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Abstract

The aim of this work is to describe the qualitative behavior of the solution set of a given system of
fractional differential equations and limiting behavior of the dynamical system or flow defined by the
system of fractional differential equations. In order to achieve this goal, it is first necessary to develop
the local theory for fractional nonlinear systems. This is done by the extension of the local center
manifold theorem, the stable manifold theorem and the Hartman-Grobman theorem to the scope
of fractional differential systems. These latter two theorems establish that the qualitative behavior
of the solution set of a nonlinear system of fractional differential equations near an equilibrium
point is typically the same as the qualitative behavior of the solution set of the corresponding
linearized system near the equilibrium point. Furthermore, we discuss the stability conditions for
the equilibrium points of these systems. We point out that, the fractional derivative in these systems
is in the Caputo sense.

Keywords: Fractional differential systems; Stable manifold theorem; Hartman-Grobman theorem;
Local center manifold theorem; Local qualitative theorey.
2010 MSC: Primary 34A08; Secondary 37D40.

1. Introduction

In recent years, fractional differential equations have attracted increasing interest due to the fact that
many mathematical problems in science and engineering can be modeled by fractional differential
equations, see e.g. [16, 17, 19, 21, 24, 26, 29]. Although, several results on asymptotic behavior
of fractional differential equations are already published (e.g. on stability theory [20], linear theory
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[16, 21, 24, 29], Lyapunov exponents [20], etc.), the development of a qualitative theory for fractional
differential equations is still in its infancy.

This paper mainly deals with generalization three important results in the local qualitative theory
of ordinary differential equations to differential equations of fractional order; i.e., the stable manifold
theorem, the Hartman-Grobman theorem and the local center manifold theorem.

We know that any linear system

x(α) = Ax, 0 < α ≤ 1, (1.1)

has a unique solution in each point x0 in Rn, the solution is given by x(t) = Eα(Atα)x0. In this
paper, we would study nonlinear systems of fractional differential equations

x(α) = f(x), 0 < α ≤ 1, (1.2)

near a hyperbolic equilibrium point x0, where f : E→Rn and E is an open subset of Rn. We represent
the stable manifold theorem and the Hartman-Grobman theorem [28, 11] for nonlinear systems of
fractional order which show that topologically the local behavior of the nonlinear system (1.2) near
an equilibrium point x0 where f(x0) = 0 is typically determined by the behavior of the linear system
(1.1) near the origin when the matrix A = Df(x0). The stability of any hyperbolic equilibrium
point x0 of (1.2) is determined. Finally, we represent the local center manifold theorem for fractional
system (1.2), which shows that the qualitative behavior in a neighborhood of a nonhyperbolic critical
point x0 of the nonlinear system (1.2) with x∈Rn is determined by its behavior on the center manifold
near x0.

First we recall some preliminaries and notations regarding fractional calculus. For more details,
see [4, 5, 7, 8, 14, 18, 25, 27, 31].

Definition 1.1. A function f(x), x > 0, is said to be in the space Cα, α∈R, if there exists a real
number p(> α), such that f(x) = xpf1(x), where f1(x)∈C[0,∞), and it said to be in the space Cm

α ,
m∈N ∪ {0}, if and only if f (m)(x)∈Cα [15].

Definition 1.2. The Riemann-Liouville integral operator of order α of f(x)∈Cα, α ≥ −1 is defined
as [15]

Iαx f(x) =


1

Γ(α)

∫ x
0

(x− ξ)α−1f(ξ)dξ, α > 0, x > 0,

f(x), α = 0.

where Γ(α) is the well-known Gamma function.

Definition 1.3. The left sided Caputo fractional derivative of order α of f(x)∈Cm
−1, m∈N∪{0} is

defined as [15]

Dα
xf(x) = f (α)(x) =


[
Im−αx f (m)(x)

]
, m− 1 < α < m, m ∈ N,

dm

dxm
f(x), α = m.
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Definition 1.4. The Mittag-Leffler function Eα,β(z) with α > 0, β > 0 is defined by the following
series representation, valid in the whole complex plane [24]

Eα,β(z) =
∞∑
n=0

zn

Γ(nα + β)
, z ∈ C.

For β = 1, we obtain the Mittag-Leffler function in one parameter:

Eα,1(z) =
∞∑
n=0

zn

Γ(nα + 1)
≡Eα(z).

2. Fractional stable manifold theorem

The stable manifold theorem [6, 22] is one of the most important results in the local qualitative
theory of ordinary differential equations. In fractional differential equations this theorem shows that
near a hyperbolic equilibrium point x0, the nonlinear system (1.2) has stable and unstable manifolds
S and U tangent at x0 to the stable and unstable subspaces Es and Eu of the linearized system (1.1)
where A = Df(x0) and x(α) is fractional derivative in the sense of Caputo. Furthermore, S and U
are of the same dimensions as Es and Eu, and if φt is the flow of the nonlinear system (1.2), then S
and U are positively and negatively invariant under φt respectively and satisfy

lim
t→∞

φt(c) = x0,

for all c ∈ S and
lim
t→−∞

φt(c) = x0,

for all c ∈ U .

