SR(Y, db, ξ1) then

db(ξ1, η2) ≤ s[db(ξ1, ηn) + db(ξ2, ηn) + db(ξ2, η2)] and

db(ξ1, η2) ≤ s[db(ξ1, η1) + db(ξn, η1) + db(ξn, η2)] for all n ∈ N.

Taking n→∞ it is verified that (Dsb3) is satisfied for k = s.

Any sequential bipolar metric space may not be always bipolar metric or bipolar b−metric space.
The following example supports our contention.

Example 2.4. Let X = Z+∪{0}, Y = Z−∪{0} and Dsb : X×Y → [0,∞] be defined by Dsb(0, 0) = 0,
Dsb(0,−n) = 1

n+1
, Dsb(n, 0) = 1

n
, Dsb(n,−n) = 1 for all n ≥ 1 and Dsb(m,−n) = 10 for all

m,n(m 6= n) ≥ 1. Then SL(X,Dsb,−n) = ∅ and SR(Y,Dsb, n) = ∅ for any n ∈ N. The conditions
(Dsb1) and (Dsb2) hold trivially. Now

Case-I: If ξ1 = 0 = η2 then the condition (Dsb3) is clearly satisfied for any ξ2 ∈ X and η1 ∈ Y.

Case-II: Let ξ1 = k for k ∈ N, η2 = 0 and ξ2 ∈ X be arbitrary. Let {ξn} ∈ SL(X,Dsb, 0) be
taken as arbitrary. Then two sub cases arise:
Subcase-I: η1 = 0. Then we see that

lim sup
n→∞

[Dsb(ξ1, η1) +Dsb(ξn, η1)] = lim sup
n→∞

[Dsb(k, 0) +Dsb(ξn, 0)]

≥ Dsb(k, 0) = Dsb(ξ1, η2). (2.2)

Subcase-II: η1 = −l, l ≥ 1. Then we see that

lim sup
n→∞

[Dsb(ξ1, η1) +Dsb(ξn, η1)] = lim sup
n→∞

[Dsb(k,−l) +Dsb(ξn,−l)]

≥ 1 >
1

k
= Dsb(ξ1, η2). (2.3)

Case-III: Let ξ1 = 0, η2 = −k for k ∈ N and η1 ∈ X be arbitrary. Let {ηn} ∈ SR(Y,Dsb, 0) be
taken as arbitrary. Then two sub cases arise:
Subcase-I: ξ2 = 0. Then we see that

lim sup
n→∞

[Dsb(ξ2, ηn) +Dsb(ξ2, η2)] = lim sup
n→∞

[Dsb(0, ηn) +Dsb(0,−k)]

≥ Dsb(0,−k) = Dsb(ξ1, η2). (2.4)
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Subcase-II: ξ2 = l, l ≥ 1. Then we see that

lim sup
n→∞

[Dsb(ξ2, ηn) +Dsb(ξ2, η2)] = lim sup
n→∞

[Dsb(l, ηn) +Dsb(l,−k)]

≥ 1 >
1

k + 1
= Dsb(ξ1, η2). (2.5)

Case-IV: If ξ1 = k, η2 = −l for k, l ≥ 1 then the condition (Dsb3) is clearly satisfied for any
ξ2 ∈ X and η1 ∈ Y since SL(X,Dsb,−l) = ∅ and SR(Y,Dsb, k) = ∅.

Therefore it follows that (X, Y,Dsb) is a sequential bipolar metric space. But it is not a bipolar
b−metric space for any k ≥ 1. Clearly if we choose ξ1 = m, η2 = −n for m,n(m 6= n) ≥ 1 and
ξ2 = 0 = η1 then

Dsb(ξ1, η1) +Dsb(ξ2, η1) +Dsb(ξ2, η2) =
1

m
+

1

n+ 1
→ 0 as m,n→∞. (2.6)

Also Dsb(ξ1, η2) = 10 for any m,n(m 6= n) ≥ 1 and hence (X, Y,Dsb) is not a bipolar b−metric space
for any k ≥ 1.

