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Abstract

Let H be a real Hilbert space with the inner product < ., . > and the norm ‖ · ‖. In this paper,
we introduce hybrid algorithms for generating cyclic, non-expansive mapping of H. Also, we discuss
about necessary and sufficient conditions on subsets of Hilbert space to be remotal or uniquely
remotal. Moreover, we give the basic concepts and theorems of farthest points of Bounded subsets
of H. In the end, we will provide examples to illustrate our results.
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1. Introduction

Approximation theory, which mainly consists of theory of best approximation and theory of worst
approximation [4, 8, 7, 10] is interesting topic in analysis. Some results in this area was introduced in
2003, by kirk[13]. Later, investigation in this area was continued by many researchers and obtained
many results([1], [2], [5], [6], [12], [16], [18], [19]). In particular, Eldered and Yeeramani [3] proved
some results about best proximity points of cyclic contraction maps. Farthest points at first time
was introduced by B. Jessen [11]. The main purpose of this paper is to discuss about existence
of farthest points for non-expansive maps and convex sets in Hilbert space H. This section reviews
basic definitions, facts, and notation from set-valued analysis, and normed spaces that will be used
throughout the paper.

Let H be a real Hilbert space with the inner product < ., . > and the norm ‖.‖. Recall that for
nonempty subsets A and B of H and x ∈ H, we write

d(A,B) = inf
x∈A,y∈B

‖x− y‖
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and
d(x,B) = inf

y∈B
‖x−B‖.

Also we set
δ(A,B) = sup

x∈A,y∈B
‖x− y‖

and
δB(x) = δ(x,B) = sup

y∈B
‖x−B‖,

for bounded subsets A, B of H. A mapping T : A
⋃
B → A

⋃
B, A,B ⊂ H, is said to be non-

expansive if ‖Tx − Ty‖ ≤ ‖x − y‖ holds for all x, y ∈ A
⋃
B. Suppose that B is a closed convex

subset of H, the metric projection of some element x onto B, define as:

PB(x) = {x0 ∈ B : ‖x− x0‖ = d(x,B)},

and denote by FB(x) set of all farthest points of x on bounded set B:

FB(x) = {x0 ∈ B : ‖x− x0‖ = δ(x,B)},

and wω(xn) := {x : ∃(xnk
) ⊂ (xn), xnk

w−→x} denotes the weak ω−limit set of xn. Bounded set B is
said to be remotal, if FB(x) is nonempty for every x ∈ H.

In this article, we need to define the following definitions:

F (AT ) = {a ∈ A : d(a, Ta) = δ(A,B)},

A0 = {a ∈ A : ‖a− b‖ = δ(A,B), for some b ∈ B},
for closed, convex and bounded subsets A,B of H. It is quite national to see that F (AT ) ⊂ A0.

Definition 1.1. [3] Let A and B be nonempty closed subsets of a metric space (X, d). Then (A,B)
is said to satisfy the UC property if {xn} and {zn} are sequences in A and {yn} is a sequence in B
such that limn→∞d(xn, yn) = d(A,B) and limn→∞d(zn, yn) = d(A,B), then limn→∞d(xn, zn) = 0.

Lemma 1.2. [15] For u, v in real Hilbert space H, we have:

‖u− v‖2 = ‖u‖2 − ‖v‖2 − 2 < u− v, v >,

‖αu+ (1− α)v‖2 = α‖u‖2 + (1− α)‖v‖2 − α(1− α)‖u− v‖2, α ∈ [0, 1].

Lemma 1.3. [15]. Let B be a closed convex subset of a real Hilbert space H and let T : B → B
be a non-expansive mapping such that Fix(T ) 6= ∅. If a sequence {xn} in C is such that xn

w−→z and
‖xn − Txn‖ → 0, then z = Tz.

Lemma 1.4. [15] Let K be a closed convex subset of H. Let {xn} be a sequence in H and x ∈ H. Let
q = PK(x). If {xn} is such that wω(xn) ⊂ Kand satisfies the condition

‖xn − x‖ ≤ ‖x− q‖ for all n ∈ N,

then xn → q.

In this paper, we discuss about necessary and sufficient conditions on subsets of Hilbert space to
be remotal or uniquely remotal, also we give the basic concepts and theorems on Hilbert spaces for
the existence of farthest points.
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2. Remotal sets in Hilbert space

In this section we introduce the fundamental notion of the farthest points of a convex set. The
key result is Proposition 2.1 , which asserts that every nonempty closed convex subset C of H, which
satisfy S(x+y)/2−property, is a unique remotal set, i.e., that every point in H possesses a unique
farthest point from C, and which provides a characterization of this farthest points.