Definition 2.1. Let E be an open subset of Rn and let f∈C1(E). For x0∈E, let φ(t, x0) be the
solution of the fractional differential equation (1.2) with the initial condition

x(0) = x0,

defined on its maximal interval of existence I(x0). Then, for t∈I(x0), the set of mappings φt defined
by

φt(x0) = φ(t, x0),

is called the flow of the differential equation (1.2) or the flow defined by the differential equation
(1.2), φt is also referred to as the flow of the vector field f(x).

Definition 2.2. A point x0∈Rn is called an equilibrium point or critical point of (1.2) if f(x0) = 0.
An equilibrium point x0 is called a hyperbolic equilibrium point of (1.2) if none of the eigenvalues
of the matrix Df(x0) have zero real part. The linear system (1.1) with the matrix A = Df(x0) is
called the linerization of (1.2) at x0.

Definition 2.3. An equilibrium point x0 of (1.2) is called a sink if all of the eigenvalues of the
matrix Df(x0) have negative real part; it is called a source if all of the eigenvalues of Df(x0) have
positive real part; and it is called a saddle if it is a hyperbolic equilibrium point and Df(x0) has at
least one eigenvalue with a positive real part and at least one with a negative real part.
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Definition 2.4. Let X be a metric space and let A and B be subsets of X. A homeomorphism
of A onto B is a continuous one-to-one map of A onto B, h : A → B, such that h−1 : B → A
is continuous. The sets A and B are called homeomorphic or topologically equivalent if there is a
homeomorphism of A onto B. If we wish to emphasize that h maps A onto B, we write h : A→ B.

Definition 2.5. An n-dimensional differentiable manifold, M (or a manifold of class Ck
α), is a

connected metric space with an open covering {Uβ}, i.e., M = ∪βUβ, such that
(i) for all β, Uβ is homeomorphic to the open unit ball in Rn, B = {x∈Rn | |x| < 1}, i.e., for all θ
there exists a homeomorphism of Uβ onto B, hβ : Uβ → B, and
(ii) if Uβ∩Uθ 6= 0 and hβ : Uβ → B, hθ : Uθ → B are homeomorphisms, then hβ(Uβ∩Uθ) and
hθ(Uβ∩Uθ) are subsets of Rn and the map

h = hβ o hθ : hθ(Uβ∩Uθ)→hβ(Uβ∩Uθ),

is differentiable (or of class Ck
α) and for all x∈hθ(Uβ∩Uθ), the Jacobian determinant detDh(x) 6= 0.

The manifold M is said to be analytic if the maps h = hβ o h
−1
θ are analytic.

Theorem 2.6. (The stable manifold theorem for fractional differential systems). Let E be an open
subset of Rn containing the origin, let f∈C1(E), and let φt be the flow of the nonlinear system (1.2).
Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real part and n−k eigenvalues
with positive real part. Then, there exists a k-dimensional manifold S of class C1

α tangent to the
stable subspace Es of the linear system (1.1) at 0 such that for all t≥0, φt(S)⊂S and for all x0∈S

lim
t→∞

φt(x0) = 0,

and there exists an n − k-dimensional manifold U of class C1
α tangent to the unstable subspace Eu

of (1.1) at 0 such that for all t≤0, φt(U)∈U and for all x0∈U ,

lim
t→−∞

φt(x0) = 0.

Proof . Before proving this theorem, we remark that if f∈C1(E) and f(0) = 0, then, the system
(1.2) can be written as

x(α) = Ax+ F (x), 0 < α ≤ 1, (2.1)

where A = Df(0), F (x) = f(x)− Ax, F∈C1(E), F (0) = 0 and DF (0) = 0. Then, given any ε > 0
there exists a δ > 0 such that for all x, y∈Nδ(0) we have

||F (x)− F (y)||≤ε||x− y||. (2.2)

Furthermore, by the Jordan canonical form theorem, there is an n×n invertible matrix C such that

C−1AC =

(
P 0
0 Q

)
= B,

where the eigenvalues λ1, · · ·, λk of the k×k matrix P have negative real part and the eigenvalues
λk+1, · · ·, λn of the (n−k)×(n−k) matrix Q have positive real part. We can choose β > 0 sufficiently
small that for j = 1, · · ·, k

Re(λj) < −β < 0. (2.3)
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Letting y = C−1x, the system (2.1) has the form

y(α) = By +G(y), 0 < α ≤ 1, (2.4)

where G(y) = C−1F (Cy)∈C1(Ê), Ê = C−1(E) and G satisfies the Lipschitz-type condition above.