Definition 2.5. i) The opposite of a sequential bipolar metric space (X, Y,Dsb) is defined as the
sequential bipolar metric space (Y,X, D̄sb), where the function
D̄sb : Y ×X → [0,∞] is defined as D̄sb(y, x) = D̄sb(x, y).
ii) Let (X1, Y1) and (X2, Y2) be two pairs of sets.

The function G : X1∪Y1 → X2∪Y2 is called a covariant mapping if G(X1) ⊂ X2 and G(Y1) ⊂ Y2
and we denote this as G : (X1, Y1)⇒ (X2, Y2).

The function G : X1 ∪ Y1 → X2 ∪ Y2 is called a contravariant mapping if G(X1) ⊂ Y2 and
G(Y1) ⊂ X2 and we denote this as G : (X1, Y1)
 (X2, Y2).

If (X1, Y1, D
1
sb) and (X2, Y2, D

2
sb) are two sequential bipolar metric spaces then we use the notations

G : (X1, Y1, D
1
sb) ⇒ (X2, Y2, D

2
sb) and G : (X1, Y1, D

1
sb) 
 (X2, Y2, D

2
sb) for covariant mappings and

contravariant mappings respectively.

Definition 2.6. Let (X, Y,Dsb) be a sequential bipolar metric space. A point ζ ∈ X ∪ Y is said to
be a left point if ζ ∈ X, a right point if ζ ∈ Y and a central point if both hold.

A sequence {ξn} ⊂ X is called a left sequence and a sequence {ηn} ⊂ Y is called a right sequence.
A sequence {νn} ⊂ X ∪ Y is said to converge to a point ν if and only if {νn} is a left sequence,

ν is a right point and Dsb(νn, ν) → 0 as n → ∞ or {νn} is a right sequence, ν is a left point and
Dsb(ν, νn)→ 0 as n→∞.

Definition 2.7. A sequence {(ξn, ηn)} ⊂ X × Y is called a bisequence. If the sequences {ξn} and
{ηn} both converge then the bisequence {(ξn, ηn)} is called convergent in X × Y.

If {ξn} and {ηn} both converge to a point ν ∈ X ∩ Y then the bisequence {(ξn, ηn)} is called
biconvergent.

A sequence {(ξn, ηn)} is a Cauchy bisequence if Dsb(ξn, ηm)→ 0 whenever n,m→∞.
A sequential bipolar metric space is said to be complete if every Cauchy bisequence is convergent.

Definition 2.8. Let (X1, Y1, D
1
sb) and (X2, Y2, D

2
sb) be two sequential bipolar metric spaces:

i) The mapping G : (X1, Y1, D
1
sb) ⇒ (X2, Y2, D

2
sb) is called left-continuous at a point ξ0 ∈ X1 if

for every sequence {ηn} ⊂ Y1 with ηn → ξ0 we have G(ηn)→ G(ξ0) in (X2, Y2, D
2
sb).

ii) The mapping G : (X1, Y1, D
1
sb) ⇒ (X2, Y2, D

2
sb) is called right-continuous at a point η0 ∈ Y1 if

for every sequence {ξn} ⊂ X1 with ξn → η0 we have G(ξn)→ G(η0) in (X2, Y2, D
2
sb).
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iii) The mapping G : (X1, Y1, D
1
sb)⇒ (X2, Y2, D

2
sb) is said to be continuous, if it is left-continuous

at each point ξ ∈ X1 and right-continuous at each point η ∈ Y1.
iv) A contravariant mapping G : (X1, Y1, D

1
sb) 
 (X2, Y2, D

2
sb) is continuous if and only if it is

continuous as a covariant map G : (X1, Y1, D
1
sb)⇒ (Y2, X2, D̄

2
sb).

Proposition 2.9. Let (X, Y,Dsb) be a sequential bipolar metric space. If a central point ζ is a limit
of a sequence such that Dsb(ζ, ζ) = 0, then it is the unique limit of this sequence.