Definition 2.1. Let A and B be two closed subsets of a metric space (X, d). Then A and B are
said to satisfy the F−property if for x1, x2 ∈ A0 and y1, y2 ∈ B0 the following implication holds:
d(x1, y1) = d(x2, y2) = δ(A,B) =⇒ d(x1, x2) = d(y1, y2)

Definition 2.2. Let A and B be nonempty closed subsets of a metric space (X, d). Then (A,B) is
said to satisfy the FC property if {xn} and {zn} are sequences in A and {yn} is a sequence in B such
that limn→∞d(xn, yn) = δ(A,B) and limn→∞d(zn, yn) = δ(A,B), then limn→∞d(xn, zn) = 0.

Example 2.3. Let X = R2 and consider A = {(x, y)|(x + 3)2 + y2 ≤ 1}, B = {(x, y)|x2 + y2 ≤ 1}
in X. It is clear that (A,B) satisfy in FC property.

Note that, every Hilbert space satisfies UC property, but this is not true for FC property, for example
consider A = {(0, y)|0 ≤ y ≤ 2} and B = {(1, 1)} in Euclidean space R2.

Definition 2.4. Let A and B be nonempty subsets of a Hilbert space H, T : A → B. We say that
T satisfies the FH-property if xn

w−→x ∈ A
⋃
B, ‖xn − Txn‖ → δ(A,B) then ‖x− Tx‖ = δ(A,B). for

{xn}n≥0 ∈ A
⋃
B.

Definition 2.5. A Hilbert space H is said to be FH-convex if the following implication holds for all
x1, x2, p ∈ H,R > 0, ‖xi − p‖ ≥ R, i = 1, 2 and x1 6= x2 → ‖(x1 + x2)/2− p‖ > R.

Definition 2.6. Let C be a nonempty subset of H and x, y ∈ H. Then C is said to satisfy the
S(x+y)/2−property, if there exist S : C → C such that for two sequence {yn}n∈N and {zn}n∈N in C,
the following implication holds:
If ‖yn − x‖ → δC(x), ‖zn − y‖ → δC(y) Then, as n ↑ ∞ : ‖(Syn + Szn)/2 − (x + y)/2‖ ≥ δC((x +
y)/2)− ε,∀ε > 0.

Example 2.7. Let H = R2, C = {(x, y) : x2 + y2 ≤ 1}. If S(x, y) = (1, 0), then C is satisfying
S[(−2,0)+(−2,0)]/2−property(S(−2,0)−property).

Lemma 2.8. Let A be a bounded subset of the Banach space X, x ∈ X and w0 ∈ A. Then the
following are equivalent:

(i) w0 ∈ FA(x),
(ii) There exists an f ∈ X∗ such that f satisfies ‖f‖ = 1 and |f(x− w0)| ≥ δ(x,A).

Proof . (i)→ (ii). Suppose w0 ∈ FA(x), then ‖x−w0‖ = δ(x,A). By Hahn-Banach Theorem, there
exists an f ∈ X∗ such that ‖f‖ = 1 and |f(x− w0)| = ‖x− w0‖ = δ(x,A).
(ii)→ (i). Suppose there exists an f ∈ X∗ such that f satisfies ‖f‖ = 1 and |f(x− w0)| ≥ δ(x,A).
We have

‖x− w0‖ = ‖f‖‖x− w0‖
≥ |f(x− w0)|
≥ δ(x,A)

≥ ‖x− w0‖.

�



440 Mazaheri Tehrani, Rahmani Jafarbeigi

Lemma 2.9. For x and y in H, the following hold:
(∀α ∈ [0, 1])‖x‖ ≥ ‖x− αy‖ → (∀α ∈ R+)‖x‖ ≥ ‖x− αy‖ →< x, y >≥ 0.

Proof . Observe that

(∀α ∈ R)‖x− αy‖2 − ‖x‖2 = α(α‖y‖2 − 2 < x, y >).

If for every α ∈ (0, 1], ‖x‖ ≥ ‖x−αy‖, then < x, y >≥ α‖y‖2/2. As α ↓ 0, we obtain < x, y >≥ 0.
�

Lemma 2.10. [14] Let K be a closed and convex subset of real Hilbert space H. Then z = PK(x) if
and only if the relation holds:

< x− z, y − z >≤ 0, for all y ∈ K.