Consider the system (2.4). Let us denote

U(t) =

(
Eα(Ptα) 0

0 0

)
, Ũ(t) =

(
Eα,α(Ptα) 0

0 0

)
,

and

V (t) =

(
0 0
0 Eα(Qtα)

)
, Ṽ (t) =

(
0 0
0 Eα,α(Qtα)

)
,

so that Eα(Btα) = U(t) + V (t).
We can choose k > 0 sufficiently large and σ > 0 sufficiently small that

‖U(t)‖≤kEα(−(β + σ)tα), ‖Ũ(t)‖≤kEα,α(−(β + σ)tα), ∀t ≥ 0, (2.5)

where β > 0 chosen as in (2.3), and

‖V (t)‖≤kEα(σtα), ‖Ṽ (t)‖≤kEα,α(σtα), ∀t ≤ 0.

Now consider the integral equation

u(t, a) = U(t)a+

∫ t

0

(t− s)α−1Ũ(t− s)G(u(s, a))ds

−
∫ ∞
t

(t− s)α−1Ṽ (t− s)G(u(s, a))ds. (2.6)

If u(t, a) is a continuous solution of this integral equation, then, it is a solution of the differential
equation (2.4). Here is some intuition on why the particular integral equation in chosen. We basically
want to remove the parts that blow up as t→∞. In general, the solution of this system satisfies

u(t, a) =

(
Eα(Ptα) 0

0 Eα,(Qt
α)

)
a

+

∫ t

0

(t− s)α−1

(
Eα,α(P (t− s)α) 0

0 Eα,α(Q(t− s)α)

)
G(u(s, a))ds.

Separate the convergent and non-convergent parts

u(t, a) = U(t)a+ V (t)a+

∫ t

0

(t− s)α−1Ũ(t− s)G(u(s, a))ds

+

∫ t

0

(t− s)α−1Ṽ (t− s)G(u(s, a))ds

= U(t)a+ V (t)a+

∫ t

0

(t− s)α−1Ũ(t− s)G(u(s, a))ds

+

∫ ∞
0

(t− s)α−1Ṽ (t− s)G(u(s, a))ds−
∫ ∞
t

(t− s)α−1Ṽ (t− s)G(u(s, a))ds.
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Remove contributions that will cause it not to converge to the origin

u(t, a) = U(t)a+

∫ t

0

(t− s)α−1Ũ(t− s)G(u(s, a))ds

−
∫ ∞
t

(t− s)α−1Ṽ (t− s)G(u(s, a))ds.

We now solve this integral equation by the method of successive approximation. Let

u0(t, a) = 0,

u(j+1)(t, a) = U(t)a+

∫ t

0

(t− s)α−1Ũ(t− s)G(uj(s, a))ds

−
∫ ∞
t

(t− s)α−1Ṽ (t− s)G(uj(s, a))ds.

Since by assumption G(0) = 0, we have

||u1(t, a)− u0(t, a)|| = ||U(t)a||≤k||a||Eα(−(β + σ)tα)≤k||a||Eα(−βtα),

and

||u2(t, a)− u1(t, a)||≤
∫ t

0

(t− s)α−1||Ũ(t− s)|| ||G(u1(s, a))−G(u0(s, a))||ds

+

∫ ∞
t

(t− s)α−1||Ṽ (t− s)|| ||G(u1(s, a))−G(u0(s, a))||ds

≤εk2||a||
∫ t

0

(t− s)α−1Eα,α(−(β + σ)(t− s)α)Eα(−βsα)ds

+ εk2||a||
∫ ∞
t

(t− s)α−1Eα,α(σ(t− s)α)Eα(−βsα)ds

≤2εk2||a||
σ

Eα(−βtα).

Let us assume that εk/σ < 1/4, then

||u2(t, a)− u1(t, a)||≤k||a||
2

Eα(−βtα).

Assume that the induction hypothesis

||u(j)(t, a)− u(j−1)(t, a)||≤k||a||Eα(−βtα)

2j−1
, (2.7)

holds for j = 1, 2, · · · ,m and t ∈ [0,∞). Then, it follows that

||u(m+1)(t, a)− u(m)(t, a)||≤
∫ t

0
(t− s)α−1||Ũ(t− s)||ε||u(m)(s, a)− u(m−1)(s, a)||ds

+

∫ ∞
t

(t− s)α−1||Ṽ (t− s)||ε||u(m)(s, a)− u(m−1)(s, a)||ds
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≤ε
∫ t

0

(t− s)α−1kEα,α(−(β + σ)(t− s)α)
k||a||Eα(−βsα)

2m−1
ds

+ ε

∫ ∞
t

(t− s)α−1kEα,α(σ(t− s)α)
k||a||Eα(−βsα)

2m−1
ds

≤εk
2||a||Eα(−βtα)

σ2m−1
+
εk2||a||Eα(−βtα)

σ2m−1

< (
1

4
+

1

4
)
k||a||Eα(−βtα)

2m−1
=
k||a||Eα(−βtα)

2m
. (2.8)

If we choose k||a|| < δ/2, then, the Lipschitz-type condition (2.2) holds for the function G and
therefore, (2.7) holds for all j = 1, 2, · · · and t ∈ [0,∞). Thus, for n > m≥N

||u(n)(t, a)− u(m)(t, a)||≤
n−1∑
j=m

||u(j+1)(t, a)− u(j)(t, a)||

≤
∞∑
j=N

||u(j+1)(t, a)− u(j)(t, a)||≤k||a||
∞∑
j=N

1

2j
=
k||a||
2N−1

.