Proof . Let {ξn} be a left sequence in (X, Y,Dsb) which converges to some ζ ∈ X ∩ Y with
Dsb(ζ, ζ) = 0. If η ∈ Y be a limit of this sequence then we get

Dsb(ζ, η) ≤ k lim sup
n→∞

[Dsb(ζ, ζ) +Dsb(ξn, ζ)] = 0. (2.7)

Thus (2.7) shows that ζ = η. Therefore ζ is the unique limit of {ξn}. In a similar way if {ηn} is a
right sequence in (X, Y,Dsb) which converges to ζ ∈ X ∩ Y with Dsb(ζ, ζ) = 0 then also ζ is the
unique limit of {ηn}. �

Proposition 2.10. In a sequential bipolar metric space (X, Y,Dsb) every convergent Cauchy bise-
quence is biconvergent.

Proof . Let {(ξn, ηn)} be a Cauchy bisequence converges to (ξ, η) ∈ X × Y that is ξn → η and
ηn → ξ as n→∞. Then

Dsb(ξ, η) ≤ k lim sup
n→∞

[Dsb(ξ, ηm) +Dsb(ξn, ηm)] for all m ∈ N. (2.8)

Taking m → ∞ in the right hand side of (2.8) we get Dsb(ξ, η) = 0 and therefore ξ = η ∈ X ∩ Y.
Hence the bisequence {(ξn, ηn)} is biconvergent. �

Remark 2.11. Proposition 2.10 shows that if a Cauchy bisequence biconverges to some ζ ∈ X ∩ Y
then Dsb(ζ, ζ) = 0.

Proposition 2.12. In a sequential bipolar metric space (X, Y,Dsb) if a Cauchy bisequence has a
convergent bisubsequence then it is also convergent.

Proof . Let {(ξn, ηn)} be a Cauchy bisequence which has a convergent bisubsequence {(ξnp , ηnp)}
converging to (ξ, η) ∈ X × Y . Then we have

Dsb(ξm, η) ≤ k lim sup
p→∞

[Dsb(ξm, ηnr) +Dsb(ξnp , ηnr)] for all m, r ∈ N. (2.9)

Taking m, r → ∞ from (2.9) we see that ξm → η. Similarly we can show that ηm → ξ as m → ∞.
Hence our proposition. �

3. Some fixed point theorems

In this section some fixed point theorems have been proved in the context of a sequential bipolar
metric space.
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Theorem 3.1. Let (X, Y,Dsb) be a complete sequential bipolar metric space and T : (X, Y,Dsb) ⇒
(X, Y,Dsb) be a mapping satisfying

Dsb(Tξ, Tη) ≤ a Dsb(ξ, η) (3.1)

for all (ξ, η) ∈ X × Y and for some a ∈ [0, 1). If for some (ξ0, η0) ∈ X × Y , δ (Dsb, T, (ξ0, η0)) =
sup{Dsb(T

iξ0, T
jη0) : i, j ≥ 1} <∞ then the function T : X∪Y → X∪Y has a fixed point ζ ∈ X∩Y .

Moreover if for some ν ∈ X or ν ∈ Y , Dsb(ν, ζ) <∞ or Dsb(ζ, ν) <∞ then ν = ζ.

Proof . Let us denote ξn = T nξ0 and ηn = T nη0 and δ (Dsb, T
p+1, (ξ0, η0)) =

sup{Dsb(T
p+iξ0, T

p+jη0) : i, j ≥ 1} for any p = 0, 1, 2, ... . Then for all i, j ∈ N we have

Dsb(T
n+iξ0, T

n+jη0) ≤ a Dsb(T
n−1+iξ0, T

n−1+jη0)

≤ a δ (Dsb, T
n, (ξ0, η0)) for all n ≥ 1. (3.2)

Since δ (Dsb, T
p+1, (ξ0, η0)) ≤ δ (Dsb, T, (ξ0, η0)) < ∞ for all p ≥ 0 then from (3.2) it follows that