Proposition 2.11. Let C be a closed convex subset of real Hilbert space H, which it satisfy in
S(x+y)/2−property(in particular Sx−property), for every x, y ∈ H. Then C is unique remotal set,
and for every x, z ∈ H, z = FC(x) imply that < x− z, y − z >≥ 0, for all y ∈ C.

Proof . Let x ∈ H, by definition of δC , there exists a sequence (yn)n∈N in C such that δC(x) =
lim‖yn−x‖, hence δC(x) = lim‖Syn−x‖, because ‖Syn−x‖ = ‖x−(Syn+Syn)/2‖ ≥ δC(x)−ε,∀ε > 0
by Sx−property of C. Now take m and n in N. Letting m and n go to +∞, we obtain that (Syn)n∈N
is a Cauchy, from Apollonius’s identity that

‖Syn − Sym‖2 = 2‖Syn − x‖2 + 2‖Sym − x‖2 − 4‖x− (Syn + Sym)/2‖2

≤ 2δ2C(x) + 2δ2C(x)− 4δ2C(x).

Since C is complete as a closed subset of H, it therefore converges to some point p ∈ C. Then
‖Syn − x‖ → ‖p − x‖, by continuity of ‖. − x‖, hence δC(x) = ‖p − x‖. For uniqueness, suppose
that q ∈ C satisfies δC(x) = ‖q − x‖, therefore, there exist a sequence (zn)n∈N ∈ C such that
lim‖zn − x‖ = ‖q − x‖ = δC(x), hence lim‖(Szn + Syn)/2− x‖ = ‖(p+ q)/2− x‖, therefore

‖(p+ q)/2− x‖ = lim‖(Szn + Syn)/2− x‖
≥ δC(x)− ε.

Now by Apollonius’s identity,

‖p− q‖2 = 2‖p− x‖2 + 2‖q − x‖2 − 4‖x− (p+ q)/2‖2

= 4δ2C(x)− 4(δC(x)− ε)2 ≤ 0.

This implies that p = q and shows uniqueness. Finally, for every y ∈ C and α ∈ [0, 1], set
yα = αy + (1− α)z, which belongs to C by convexity. Lemma 2.9 yields

‖x− z‖ = δC(x) =⇒ (∀y ∈ C)(∀α ∈ [0, 1])‖x− z‖ ≥ ‖x− yα‖
=⇒ (∀y ∈ C)(∀α ∈ [0, 1])‖x− z‖ ≥ ‖x− z − α(y − z)‖
=⇒ (∀y ∈ C) < x− z, y − z >≥ 0.

�

Corollary 2.12. Let C be a closed subset of real Hilbert space H, which it satisfy in Sx−property.
Then C is remotal set.
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3. Farthest points

Let H be a real Hilbert space and suppose that A and B are a closed, convex and bounded subset
of H, which B satisfying S(x+y)/2−property. Under assumption of non-expansive map definition, the
following algorithm produces two sequences {xn} ⊂ A and {yn} ⊂ B as:

Algorithm 3.1. x0 ∈ A0 arbitrarily,
yn = αnFB(xn) + (1− αn)T (xn), n ∈ N

⋃
{0}

Cn = {z ∈ A0 : ‖yn − z‖ ≥ δ(A,B)− ‖xn − z‖}
Qn = {z ∈ A0 :< xn − z, xn − x0 >≤ 0}
xn+1 = P(Cn

⋂
Qn)(x0).

where αn ∈ [0, 1], αn → 0.

We start with some basic properties.

Lemma 3.2. Cn generated in Algorithm 3.1 is convex.

Proof . By definition of Cn, we have

‖yn − z‖2 ≥ (δ(A,B))2 + ‖xn − z‖2 − 2‖xn − z‖δ(A,B).

Using lemma 1.2, we get

‖yn − xn‖2 = ‖yn − z‖2 − ‖xn − z‖2 − 2 < yn − xn, xn − z >
≥ (δ(A,B))2 + ‖xn − z‖2 − 2‖xn − z‖δ(A,B)

− ‖xn − z‖2 − 2 < yn − xn, xn − z >
≥ −(δ(A,B))2 − 2 < yn − xn, xn − z > .

Hence, we have
‖yn − xn‖2 + δ(A,B))2 + 2 < yn − xn, xn − z >≥ 0.