Hence, u(j)(t, a) is a Cauchy sequence of continuous functions for t∈[0,∞) and therefore, is uniformly
convergent to u(t, a). Then, it follows that u(t, a) satisfies the integral equation (2.6) and hence, the
differential equation (2.4), furthermore, by setting m = 0 in (2.8) we have

||u(t, a)||≤k||a||Eα(−βtα), (2.9)

for t≥0 and hence, u(t, a) converges to the origin as t→∞.

It is clear from (2.6) that the last n−k components of the vector a do not enter the computation
and hence, they may be taken as zero. Thus, the components uj(t, a) of the solution u(t, a) satisfy
the initial conditions

uj(0, a) = aj , j = 1, · · · , k,

and

uj(0, a) = −
∫ ∞

0

V (−s)G(u(s, a1, · · ·, ak, 0)) , j = k + 1, · · · , n.

For j = k + 1, · · ·, n we define the functions

ψj(a1, · · · , ak) = uj(0, a1, · · · , ak, 0, · · · , 0), (2.10)

then, the initial values yj = uj(0, a1, · · · , ak, 0, · · · , 0) satisfy

yj = ψj(y1, · · ·, yk) , j = k + 1, · · · , n,

according to the definition (2.10). These equation then define a manifold Ŝ of class C1
α for y sufficiently

near the origin. The manifold S of class C1
α in x-space is then obtained from Ŝ under the linear

transformation on coordinates x = Cy.

The existence of the unstable manifold Û of (2.4) is established in exactly the same way by
considering the system (2.4) with t→− t, i.e.,

y(α) = −By −G(y), 0 < α ≤ 1.
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The stable manifold for this system will then be the unstable manifold Û for (2.4). This completes
the proof of the stable manifold Theorem. �

The stable and unstable manifolds S and U are only defined in a small neighborhood of the origin
in the proof of the stable manifold theorem. S and U are therefore referred to as the local stable and
unstable manifolds of (1.2) at the origin or simply as the local stable and unstable manifolds of he
origin. We define the global stable and unstable manifolds of (1.2) at 0 by letting points in S flow
backward in time and those in U flow forward n time.

Definition 2.7. Let φt be the flow of the nonlinear system (1.2). The global stable and unstable
manifolds of (1.2) at 0 are defined by

W s(0) = ∪t≤0φt(S),

and
W u(0) = ∪t≥0φt(U),

respectively; W s(0) and W u(0) are also referred to as the global stable and unstable manifolds of the
origin respectively. It can be shown that the global stable and unstable manifolds W s(0) and W u(0)
are unique and that they are invariant with respect to the flow φt; furthermore, for all x∈W s(0),
limt→∞ φt(x) = 0 and for all x∈W u(0), limt→−∞ φt(x) = 0.

As in the proof of the stable manifold theorem, it can be shown that in a small neighborhood,
N , of a hyperbolic critical point at the origin, the local stable and unstable manifolds, S and U , of
(1.2) at the origin are given by

S = {x∈N | φt(x)→0 as t→∞ and φt(x)∈N for t ≥ 0},

and
U = {x∈N | φt(x)→0 as t→−∞ and φt(x)∈N for t ≤ 0},

respectively [10].

Corollary 2.8. Under the hypotheses of the stable manifold theorem, if S and U are the stable and
unstable manifolds of (1.2) at the origin and if Re(λj) < −β < 0 < θ < Re(λm) for j = 1, · · · , k and
m = k + 1, · · · , n, then given ε > 0 there exists a δ > 0 such that if x0∈Nδ(0)∩S then

||φt(x0)|| ≤ εEα(−βtα),

for all t ≥ 0 and if x0∈Nδ(0)∪U then

||φt(x0)|| ≤ εEα(θtα),

for all t ≤ 0.

Proof . It follows from equation (2.9) in the proof of the stable manifold theorem that if x(t) is a
solution of the differential equation (2.4) with x(0)∈S, i.e., if x(t) = Cy(t) with y(0) = u(0, a)∈S̃,
then for any ε > 0 there exists a δ > 0 such that if |x(0)| < δ then

||x(t)|| ≤ εEα(−βtα),

for all t ≥ 0. Just as in the proof of the stable manifold theorem, β is any positive number that
satisfies Re(λj) < −β for j = 1, · · · , k where λj, j = 1, · · · , k are the eigenvalues of Df(0) with
negative real part. This result shows that solutions starting in S, sufficiently near the origin, approach
the origin in terms of Mittag-Leffler function as t→−∞. �
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3. Fractional Hartman-Grobman theorem

The Hartman-Grobman theorem is another very important result in the local qualitative theory of
ordinary differential equations. The theorem shows that near a hyperbolic equilibrium point x0, the
nonlinear system (1.2) has the same qualitative structure as the linear system (1.1) with A = Df(x0).
Throughout this section we shall assume that the equilibrium point x0 has been translated to the
origin.