δ (Dsb, T
n+1, (ξ0, η0)) ≤ a δ (Dsb, T

n, (ξ0, η0)) for all n ≥ 1. Therefore

δ
(
Dsb, T

n+1, (ξ0, η0)
)
≤ a δ (Dsb, T

n, (ξ0, η0))

≤ a2 δ
(
Dsb, T

n−1, (ξ0, η0)
)

· · ·
≤ an δ (Dsb, T, (ξ0, η0)) for any n ≥ 1. (3.3)

Thus for any 1 ≤ n < m we have,

Dsb(ξn, ηm) = Dsb(T
nξ0, T

mη0) ≤ δ (Dsb, T
n, (ξ0, η0))→ 0 as n→∞. (3.4)

Therefore {(ξn, ηn)} is a Cauchy bisequence. Since (X, Y,Dsb) is complete, this sequence converges
and thus by Proposition 2.10 biconverges to some ζ ∈ X ∩ Y such that Dsb(ζ, ζ) = 0. Now,

Dsb(ξn+1, T ζ) ≤ a Dsb(ξn, ζ)→ 0 as n→∞. (3.5)

So ξn+1 → Tζ as n → ∞. Since {ξn} converges to the central limit ζ ∈ X ∩ Y with Dsb(ζ, ζ) = 0
then by Proposition 2.9 we get Tζ = ζ and ζ is a fixed point of T.

Now let ν ∈ X be a fixed point of T such that Dsb(ν, ζ) < ∞. Then by contractive condition
(3.1) we see that

Dsb(ν, ζ) = Dsb(Tν, Tζ) ≤ a Dsb(ν, ζ), (3.6)

which implies that Dsb(ν, ζ) = 0 that is ν = ζ. Similar conclusion holds whenever ν ∈ Y. �

Theorem 3.2. Let (X, Y,Dsb) be a complete sequential bipolar metric space and T : (X, Y,Dsb) 

(X, Y,Dsb) be a mapping satisfying

Dsb(Tη, Tξ) ≤ a Dsb(ξ, η) + b Dsb(ξ, T ξ) + c Dsb(Tη, η) (3.7)

for all (ξ, η) ∈ X × Y and for a, b, c ∈ [0, 1) with b < 1
k

and a + b + c < 1. If for some ξ0 ∈ X,
δ (Dsb, T, (ξ0, T ξ0)) = sup{Dsb(ξi, ηj); i, j ≥ 1 : ηn = Tξn and ξn+1 = Tηn for all n ≥ 0} < ∞ then
{(ξn, ηn)} biconverges to some ζ ∈ X ∩Y with Dsb(ζ, ζ) = 0. If Dsb(ζ, T ζ) <∞ then ζ will be a fixed
point of T. Moreover if ζ and ν are two fixed points of T such that Dsb(ζ, ν) <∞ and Dsb(ν, ν) <∞
then ζ = ν.
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Proof . Let us denote δ (Dsb, T
p+1, (ξ0, T ξ0)) = sup{Dsb(ξp+i, ηp+j) : i, j ≥ 1} for any p ≥ 0. Then

for all i, j ≥ 1 we get

Dsb(ξn+i, ηn+j) = Dsb(Tηn−1+i, T ξn+j)

≤ a Dsb(ξn+j, ηn−1+i) + b Dsb(ξn+j, T ξn+j) + c Dsb(Tηn−1+i, ηn−1+i)

= a Dsb(ξn+j, ηn−1+i) + b Dsb(ξn+j, ηn+j) + c Dsb(ξn+i, ηn−1+i)

≤ (a+ b+ c) δ (Dsb, T
n, (ξ0, T ξ0)) for any n ∈ N. (3.8)

Since δ (Dsb, T
p+1, (ξ0, T ξ0)) ≤ δ (Dsb, T, (ξ0, T ξ0)) < ∞ for all p ≥ 0 then from (3.8) it follows that