Now, consider z1, z2 ∈ Cn, for λ ∈ [0, 1], we have

‖yn − xn‖2 + (δ(A,B))2

+ 2 < yn − xn, xn − (λz1 + (1− λ)z2) >

= ‖yn − xn‖2 + (δ(A,B))2

+ 2λ < yn − xn, xn − z1 > +2(1− λ) < yn − xn, xn − z2 >
≥ λ(−‖yn − xn‖2 − (δ(A,B))2) + (1− λ)(−‖yn − xn‖2 − (δ(A,B))2)

+ ‖yn − xn‖2 + δ(A,B))2

= 0.

Therefore
λz1 + (1− λ)z2 ∈ Cn.

�

Lemma 3.3. For x ∈ A0, we have ‖FB(x)− x‖ = δ(A,B).
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Proof . From the definition of FB(x), we get

‖FB(x)− x‖ = δ(x,B).

Also, by definition of A0, we have

‖x− b‖ = δ(A,B), for some b ∈ B.

Therefore

δ(A,B) ≥ ‖FB(x)− x‖
= δ(x,B)

≥ ‖x− b‖
= δ(A,B).

�

Proposition 3.4. Let A and B be nonempty closed, convex and bounded subsets of a Hilbert space
H satisfy F-property and T : A0 → B0 be a cyclic non-expansive map such that F (AT ) is a nonempty
convex subset of A0. Also, B satisfy S(x+y)/2−property for S : B → B. For x0 ∈ A0, the sequences
{xn} and {yn} are generated algorithm 3.1. Then xn is bounded and ‖xn − Txn‖ → d(A,B) and
‖yn − xn‖ → d(A,B).

Proof . Choose x0 ∈ A0 arbitrarily. It is clear that Cn andQn are closed, convex and bounded subsets
of A. Now we show that Cn is nonempty subset of A0. Let u ∈ F (AT ), therefore ‖u−T (u)‖ = δ(A,B).
Using the F-property we obtain that ‖FB(xn)−T (u)‖ = ‖xn−u‖, by ‖FB(xn)−xn‖ = ‖u−T (u)‖ =
δ(A,B). Hence

‖yn − Tu‖ = ‖αnFB(xn) + (1− αn)T (xn)− Tu‖
≤ ‖(1− αn)(Tu− T (xn))‖+ ‖αn(FB(xn)− Tu)‖
≤ (1− αn)‖xn − u‖+ αn‖xn − u‖
= ‖xn − u‖.

Therefore, we have

‖yn − u‖ ≥ ‖u− Tu‖ − ‖yn − Tu‖
≥ δ(A,B)− ‖xn − u‖.

Using the induction principle and lemma 2.10, it is quite natural to see that F (AT ) ⊂ Qn. It is
clear that F (AT ) ⊂ A0. Let Q0 = A0 and we assume that F (AT ) ⊂ Qn is true. By Lemma 2.10
we have that < xn+1 − z, xn+1 − x0 >≤ 0 for all z ∈ Cn

⋂
Qn in particular for all F (AT ), because

xn+1 = PCn
⋂
Qn(x0). Hence, F (AT ) ⊂ Qn+1.

Since xn+1 = PCn
⋂
Qn(x0) and F (AT ) ⊂ Cn

⋂
Qn, we obtain that

‖xn+1 − x0‖ ≤ ‖q − x0‖,

where q ∈ PF (AT )(x0). Since, xn+1 ∈ Qn and by using Lemma 1.2, we get

‖xn+1 − xn‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2,
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which in turn gives that

∞∑
0

‖xn+1 − xn‖2 ≤ ‖q − x0‖2 − ‖x1 − x0‖2.

Hence
‖xn+1 − xn‖ → 0,

by the definition of Cn, we have

‖yn − xn‖ ≥ ‖yn − xn+1‖ − ‖xn+1 − xn‖
≥ δ(A,B)− ‖xn+1 − xn‖ − ‖xn+1 − xn‖.

Therefore as n→∞, we get that

‖yn − xn‖ → δ(A,B).

Also,

yn − xn = αnFB(xn) + (1− αn)T (xn)− xn
= αn(FB(xn)− T (xn)) + (T (xn)− xn).

Therefore, we obtain

‖T (xn)− xn‖ ≥ ‖yn − xn‖ − αn‖FB(xn)− T (xn)‖.

Hence, ‖T (xn)− xn‖ → δ(A,B) as n→∞. �

Theorem 3.5. Let A and B be nonempty closed, convex and bounded subsets of a Hilbert space H
which satisfy F-property and T : A0 → B0 be a non-expansive map. Let F (AT ) is a nonempty convex
subset of A0. Also, B satisfy S(x+y)/2−property for S : H → B. Then there exists (x, y) ∈ A × B
such that

‖x− y‖ = δ(A,B).