Definition 3.1. Two autonomous systems of differential equations such as (1.2) and (1.1) are said
to be topologically equivalent in a neighborhood of the origin or to have the same qualitative structure
near the origin if there is a homeomorphism H mapping an open set U containing the origin onto an
open set V containing the origin which maps trajectories of (1.2) in U onto trajectories of (1.1) in
V and preserves their orientation by time in the sense that if a trajectory is directed from x1 to x2

in U , then its image is directed from H(x1) to H(x2) in V . If the homeomorphism H preserves the
parameterization by time, then the systems (1.2) and (1.1) are said to be topologically conjugate in
a neighborhood of the origin.

Theorem 3.2. (The Hartman-Grobman theorem for fractional differential systems). Let E be an
open subset of Rn containing the origin, let f∈C1(E), and let φt be the flow of the nonlinear system
(1.2). Suppose that f(0) = 0 and that the matrix A = Df(0) has no eigenvalue with zero real part.
Then, there exists a homeomorphism H of an open set U containing the origin onto an open set V
containing the origin such that for each x0∈U , there is an open interval I0⊂R containing zero such
that for all x0∈U and t∈I0

H o φt(x0) = Eα(Atα)H(x0), 0 < α ≤ 1.

Procedure of construction the homeomorphism for fractional Hartman-Grobman theo-
rem:
Consider the nonlinear system (1.2) with f∈C1(E), f(0) = 0 and A = Df(0).
1. Suppose that the matrix A is written in the form

A =

(
P 0
0 Q

)
,

where the eigenvalues of P have negative real part and the eigenvalues of Q have positive real part.
2. Let φt be the flow of the nonlinear system (1.2) and write the solution

x(t, x0) = φt(x0) =

(
y(t, y0, z0)
z(t, y0, z0)

)
,

where

x0 =

(
y0

z0

)
∈Rn,

y0∈Es, the stable subspace of A and z0∈Eu, the unstable subspace of A.
3. Define the functions

Y (y0, z0) = y(1, y0, z0)− Eα(P )y0,

and
Z(y0, z0) = z(1, y0, z0)− Eα(Q)z0.
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Let B = Eα(P )≡Eα(P.1α) and C = Eα(Q)≡Eα(Q.1α).
4. We construct the homeomorphism using the method of successive approximations. For x∈Rn, let

H0(x) =

(
Φ(y, z)
Ψ(y, z)

)
.

Then, H0 o φt=1(x0) = Eα(A)H0(x0) is equivalent to the pair of equations

BΦ(y, z) = Φ(By + Y (y, z), Cz + Z(y, z)), (3.1)

CΨ(y, z) = Ψ(By + Y (y, z), Cz + Z(y, z)).

Define the successive approximations for the second equation by

Ψ0(y, z) = z,

Ψk+1(y, z) = C−1Ψk(By + Y (y, z), Cz + Z(y, z)).

Furthermore, the equation (3.1) can be written as

B−1Φ(y, z) = Φ(B−1y + Ŷ (y, z), C−1z + Ẑ(y, z)). (3.2)

Then, equation (3.2) can be solved for Φ(y, z) by the method of successive approximations with
Φ0(y, z) = y. We therefore obtain

H0(y, z) =

(
Φ(y, z)
Ψ(y, z)

)
.

In the case α = 1, Hartman on [[12], pp. 248-249] showed that H0 is a homeomorphism on Rn. In
the same manner, one can verify that for 0 < α < 1, H0 is a homemorphism on Rn.
5. Define

H =

∫ 1

0

Eα(−Asα) H0 φsds,

then, H satisfies
H o φt(x0) = Eα(Atα)H(x0),

and it can be shown that H is a homeomorphism on Rn; cf. [[12], pp. 250-251]. This completes the
procedure of construction the homeomorphism for fractional Hartman-Grobman theorem.

The above procedure for the Hartman-Grobman theorem is a generalization proof of P. Hartman;
cf. [[12], pp. 244-251]. It was proved independently by P. Hartman [12] and the Russian mathe-
matician D.M. Grobman [9] in 1959. This theorem with f,H and H−1 analytic was proved by H.
Poincare in 1879, cf. [23], under the assumptions that the elementary divisors of A (cf. [3, p. 219])
are simple and that the eigenvalues λ1, · · · , λn of A lie in a half plane in C and satisfy

λj 6= m1λ1 + · · ·+mnλn, (3.3)

for all sets of non-negative integers (m1, · · · ,mn) satisfying m1 + · · ·+mn > 1. An analogous result
for smooth f , H and H−1 can be established and proved that there exists a map H of class C1

α with
an inverse H−1 of class C1

α (i.e., a C1
α-difeomorphism) satisfying the conclusions of the above theorem

even without the Diophantine conditions (3.3) on λj:
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Theorem 3.3. (The Hartman theorem for fractional differential systems). Let E be an open subset
of Rn containing the point x0, let f∈C2(E), and let φt be the flow of the nonlinear system (1.2).
Suppose that f(x0) = 0 and that all of the eigenvalues λ1, · · · , λn of the matrix A = Df(x0) have
negative (or positive) real part. Then there exists a C1

α-difeomorphism H of a neighborhood U of xo
onto an open set V containing the origin such that for each x∈U there is an open interval I(x)⊂R
containing zero such that for all x∈U and t∈I(x)

H o φt(x) = Eα(Atα)H(x), 0 < α ≤ 1.