δ (Dsb, T
n+1, (ξ0, T ξ0)) ≤ (a + b + c) δ (Dsb, T

n, (ξ0, T ξ0)) for all n ≥ 1. So by routine calculation we
have {(ξn, ηn)} is a Cauchy bisequence. As (X, Y,Dsb) is complete, this bisequence converges and thus
by Proposition 2.10 biconverges to some ζ ∈ X ∩ Y such that Dsb(ζ, ζ) = 0. Now if Dsb(ζ, T ζ) <∞
then,

Dsb(ξn+1, T ζ) = Dsb(Tηn, T ζ)

≤ a Dsb(ζ, ηn) + b Dsb(ζ, T ζ) + c Dsb(Tηn, ηn)

= a Dsb(ζ, ηn) + b Dsb(ζ, T ζ) + c Dsb(ξn+1, ηn) for all n ≥ 0. (3.9)

Taking n→∞ in (3.9) we get lim supn→∞Dsb(ξn+1, T ζ) ≤ b Dsb(ζ, T ζ). Also,

Dsb(ζ, T ζ) ≤ k lim sup
n→∞

[Dsb(ξm+1, ηn) +Dsb(ξm+1, T ζ)] for all m ≥ 0. (3.10)

Letting m→∞ we see that Dsb(ζ, T ζ) ≤ kbDsb(ζ, T ζ). Hence Tζ = ζ.
Now if ζ and ν are two fixed points of T with Dsb(ζ, ν) <∞ then

Dsb(ζ, ν) = Dsb(Tζ, Tν)

≤ a Dsb(ν, ζ) + b Dsb(ζ, T ζ) + c Dsb(Tν, ν)

= a Dsb(ν, ζ) [∵ Dsb(ζ, T ζ) = 0 and Dsb(Tν, ν) = 0]. (3.11)

Therefore Dsb(ζ, ν) = 0 that is ζ = ν. �

Theorem 3.3. Let (X, Y,Dsb) be a complete sequential bipolar metric space and T : (X, Y,Dsb) ⇒
(X, Y,Dsb) be a mapping satisfying

Dsb(Tξ, Tη) ≤ a Dsb(ξ, η) + b Dsb(Tξ, η) + c Dsb(ξ, Tη) (3.12)

for all (ξ, η) ∈ X × Y and for a, b, c ∈ [0, 1) with a + b + c < 1. If for some (ξ0, η0) ∈ X × Y ,
δ (Dsb, T, (ξ0, η0)) = sup{Dsb(T

iξ0, T
jη0) : i, j ≥ 1} < ∞ then {(T nξ0, T nη0)} biconverges to some

ζ ∈ X ∩ Y with Dsb(ζ, ζ) = 0. If lim supn→∞Dsb(ξn, T ζ) < ∞ then ζ will be a fixed point of T.
Moreover if for some ν ∈ X or ν ∈ Y , Dsb(ν, ζ) <∞ or Dsb(ζ, ν) <∞ then ν = ζ.

Proof . Let us denote ξn = T nξ0 and ηn = T nη0 and δ (Dsb, T
p+1, (ξ0, η0)) =

sup{Dsb(T
p+iξ0, T

p+jη0) : i, j ≥ 1} for any p = 0, 1, 2, ... . Then for all i, j ∈ N we have

Dsb(T
n+iξ0, T

n+jη0) = Dsb(TT
n−1+iξ0, TT

n−1+jη0) ≤ a Dsb(T
n−1+iξ0, T

n−1+jη0)+

b Dsb(T
n+iξ0, T

n−1+jη0) + c Dsb(T
n−1+iξ0, T

n+jη0)

≤ (a+ b+ c) δ (Dsb, T
n, (ξ0, η0)) for all n ≥ 1. (3.13)
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Since δ (Dsb, T
p+1, (ξ0, η0)) ≤ δ (Dsb, T, (ξ0, η0)) < ∞ for all p ≥ 0 then from (3.13) it follows that