Proof . Since ‖xn − Txn‖ −→ δ(A,B) and

yn − xn = αnFB(xn) + (1− αn)T (xn)− xn
= αn(FB(xn)− T (xn)) + (T (xn)− xn),

we obtain
‖T (xn)− xn‖ ≤ ‖yn − xn‖+ αn‖FB(xn)− T (xn)‖.

Hence
‖yn − xn‖ ≥ δ(A,B) ≥ δ(B, xn),

therefore
yn ∈ FB(xn)

and δ(A,B) = δ(B, xn), for any n > N , for some N ∈ N. For x0 ∈ A0, the sequences {xn} is
generated by algorithm 3.1 is bounded, by boundedness of A and B. Since A and B are closed and
convex, they are weakly closed. Since H is reflexive and A is weakly closed, the sequence {xn} has
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a subsequence {xnk
} such that xnk

w−→x ∈ A as k → ∞. Also B is weakly closed, hence the sequence
{yn} has a subsequence {ynk

} such that ynk

w−→y ∈ B as k →∞. Since xnk
− ynk

w−→x− y 6= 0 as k →∞,
from lemma 2.8 there exists a bounded liner functional f : X → [0,∞) such that ‖f‖ = 1 and

δ(A,B) = δ(B, xn)

≤ |f(xnk
− ynk

)| −→ |f(x− y)|
≤ ‖f‖‖x− y‖ = ‖x− y‖,

because yn ∈ FB(xn) for any n > N , for some N ∈ N. So ‖x− y‖ = δ(A,B). �

Theorem 3.6. Let A and B be nonempty closed, convex and bounded subsets of a Hilbert space H
which satisfy F-property and T : A0 → B0 be a non-expansive map. Let F (AT ) is a nonempty convex
subset of A0. Also, (A,B) satisfy in FC property and B satisfy S(x+y)/2−property for S : H → B.
Then the sequence (xn, yn) generated by Algorithm 3.1 converges to a proximity pair in A × B. In
particular (xn, yn) converges to(q, T (q)), where q = PF (AT )(x0).

Proof . From proposition 3.4, we have

‖T (xn)− xn‖ → δ(A,B) as n→∞.

Using FC property of (A,B) and ‖FB(xn) − xn‖ → δ(A,B), we get ‖FB(xn) − T (xn)‖ → 0, as
n → ∞. Hence ‖FA(Txn) − xn‖ → 0, as n → ∞, by F−property, because ‖FA(Txn) − Txn‖ →
δ(A,B), as n→∞.

Define φ : A0 → A0 as φ(x) = FA(Tx) for all x ∈ A0. We get φ is non-expansive and F (AT ) =
Fix(φ), by F-property, because

‖FA(Tx)− Tx‖ = δ(A,B), ‖FA(Ty)− Ty‖ = δ(A,B).

Therefore, by Lemma 1.3 we obtain wω(xn) ⊂ Fix(φ). Hence, by Lemma 1.4, {xn} converges strongly
to a fixed point of Φ (for example p), because

‖xn+1 − x0‖ ≤ ‖q − x0‖,

where q ∈ PF (AT )(x0). Therefore, {xn} converges to the point p ∈ A0 which satisfies d(p, T (p)) =
δ(A,B). Therefore p ∈ F (AT ), and hence,

‖x0 − p‖ ≥ ‖x0 − q‖ = d(x0, F (AT )).

Also, using equation ‖xn − x0‖ ≤ ‖q − x0‖, we get

‖x0 − p‖ = limn→∞‖x0 − xn‖ ≤ ‖q − x0‖ ≤ d(x0, F (AT )).

Therefore, ‖x0 − p‖ = d(x0, F (AT )), hence p = q, and this completes the proof. �
The following theorem gives a condition that guarantees the existence of unique farthest points.

Theorem 3.7. Let A and B be nonempty closed, convex and bounded subsets of a Hilbert space H
which satisfy FH-property and T : A0 → B0 be a non-expansive map. Let F (AT ) is a nonempty
convex subset of A0. Also, B satisfy S(x+y)/2−property for S : H → B, then there exists unique x ∈ A
such that

‖x− T (x)‖ = δ(A,B). (3.1)

provided that one of the following conditions is satisfied
(a) T is weakly continuous on A and B.
(b) T satisfy the F−property.
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Proof . Since ‖xn − yn‖ −→ δ(A,B) and

yn − xn = αnFB(xn) + (1− αn)T (xn)− xn
= αn(FB(xn)− T (xn)) + (T (xn)− xn).

