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Abstract

In this article, we investigate the relation between dominating sets and 1-perfect codes. We also
study perfect colorings of some Johnson graphs in two colors using linear programming problem.
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1. Introduction

All over this paper, G is a finite connected simple graph with vertex set V and edge set E. The
distance d(x, y) between any two vertices x and y of G is the length of a shortest path from x to y
in G. The diameter of G is the maximal distance occurring in G [7]. We will need the concept of
neighborhood of x, written N(x), that is the set of vertices adjacent to x. Also N [x] = N(x) ∪ {x}.

A perfect coloring of a graph G with m colors (a perfect m-coloring) with matrix P = [pij];
i, j = 1, 2, . . . ,m is a coloring of V with the colors {1, 2, . . . ,m} such that every vertex of color i has
pij neighbors of color j. The matrix P is called the parameter matrix of a perfect m-coloring. In
this paper, we study the perfect 2-colorings and call the first color white, and the second color black
[2, 5].

Consider En as the set of binary vectors of length n. The weight of a vector x in En is the number
of nonzero coordinates of x. The Johnson graph J(n, ω) is a graph whose vertex set consists of all
vectors in En of weight ω. The set of edges of this graph consists of the pairs of vectors differing in
exactly two coordinates. It is easy to check that J(n, ω) is a regular graph of degree ω(n − ω) and
diameter ω. Note that J(n, n− ω) and J(n, ω) are isomorphic; therefore, without loss of generality,
we may consider the Johnson graphs J(n, ω) with 2ω 6 n [1].
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Given a graph G with the vertex set V , a sphere of radius r centered at v is defined as Br(v) =
{u ∈ V : d(u, v) 6 r}. A set C ⊆ V is called an e-perfect code in G if spheres of radius e centered at
the vertices of C form a partition of V . If C either coincides with V (e = 0) or consists of at most
two vertices, such a perfect code is called trivial [4, 5, 6].

A set S ⊂ V is a dominating set if every vertex not in S has a neighbor in S. The minimum size
of a dominating set in G, is called the domination number γ [3, 7]. There are several ways to find γ.
One way to compute it, is using linear programming that the following theorem describes it.

Theorem 1.1. Let G be a graph with vertex set V and adjacency matrix A = [aij]n×n. The domi-
nation number γ of G is obtained by solving the following linear programming problem:

γ = min z =
n∑

i=1

vi (1.1)

s.t.(A+ In)N ≥ 1n

vi ∈ {0, 1}

where In is the identity matrix of order n, N = (v1, v2, . . . , vn)T and 1n = (1, 1, . . . , 1)T .

Proof . Consider variables {v1, v2, . . . , vn} corresponding to vertices of G; if vi = 1 then vi ∈ S;
otherwise vi /∈ S. According to this, each of the constraints corresponds to a vertex of G and indicates
that for any v ∈ V , at least one vertex of N [v] belongs to S. This is consistent with the definition
of dominating set. Besides, with regard to the objective function, solving the linear programming
problem 1.1 gives the domination number of G. �

Assume B1(v) is a sphere of radius 1 centered at the vertex v belonging to the dominating set
S; then V (G) ⊂ ∪v∈SB1(v). Notice that the considered spheres can also have intersection. We will
show that if this spheres do not have intersection, they form an 1-perfect code for G.

2. How to get the 1-perfect codes

According to the previous section, a 1-perfect code is a dominating set, but the converse of this
is not true. Since the neighborhoods of a 1-perfect code do not have intersection; but the spheres of
radius 1 centered at the vertices of the dominating set can also have intersection.

Theorem 2.1. Let G be a graph with the vertex set V such that |V | = n. If there exist 1-perfect
code in G, it will be achieved from the following linear system:

(A+ In)N = 1n; (2.1)

vi ∈ {0, 1}

where A = [aij]n×n is the adjacency matrix of G, In is the identity matrix of order n, N =
(v1, v2, . . . , vn)T and 1n = (1, 1, . . . , 1)T So that C = {vi|vi = 1} is 1-perfect code in G.

Proof . We prove that 1-perfect code is equivalent to the solution of the system 2.1. Consider the
vertex set of G by V = {v1, v2, . . . , vn}. Let vk; k = 1, 2, . . . , n has degree dk. Suppose first that C be
1-perfect code for G. Consider variables {v1, v2, . . . , vn} corresponding to each of the vertices G. If
vk ∈ C, then vk = 1; otherwise vk = 0. We show that this is a solution for the system 2.1. Let vi and
vj be arbitrary elements belonging to C. Therefore vi, vj = 1. vi and vj appear in di + 1 and dj + 1
equations, respectively. According to the structure of the system, there is an equation corresponding
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to each vertex so that the variables in that equation are related vertex and its neighbors. On the
other hand, since none of the vertices belonging to C are adjacent, equations in which there is vi,
are satisfied. Also, since B1(vi) ∩ B1(vj) = ∅, there is no equation that includes both vi and vj.
As well as ∪v∈CB1(v) = V (G), therefore all of the equations are satisfied. So, we find a solution
to the system. Vice versa, let’s assume the system has a solution. We consider C = {vk|vk = 1}
and prove C is a 1-perfect code for G. First, we prove for every two vertices vi and vj belonging to
C, we have B1(vi) ∩ B1(vj) = ∅. Proof by contradiction: we suppose vk ∈ B1(vi) ∩ B1(vj). Since
vi, vj ∈ C in the kth equation of the system vi, vj = 1 which completes the contradiction. Also, if
there is vk ∈ V (G) such that is not covered by ∪v∈CB1(v), so the kth equation is not satisfied; that
also yields the contradiction. Therefore, the spheres of radius 1 centered at C form a partition of V .
So C is a 1-perfect code. �

Theorem 2.2. J(n, ω), 3|n, does not have a nontrivial 1-perfect code.

Proof . Since diam(J(n, ω)) = ω , diam(J(n, 3)) = 3. Therefore, if there is a 1-perfect code,
the distance between every two vertices belonging to this set is 3. We construct the 1-perfect
code. Let n = 3k. Consider the set of vertices {v1, . . . , vk} as follows: v1 is a vertex that in the
first three places gives 1, . . . , vk is a vertex that in the kth three places gives 1. In this case, for
each i, j = 1, 2, . . . , k; i 6= j, d(vi, vj) = 3. Therefore, we have: B1(vi) ∩ B1(vj) = ∅ for each
i, j = 1, 2, . . . , k; i 6= j. The neighbors {v1, . . . , vk} involve all cases that have exactly two non-zero
elements. The vertex set of ∩ki=1B1(vi) does not cover vertex that there is maximum one non-zero
element in any of its classes. However, there exist a neighbor for any vertex that has two nonzero
elements in one of the classes. Therefore, we cannot extend {v1, . . . , vk}. �

Theorem 2.3. Consider the graph J(n, ω). If
(
n
ω

)
= 2(ω(n − ω) + 1) then there exist a trivial

1-perfect code with two vertices in J(n, ω). So, it is perfect 2-colorable with the parameter matrix[
0 ω(n− ω)
1 ω(n− ω)− 1

]
Proof . Since

(
n
ω

)
= 2(ω(n − ω) + 1), ω ≥ 3. that d(vi, vj) ≥ 3. We can say d(vi, vj) = 3 because

there is a vertex vk such that vk is not neighbor of vi and vj. Therefore {vi, vj} is a trivial 1-perfect

code in J(n, ω). Now suppose that S =

[
S11 S12

S21 S22

]
is the parameter matrix of this graph, the set

C is a 1-perfect code and the other vertices. Since any two vertices are not adjacent in C (since if x
and y are adjacent in C then x, y ∈ B1(x) ∩ B1(y) and obtaining a contradiction), so S11 = 0. On
the other hand, since J(n, ω) is ω(n − ω)-regular and each vertex in C. No vertex has neighbor in
C. Therefore, all neighbors of each vertex in C lie on C ′; So S12 = ω(n − ω). Now, suppose vertex
z in C ′ is adjacent to x and y. So z ∈ B1(x) ∩ B1(y) that leads to a contradiction (C is a 1-perfect
code); therefore S12 < 2. If there is w ∈ C ′ that does not have any neighbor in C then w belongs to
no sphere of radius 1 centered at C which leads to a contradiction; so S12 = 1. Also according to the
regularity of graph S22 = ω(n− ω)− 1. �

As a result, in general the graph J(6, 3) just has one trivial 1-perfect code. since ω ≥ 3, we have
n(n− 1)(n− 2)

3!
= 2(3(n− 3) + 1) −→ n3 − 3n2 − 34n+ 96 = 0 −→ (n− 6)(n2 + 3n− 16) = 0

Its only integer root is 6.

Example 2.4. Consider the graph J(6, 3) with vertex set:
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V = { v1 = (000111), v2 = (001110), v3 = (001101), v4 = (001011)
v5 = (010011), v6 = (010110), v7 = (010101), v8 = (011100)
v9 = (011010), v10 = (011001), v11 = (111000), v12 = (110001)
v13 = (110010), v14 = (110100), v15 = (101100), v16 = (101001)
v17 = (101010), v18 = (100011), v19 = (100101), v20 = (100110)}

The system will be as what is shown above. Therefore, if we put v1 = 1, and vj = 0, j = 1, 2, · · · , n,
j 6= 1, 11, then C = {v1, v11} is a 1-perfect code. Also B1(v1) = {v1, v2, v3, v4, v5, v6, v7, v18, v19, v20}
and B1(v11) = {v11, v8, v9, v10, v12, v13, v14, v15, v16, v17}. As it is illustrated, B1(v1) and B1(v11) form
a partition of V . If we color {v1, v11} in white and others in black, we obtain a perfect 2-coloring
with the parameter matrix

P =

[
0 9
1 8

]
Notice that, in this example, C = {vi, vi+10}; i = 1, 2, · · · , 10 are also 1-perfect codes.
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