δ (Dsb, T
n+1, (ξ0, η0)) ≤ (a+b+c) δ (Dsb, T

n, (ξ0, η0)) for all n ≥ 1. In a similar way as in the previous
theorems we get {(ξn, ηn)} is a Cauchy bisequence. As (X, Y,Dsb) is complete, the iterative bisequence
converges and thus by Proposition 2.10 biconverges to some ζ ∈ X ∩ Y such that Dsb(ζ, ζ) = 0. So,

Dsb(ξn+1, T ζ) = Dsb(Tξn, T ζ)

≤ a Dsb(ξn, ζ) + b Dsb(Tξn, ζ) + c Dsb(ξn, T ζ) for any n ≥ 0. (3.14)

Therefore from (3.14) and by our assumption we obtain lim supn→∞Dsb(ξn, T ζ) = 0. Thus

Dsb(ζ, T ζ) ≤ lim
m→∞

{k lim sup
n→∞

[Dsb(ξm, ηn) +Dsb(ξm, T ζ)]} = 0. (3.15)

Hence ζ is a fixed point of T. Now let ν ∈ X be a fixed point of T such that Dsb(ν, ζ) <∞. Then by
contractive condition (3.12) we see that

Dsb(ν, ζ) = Dsb(Tν, Tζ)

≤ a Dsb(ν, ζ) + b Dsb(Tν, ζ) + c Dsb(ν, T ζ)

= (a+ b+ c) Dsb(ν, ζ), (3.16)

implying that Dsb(ν, ζ) = 0 that is ν = ζ. Similar conclusion holds if ν ∈ Y. �

Example 3.4. Let us consider the sequential bipolar metric space (Un(R), Ln(R), Dsb) cited in Ex-
ample 2.2. Then it can be easily checked that (Un(R), Ln(R), Dsb) is complete. Let us define T :
Un(R) ∪ Ln(R) → Un(R) ∪ Ln(R) by T ((ui,j)n×n) = (

ui,j
2

)n×n. Then it can be easily verified
that Dsb(Tξ, Tη) ≤ 1

2
Dsb(ξ, η) for all ξ ∈ Un(R) and η ∈ Ln(R). Also we see that for any

(A0, B0) = ((ai,j)n×n, (bi,j)n×n) ∈ Un(R) × Ln(R)), Dsb(T
iA0, T

jB0) =
∑n

r,s=1

(
1
2i
|ar,s|+ 1

2j
|br,s|

)2 ≤∑n
r,s=1 (|ar,s|+ |br,s|)2 = Dsb(A0, B0) <∞ for any i, j ≥ 1. Thus δ(Dsb, T, (A0, B0)) ≤ Dsb(A0, B0) <

∞. Therefore T satisfies all the conditions of Theorem 3.1 and the null matrix On×n is the unique
fixed point of T.

Theorem 5.1 and Theorem 5.3 of [16] can be derived from our Theorem 3.1 and Theorem 3.2
when the topological vector space is R endowed with the usual cone P = {x ∈ R : x ≥ 0}.

Corollary 3.5. Let (X, Y, db) be a complete bipolar b−metric space with coefficient k ≥ 1 and T :
(X, Y, db)⇒ (X, Y, db) be a mapping which satisfies

db(Tξ, Tη) ≤ a db(ξ, η) (3.17)

for all (ξ, η) ∈ X × Y and for some a ∈ [0, 1
k
). Then the mapping T : X ∪ Y → X ∪ Y has a unique

fixed point.

Proof . Let us choose (ξ0, η0) ∈ X × Y and construct an iterative bisequence {(ξn, ηn)}, where
ξn = T nξ0 and ηn = T nη0 for all n ∈ N. Using the contractive condition (3.17) it can be shown that

db(ξn, ηm) ≤ (ka)n

1− ka
[db(ξ0, η0) + db(ξ1, η0)] ≤

[db(ξ0, η0) + db(ξ1, η0)]

1− ka
for 1 ≤ n < m,

db(ξn, ηm) ≤ (ka)m

1− ka
[db(ξ0, η0) + db(ξ0, η1)] ≤

[db(ξ0, η0) + db(ξ0, η1)]