4. Stability conditions

In this section we discuss the stability of the equilibrium points of the nonlinear system (1.2). The
stability of any hyperbolic equilibrium point x0 of (1.2) is determined by the signs of the real parts of
the eigenvalues λj of the matrix Df(x0). A hyperbolic equilibrium point x0 is asymptotically stable
if Re(λj) < 0 for j = 1, · · · , n; i.e., if x0 is a sink. And a hyperbolic equilibrium point x0 is unstable
if it is either a source or a saddle.

Definition 4.1. Let φt denote the flow of the differential equation (1.2) defined for all t∈R. An
equilibrium point x0 of (1.2) is stable if for all ε > 0 there exists a δ > 0 such that for all x∈Nδ(x0)
and t > 0 we have

φt(x)∈Nε(x0).

The equilibrium point x0 is unstable if it is not stable. And x0 is asymptotically stable if it is stable
and if there exists a δ > 0 such that for all x∈Nδ(x0) we have

lim
t→∞

φt(x) = x0.

It follows from the stable manifold theorem and the Hartman-Grobman theorem that any sink
of (1.2) is asymptotically stable and any source or saddle of (1.2) is unstable. Hence, any hyperbolic
equilibrium point of (1.2) is either asymptotically stable or unstable. The corollary in Section 2
provides even more information concerning the local behavior of solutions near a sink:

Theorem 4.2. If x0 is a sink of the nonlinear system (1.2) and Re(λj) < −β < 0 for all of the
eigenvalues λj of the matrix Df(x0), then, given ε > 0 there exists a δ > 0 such that for all x∈Nδ(x0),
the flow φt(x) of (1.2) satisfies

||φt(x)− x0||≤εEα(−βtα), 0 < α ≤ 1, (4.1)

for all t≥0.

Proof . Inserting x − x0 = a and φt(x) − x0 = u(t, a) and by notice to this fact that, all the
eigenvalues λj have negative real parts, it follows from (2.6) that

u(t, a) = U(t)a+

∫ t

0

(t− s)α−1Ũ(t− s)G(u(s, a))ds,

and hence

||u(t, a)|| ≤ ||U(t)|| ||a||+
∣∣∣∣∣∣∣∣ ∫ t

0

(t− s)α−1Ũ(t− s) G(u(s, a))ds

∣∣∣∣∣∣∣∣
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≤ ||U(t)|| ||a||+ ε

∫ t

0

(t− s)α−1||Ũ(t− s)|| ||u(s, a)||ds. (4.2)

Now, we set A(t) = ||u(t, a)|| and C = ||U(t)|| ||a||. Then, (4.2) can be written as

A(t)≤C + ε

∫ t

0

(t− s)α−1||Ũ(t− s)|| A(s)ds. (4.3)

Multiplying (4.3) by Eα(−εtα), we find that

Dα
t

[
Eα(−εtα)

(∫ t

0

(t− s)α−1||Ũ(t− s)|| A(s)ds)

)]
≤CEα(−εtα). (4.4)

Integrating Iαt of the inequality (4.4), we deduce that

Eα(−εtα)

(∫ t

0
(t− s)α−1||Ũ(t− s)|| A(s)ds

)
≤C
ε

(1− Eα(−εtα)), (4.5)

that is

ε

(∫ t

0

(t− s)α−1||Ũ(t− s)|| A(s)ds

)
≤C(Eα(εtα)− 1). (4.6)

Now, substituting (4.6) into (4.3) gives the following estimate

A(t) ≤ CEα(εtα). (4.7)

Returning to our original notation, we conclude from (2.5) and (4.7) that

||φt(x)− x0|| ≤ Eα(−βtα)||a||Eα(εtα). (4.8)

Thus, given ε > 0 , it is sufficient to choose δ =
ε

Eα(εtα)
to deduce (4.1). �

Since hyperbolic equilibrium points are either asymptotically stable or unstable, the only time
that an equilibrium point x0 of (1.2) can be stable but not asymptotically stable is when Df(x0) has
a zero eigenvalue or a pair of complex-conjugate, pure-imaginary eigenvalues λ = ±ib. It follows from
the next theorem, proved in [13], that all other eigenvalues λj of Df(x0) must satisfy Re(λj) ≤ 0 if
x0 is stable.

Theorem 4.3. If x0 is a stable equilibrium point of (1.2), no eigenvalue of Df(x0) has positive real
part.