From the above equality, we obtain

‖yn − xn‖ ≤ ‖T (xn)− xn‖+ αn‖FB(xn)− T (xn)‖.

Hence
‖T (xn)− xn‖ ≥ δ(A,B) ≥ δ(B, xn),

therefore
T (xn) ∈ FB(xn)

and δ(A,B) = δ(B, xn), for any n > N , for some N ∈ N.
For x0 ∈ A0, the sequences {xn} is generated by algorithm 3.1 is bounded, by boundedness of A

and B. Since A and B are closed and convex, they are weakly closed. Since H is reflexive and A is
weakly closed, From weak continuity of T, Txnk

w−→Tx ∈ B as k → ∞. So xnk
− Txnk

w−→x− Tx 6= 0
as k →∞. Since xnk

− Txnk

w−→x− Tx 6= 0 as k →∞, from Lemma 2.8 there exists a bounded liner
functional f : X → [0,∞) such that ‖f‖ = 1 and

δ(A,B) = δ(B, xn)

≤ |f(xnk
− Txnk

)| −→ |f(x− Tx)|
≤ ‖f‖‖x− Tx‖
= ‖x− Tx‖,

because Txn ∈ FB(xn) for any n > N , for some N ∈ N. So ‖x − Tx‖ = δ(A,B). From (b) and
Proposition 3.4,

‖xnk
− Txnk

‖ → d(A,B) as k →∞.

So d(A,B) = ‖x − Tx‖. For the uniqueness of x, suppose that there exists a ∈ A such that
‖a− Ta‖ = d(A,B). By the FH-convexity of H, and convexity of A and B, we have

‖(x+ a)/2− (Tx+ Ta)/2‖ = ‖(x− Tx)/2 + (a− Ta)/2‖ > δ(A,B). (3.2)

which is a contraction. This shows that x is unique. �
We conclude this section with a following examples.

Example 3.8. Consider X = R2 with the usual metric. Let A = {(2, y) : 1 ≤ y ≤ 2}, B = {(3, y) :
1 ≤ y ≤ 3/2}, αn = 1/(n + 1) and T : A → B, S : B → B be given by T (2, y) = (3, 3 − y) and
S(3, y) = (3, y). Now, we choose an arbitrary element x0 = (2, 3/2), it is clear that B satisfying
in S(x+y)/2−property, T is a non-expansive mapping and (2, 2) is the farthest point of T, that it is
unique.

Example 3.9. Consider the Euclidean ordered space X = R2 with the usual metric. Let A = {(x, y) :
−x− 3 ≤ y ≤ x + 3,−3 ≤ x ≤ −1}, B = {(x, y) : x− 3 ≤ y ≤ −x + 3, 1 ≤ x ≤ 3}, αn = 1/(n + 1)
and T : A→ B, S : B → B are defined by T (x, y) = (−x, y) and S(x, y) = (3, 0). Let us choose an
arbitrary element x0 = (−3, 0), it is clear that B satisfying in S(x+y)/2−property, T is a non-expansive
mapping and (−3, 0) is the unique farthest point of T.
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Note that, S(x+y)/2−property is a sufficient condition for the farthest points, but not a necessary
condition. Of course, it is needed to be unique.

Example 3.10. Let X = R2 with the usual metric. Let A = {(2, y) : 1 ≤ y ≤ 2}, B = {(3, y) :
1 ≤ y ≤ 2}, αn = 1/(n + 1) and T : A → B, S : B → B be defined by T (2, y) = (3, 3 − y)
and S(3, y) = (3, 3 − y). Now, us choose an arbitrary element x0 = (2, 2), it is clear that T is a
non-expansive mapping and B not satisfying the S(x+y)/2−property. But (2, 2), (2, 1) are the farthest
points of T, that farthest point is not unique.

Example 3.11. Consider X = R2 with the usual metric. Let A = {(x, y) : x2 + y2 = 1, x ≤ 0},
B = {(x, y) : x2 + y2 = 1, x ≥ 0}, αn = 1/(n + 1) and T : A → B, S : B → B be given by
T (x, y) = (−x,−y) and S(x, y) = (x, y). Now, we choose an arbitrary element x0 = (0, 1), it is
clear that T is a non-expansive mapping and B not satisfying the S(x+y)/2−property and the set of
all points in a A are the farthest point of T.
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