1− ka
for 1 ≤ m < n. (3.18)

Thus from (3.18) we get δ (db, T, (ξ0, η0)) = sup{db(T iξ0, T jη0) : i, j ≥ 1} ≤ L < ∞, where L =

max{ [db(ξ0,η0)+db(ξ1,η0)]
1−ka , [db(ξ0,η0)+db(ξ0,η1)]

1−ka }. Therefore by using Theorem 3.1 it follows that T has a
unique fixed point in X ∪ Y. �
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Corollary 3.6. Let T : (X, Y, db) 
 (X, Y, db) be a mapping, where (X, Y, db) is a complete bipolar
b−metric space with coefficient k ≥ 1, satisfying

db(Tη, Tξ) ≤ a db(ξ, η) + b db(ξ, T ξ) + c db(Tη, η) (3.19)

for all ξ ∈ X, η ∈ Y , where 0 ≤ a, b < 1, 0 ≤ c < 1
k+1

and 0 ≤ ka + kb + c < 1. Then the function
T : X ∪ Y → X ∪ Y has a unique fixed point.

Proof . Let ξ0 be arbitrarily taken. We construct a bisequence {(ξn, ηn)}, where ηn = Tξn and
ξn+1 = Tηn for all n ≥ 0. Then one can check that

db(ξn, ηm) ≤ (ke)n

1− ke

(
1 +

a+ b

1− c

)
db(ξ0, η0) ≤

(
1 +

a+ b

1− c

)
db(ξ0, η0)

1− ke
for 1 ≤ n < m,

db(ξn, ηm) ≤ (ke)m

1− ke

(
e+

a+ b

1− c

)
db(ξ0, η0) ≤

(
e+

a+ b

1− c

)
db(ξ0, η0)

1− ke
for 1 ≤ m < n, (3.20)

where e = (a+b)(a+c)
(1−c)(1−b) . Therefore δ (db, T, (ξ0, T ξ0)) = sup{db(ξi, ηj) : i, j ≥ 1} ≤ M < ∞, where

M = max{
(
1 + a+b

1−c

) db(ξ0,η0)
1−ke ,

(
e+ a+b

1−c

) db(ξ0,η0)
1−ke }. Hence due to Theorem 3.2 T has a unique fixed

point in X ∪ Y. �

4. Well-posedness of fixed point problem

Well-posedness of fixed point problem is an interesting study in fixed point theory. The definition
of well posedness of fixed point problem over metric spaces is as follows:

Definition 4.1. [6] Let (X, d) be a metric space and S : (X, d) → (X, d) be a mapping. The fixed
point problem of S is said to be well-posed if (i) S has a unique fixed point z ∈ X, (ii) for any
sequence {xn} in X with d(xn, S(xn))→ 0 as n→∞ we have d(z, xn)→ 0 as n→∞.

Now we give the definitions of well-posedness of fixed point problems in the setting of bipolar
b−metric spaces which are running as follows:

Definition 4.2. Let (X, Y, db) be a bipolar b-metric space and F : (X, Y, db) ⇒ (X, Y, db) be a
mapping. The fixed point problem of F is said to be well posed if

(i) F has a unique fixed point ζ ∈ X ∩ Y ;
(ii) for any sequence {(ξn, ηn)} in (X, Y ) with db(ξn, Fηn) → 0 and db(Fξn, ηn) → 0 as n → ∞

we have db(ξn, ζ)→ 0 and db(ζ, ηn)→ 0 as n→∞.

Definition 4.3. Let (X, Y, db) be a bipolar b-metric space and F : (X, Y, db) 
 (X, Y, db) be a
mapping. The fixed point problem of F is said to be well posed if

(i) F has a unique fixed point ζ ∈ X ∩ Y ;
(ii) for any sequence {(ξn, ηn)} in (X, Y ) with db(ξn, F ξn) → 0 and db(Fηn, ηn) → 0 as n → ∞

we have db(ξn, ζ)→ 0 and db(ζ, ηn)→ 0 as n→∞.