We see that stable equilibrium points which are not asymptotically stable can only occur at
nonhyperbolic equilibrium points.

5. Fractional Center Manifold theorem

In the Section 3 we presented the Hartman-Grobman theorem, which showed that, in a neighborhood
of a hyperbolic critical point x0 ∈ E, the nonlinear system (1.2) is topologically conjugate to the linear
system (1.1) with A = Df(x0), in a neighborhood of the origin. The Hartman-Grobman theorem
therefore completely solves the problem of determining the stability and qualitative behavior in a
neighborhood of a hyperbolic critical point of a nonlinear system. In the section 4, we gave some
results for determining the stability and qualitative behavior in a neighborhood of a hyperbolic critical
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point of the nonlinear system (1.2). In this section, we present the local center manifold theorem,
which shows that the qualitative behavior in a neighborhood of a nonhyperbolic critical point x0

of the nonlinear system (1.2) with x∈Rn is determined by its behavior on the center manifold near
x0. Since the center manifold is generally of smaller dimension than the system (1.2), this simplifies
the problem of determining the stability and qualitative behavior of the flow near a nonhyperbolic
critical point of (1.2).

Theorem 5.1. (The fractional local center manifold theorem). Let f∈Cr(E), where E is an open
subset of Rn containing the origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has c eigenvalues
with zero real parts and s eigenvalues with negative real parts, where c + s = n. The system (1.2)
then can be written in diagonal form

x(α) = Cx+ F (x, y),

y(α) = Py +G(x, y), 0 < α ≤ 1, (5.1)

where (x, y)∈Rc×Rs, C is a square matrix with c eigenvalues having zero real parts, P is a square
matrix with s eigenvalues with negative mat parts, and F (0) = G(0) = 0, DF (0) = DG(0) = 0;
furthermore, there exists a δ > 0 and a function h∈Cr

α(Nδ(0)) that defines the local center manifold

W c
loc(0) = {(x, y)∈Rc×Rs | y = h(x) for |x| < δ},

and satisfies
Dαh(x)[Cx+ F (x, h(x))]− Ph(x)−G(x, h(x)) = 0,

for |x| < δ; and the flow on the center manifold W c(0) is defined by the system of differential
equations

x(α) = Cx+ F (x, h(x)),

for all x∈Rc with |x| < δ.

Proof . Let ψ : Rn→[0, 1] be a C∞ function with ψ(x) = 1 when |x| ≤ 1 and ψ(x) = 0 when |x| ≥ 2.

For ε > 0 define F̂ and Ĝ by

F̂ (x, y) = F (xψ(
x

ε
), y), Ĝ(x, y) = G(xψ(

x

ε
), y).

The reason that the cut-off function ψ is only a function of x is that the proof of the existence of a
center manifold generalizes in an obvious way to infinite dimensional problems.

We prove that the system

x(α) = Cx+ F̂ (x, y),

y(α) = Py + Ĝ(x, y), 0 < α ≤ 1, (5.2)

has a center manifold y = h(x), x∈Rn, for small enough ε. Since F̂ and Ĝ agree with F and G in a
neighborhood of the origin, this proves the existence of a local center manifold for (5.1).

For p > 0 and p1 > 0 let X be the set of Lipschitz functions h : Rn→Rm with Lipschitz constant
p1, |h(x)| ≤ p for x∈Rn and h(0) = 0. With the supremum norm || · ||, X is a complete space.

For h∈X and x0 ∈ Rn, let x(t, x0, h) be the solution of

x(α) = Cx+ F̂ (x, h(x)), x(0, x0, h) = x0. (5.3)
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The bounds on F̂ and h ensure that the solution of (5.3) exists for all t. We now define a new
function Th by

(Th)(x0) =

∫ 0

−∞
Eα(−Pτα)G(x(τ, x0, h), h(x(τ, x0, h)))dτ. (5.4)

If h is a fixed point of (5.4) then h is a center manifold for (5.2). We prove that for p, p1 and ε small
enough, T is a contraction on X. We recall that a contraction T on X is a function T from X to
itself, with the property that there is some non-negative real number 0 ≤ κ < 1 such that for all x
and y in X, ||T (x)−T (y)|| ≤ κ ||x−y||. The smallest such value of κ is called the Lipschitz constant
of T . A contraction has at most one fixed point. Moreover, the Banach fixed point theorem states
that every contraction on a nonempty complete metric space has a unique fixed point.

Using the definitions of F̂ and Ĝ, there is a continuous function k(ε) with k(0) = 0 such that

|F̂ (x, y)|+ |Ĝ(x, y)| ≤ εk(ε),

|F̂ (x, y)− F̂ (x′, y′)| ≤ k(ε)[|x− x′|+ |y − y′|], (5.5)

|Ĝ(x, y)− Ĝ(x′, y′)| ≤ k(ε)[|x− x′|+ |y − y′|],

for all x, x′∈Rn and all y, y′∈Rm with |y|, |y′| < ε.
Since the eigenvalues of P all have negative real parts, there exist positive constants β, θ such

that for s ≤ 0 and y∈Rm

|Eα(−Pτα)y| ≤ θEα(βτα)|y|. (5.6)

Since the eigenvalues of C all have zero real parts, for each r > 0 there is a constant M(r) such that
for x∈Rn and s∈R

|Eα(Cτα)x| ≤M(r)Eα(r|τ |α)|x|. (5.7)

Note that in general, M(r)→∞ as r→0.