Theorem 4.4. If (X, Y, db) is a complete bipolar b−metric space with coefficient k ≥ 1 and T :
(X, Y, db)⇒ (X, Y, db) a mapping which satisfies

db(Tξ, Tη) ≤ a db(ξ, η) (4.1)

for all ξ ∈ X, η ∈ Y and for some a ∈ [0, 1
k
) then the fixed point problem of T is well-posed.
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Proof . From Corollary 3.5 we see that T has a unique fixed point ζ(say)∈ X ∩ Y . Let {(ξn, ηn)}
be a bisequence in (X, Y ) satisfying db(ξn, T ηn)→ 0 and db(Tξn, ηn)→ 0 as n→∞. Then

db(ξn, ζ) ≤ k[db(ξn, T ηn) + db(ζ, Tηn) + db(ζ, ζ)]

= k[db(ξn, T ηn) + db(Tζ, Tηn)]

≤ k[db(ξn, T ηn) + a db(ζ, ηn)] for all n ∈ N. (4.2)

Also

db(ζ, ηn) ≤ k[db(ζ, ζ) + db(Tξn, ζ) + db(Tξn, ηn)]

= k[db(Tξn, T ζ) + db(Tξn, ηn)]

≤ k[a db(ξn, ζ) + db(Tξn, ηn)] for all n ≥ 1. (4.3)

Therefore from (4.2) and (4.3) we get

db(ξn, ζ) ≤ k db(ξn, T ηn) + k2a[a db(ξn, ζ) + db(Tξn, ηn)] for any n ∈ N. (4.4)

Which implies that

db(ξn, ζ) ≤ k

1− (ka)2
db(ξn, T ηn) +

k2a

1− (ka)2
db(Tξn, ηn)→ 0 as n→∞. (4.5)

From (4.3) and (4.5) it follows that db(ζ, ηn)→ 0 as n→∞. Hence due to Definition 4.2 we see that
the fixed point problem of T is well-posed. �

Theorem 4.5. Let T : (X, Y, db) 
 (X, Y, db) be a mapping, where (X, Y, db) is a complete bipolar
b−metric space with coefficient k ≥ 1, satisfying

db(Tη, Tξ) ≤ a db(ξ, η) + b db(ξ, T ξ) + c db(Tη, η) (4.6)

for all ξ ∈ X, η ∈ Y , where 0 ≤ a, b < 1, 0 ≤ c < 1
k+1

and 0 ≤ ka+ kb+ c < 1. Then the fixed point
problem of T is well-posed.

Proof . From Corollary 3.6 it follows that T has a unique fixed point ζ(say)∈ X ∩Y . Let {(ξn, ηn)}
be a bisequence in (X, Y ) satisfying db(ξn, T ξn)→ 0 and db(Tηn, ηn)→ 0 as n→∞. Then

db(ξn, ζ) ≤ k[db(ξn, T ξn) + db(ζ, T ξn)]

= k[db(ξn, T ξn) + db(Tζ, Tξn)]

≤ k[db(ξn, T ξn) + a db(ξn, ζ) + b db(ξn, T ξn) + c db(Tζ, ζ)] for any n ≥ 1. (4.7)

(4.7) shows that db(ξn, ζ) ≤ k(1+b)
1−ka db(ξn, T ξn)→ 0 as n→∞. Also for all n ∈ N.

db(ζ, ηn) ≤ k[db(Tηn, ζ) + db(Tηn, ηn)]

= k[db(Tηn, T ζ) + db(Tηn, ηn)]

≤ k[a db(ζ, ηn) + b db(ζ, T ζ) + c db(Tηn, ηn) + db(Tηn, ηn)]. (4.8)

Thus from (4.8) we get db(ζ, ηn) ≤ k(1+c)
1−ka db(Tηn, ηn)→ 0 as n→∞. Therefore by the Definition 4.3

the fixed point problem of T is well posed. �
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