If p < ε, then we can use (5.5) to estimate terms involving G(x(s, x0, h), h(x(s, x0

, h))) and similar terms. We shall suppose that p < ε from now on.

If x0∈Rn, then using (5.6) and the estimates on Ĝ and h, we have from (5.4) that

|Th(x0)| ≤ θβ−1εk(ε). (5.8)

Now let x0, x1∈Rn. Using (5.7) and the estimates on F̂ and h, we have from (5.3) that for r > 0 and
t ≤ 0

|x(t, x0, h)− x(t, x1, h)| ≤M(r)Eα(−rtα)|x0 − x1|

+ (1 + p1)M(r)k(ε)

∫ 0

t

(τ − t)α−1Eα(r(τ − t)α)|x(τ, x0, h)− x(τ, x1, h)|dτ.

By fractional Gronwall’s inequality [30], for t ≤ 0

|x(t, x0, h)− x(t, x1, h)| ≤M(r)|x1 − x0|Eα(−γtα), (5.9)

where γ = r + (1 + p1)M(r)k(ε). Using (5.9) and the bounds on Ĝ and h, it obtain from (5.4) that

|Th(x0)− Th(x1)| ≤ θ(M(r) + p1)k(ε)(β − γ)−1|x0 − x1|, (5.10)

if ε and r are small enough so that β > γ.
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Similarly, if h1, h2∈X and x0∈Rn, we obtain

|Th1(x0)− Th2(x0)| ≤ θk(ε)[β−1 + (1 + p1)M(r)k(ε)r−1(β − γ)−1].||h1 − h2||. (5.11)

By a suitable choice of p, p1, ε and γ, we see from (5.8), (5.10) and (5.11) that T is a contraction on
X. This proves the existence of a Lipschitz center manifold for (5.2). To prove that h is C1

α we show
that T is a contraction on a subset of X consisting of Lipschitz differentiable functions. The details
are straightforward so we omit them. To prove that h is Cr

α, we imitate the proof of Theorem 4.2 on
page 333 of [3]. �

The next theorem, which is a special case of the theorem proved by Carr in [1], is analogous to the
Hartman-Grobman theorem except that, in order to determine completely the qualitative behavior of
the flow near a nonhyperbolic critical point, one must be able to determine the qualitative behavior
of the flow on the center manifold, which is determined by the first system of differential equations
in the following theorem.

Theorem 5.2. Let E be an open subset of Rn containing the origin, and let f∈C1(E); suppose
that f(0) = 0 and that the n × n matrix Df(0) = diag[C,P,Q], where the square matrix C has c
eigenvalues with zero real parts, the square matrix P has s eigenvalues with negative real parts, and
the square matrix Q has it eigenvalues with positive real parts. Then there exists C1

α functions h1(x)
and h2(x) satisfying

Dαh1(x)[Cx+ F (x, h1(x), h2(x)]− Ph1(x)−G(x, h1(x), h2(x)) = 0,

Dαh2(x)[Cx+ F (x, h1(x), h2(x)]−Qh1(x)−H(x, h1(x), h2(x)) = 0,

in a neighborhood of the origin such that the nonlinear system (1.2), which can be written in the
form

x(α) = Cx+ F (x, y, z),

y(α) = Py +G(x, y, z), 0 < α ≤ 1,

z(α) = Qz +H(x, y, z),

is topologically conjugate to the C1
α system

x(α) = Cx+ F (x, h1(x), h2(x)),

y(α) = Py, 0 < α ≤ 1,

z(α) = Qz,

for (x, y, z)∈Rc×Rs×Ru in a neighborhood of the origin.

We add one final result to this paper which establishes the existence of an invariant center manifold
W c(0) tangent to Ec at 0. The next theorem follows from the local center manifold theorem, Theorem
5.2, and the stable manifold theorem in section 2.

Theorem 5.3. (The fractional center manifold theorem). Let f∈Cr(E) where E is an open subset
of Rn containing the origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has k eigenvalues with
negative real part, j eigenvalues with positive real part, and m = n−k− j eigenvalues with zero real
part. Then there exists an m-dimensional center manifold W c(0) of class Cr

α tangent to the center
subspace Ec of (1.1) at 0, there exists a k-dimensional stable manifold W s(0) of class Cr

α tangent
to the stable subspace Es of (1.1) at 0 and there exists a j-dimensional unstable manifold W u(0) of
class Cr

α tangent to the unstable subspace Eu of (1.1) at 0; furthermore, W c(0) , W s(0) and W u(0)
are invariant under the flow φt of (1.2).
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