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Abstract

Let M be a unitary left R-semimodule where R is a commutative semiring with identity. The small
intersection graph G(M) of a semimodule M is an undirected simple graph with all non-small proper
subsemimodules of M as vertices and two distinct vertices N and L are adjacent if and only if
N ∩ L is not small in M . In this paper, we investigate the fundamental properties of these graphs
to relate the combinatorial properties of G(M) to the algebraic properties of the R-semimodule M .
We determine the diameter and the girth of G(M). Moreover, we study cut vertex, clique number,
domination number and independence number of the graph G(M). It is shown that the independence
number of small graph is equal to the number of its maximal subsemimodules.

Keywords: small subsemimodule, small intersection graph, clique number, domination number,
independence number.
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1. Introduction

In 1988, Beck [6] introduced the concept of the zero-divisor graph, but this work was mostly concerned
with colorings of rings. Recently, the study of such graphs of rings are extended to include semirings
and modules as in [4, 5, 10].

In 1964, Bosak [8] defined the intersection graph of semigroups. In 2009, the intersection graph
of ideals of a ring was considered by Chakrabarty et al. [9].

The intersection graph of ideals of rings and submodules of modules has been investigated by
several authors ([1, 13, 19]). Atani et al. [11] studied small intersection graph of ideals.
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In this paper, we introduce small intersection graph of subsemimodules of a semimodule M ,
denoted by G(M), as a natural extension of the small intersection graph of ideals of a commutative
ring. In particular, we define G(R) the small intersection graph of ideals of a semiring R in a
analogous manner.

In Section 2, we show that the small intersection graph of a semimodule M is connected if and
only if |max(M)| 6= 2. Also if G(M) is a connected graph, then diam(G(M)) ≤ 2 and gr(G(M)) = 3
provided G(M) contains a cycle. For a semimodule M , it is proved that G(M) cannot be a complete
r-partite graph and G(M) has no cut vertex. Also, if M is a semimodule with finitely many maximal
subsemimodules, then G(M) cannot be complete.

In Section 3, it is proved that if ω(G(M)) is finite, then the number of maximal subsemimodules
of R-semimodule M is finite, R and so RR is semiperfect and R has finitely many maximal ideals.
This enables us to show that, if the set of proper non-small ideals is non-empty and finite, then the
set of ideals of R is finite. Other results, it is shown that the domination number of a small graph is
at most 2 and the independence number of a small graph of semimodule is equal to the number of
its maximal subsemimodules.

Throughout this paper R is a commutative semiring with identity and M is a unitary left R-
semimodule. A commutative semiring R is defined as an algebraic system (R,+, ·) such that (R,+)
and (R, ·) are commutative semigroups, connected by a(b+ c) = ab+ ac for all a, b, c ∈ R, and there
exists 0, 1 ∈ R such that r + 0 = r and r0 = 0r = 0. A nonempty subset I of R is defined to be an
ideal of R if a, b ∈ I and r ∈ R implies that a+ b, ra ∈ I.

Let (M,+) be an additive abelian monoid with additive identity 0M , then M is a left semimodule
over a semiring R (left R-semimodule) and denoted by RM if there exists a scalar multiplication
R × M → M denoted by (r,m) 7→ rm, such that (rr′)m = r(r′m); r(m + m′) = rm + rm′;
(r + r′)m = rm + r′m; and r0M = 0M = 0m for all r, r′ ∈ R and all m,m′ ∈ M . If the condition
1m = m for all m ∈ M hold then the semimodule M is said to be unitary. A subset N of R-
semimodule M is called a subsemimodule of M if for n, n′ ∈ N and r ∈ R, n+ n′ ∈ N and rn ∈ N .
Thus every semiring R is a left semimodule over itself, and each ideal I of R is a subsemimodule
of RR. A subtractive subsemimodule (or k-subsemimodule) N is a subsemimodule of M such that
if x, x + y ∈ N , then y ∈ N . In similar manner we defined the k-ideals of R [3]. We say an R-
semimodule is subtractive if each of its R-subsemimodules is subtractive ([3, 15]). In particular, if

RR is a subtractive semimodule, we say that the semiring R is a subtractive semiring.
A subsemimodule N of M (N ≤M) is small (or superfluous) (denoted by N �M) if N+L = M ,

for some subsemimodule L of M , implies L = M [15]. A semimodule M is said to be hollow
semimodule if every proper subsemimodule of M is a small subsemimodule. A nonzero semimodule

RM is called simple if it has no proper subsemimodules, and RM is said to be semisimple if it is a
direct sum of its simple R-subsemimodules; in particular, R is semisimple if RR is, See [15].

An R-semimodule M is called finitely generated if there exists a non-empty finite subset S of M
satisfying RS = M . If S = {s} and Rs = M then M is called cyclic [2]. An R-subsemimodule P of
a semimodule M is maximal if and only if it is not properly contained in any other subsemimodule
of M . In our investigation of G(M), maximal subsemimodules play an important role to find some
connections between the graph theoretic properties of this graph and some algebraic properties of
semimodules. An R-semimodule M is said to be local if it has a unique maximal subsemimodule
P and we denote it by (M,P ). The set of maximal subsemimodules of M is denoted by max(M),
and the intersection of all maximal subsemimodules of M is called the Jacobson radical of M and
is denoted by J(M). Similarly the Jacobson radical of R will be denoted by J(R). A semiring R is
Artinian if and only if every non-empty set of ideals of R has a minimal element, see [15, Proposition
2.1 (iv)].
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References for graph theory are [7] and [17]; for commutative semiring theory and semimodules,
see [12] and [15].

Let G be a graph. Then V (G) and E(G) denote the set of vertices and edges of G, respectively.
In addition, for two distinct vertices u and v in G, the notation {u, v} ∈ E(G) means that u and
v are adjacent. The degree of a vertex v of any graph G is denoted by deg(v) and defined as the
number of edges incident on v. A vertex of degree 0 is called isolated. The complete graph of order
n, denoted by Kn, is a graph with n vertices in which every two distinct vertices are adjacent.

For a positive integer n, an n-partite graph is one whose vertex set V (G) can be partitioned into
n subsets V1, V2, . . . , Vn (called partite sets) such that every element of E(G) joins a vertex of Vi
to a vertex of Vj, i 6= j. The complete bipartite graph (2-partite graph) with exactly two partitions
of size m and n is denoted by Km,n. A graph G is said to be star if G = K1,n. Two vertices u
and v of a graph G are said to be connected in G if there exists a path between them. A graph G
is called connected if there exists a path between any two distinct vertices. Otherwise, G is called
disconnected. Let G be a connected graph.

The distance between two distinct vertices u and v of G, denoted by d(u, v), is the length of the
shortest path connecting u and v, if such a path exists; otherwise, we set d(u, v) =∞. The diameter
of a connected graph G is defined by diam(G) = Max{d(u, v) : u, v ∈ V (G)}. A vertex v of a
connected graph G is a cut-vertex if the components of G\{v} are more than the components of G.

The girth of a graph G, denoted by gr(G), is the length of a shortest cycle in G, provided G
contains a cycle; otherwise; gr(G) = ∞. A complete subgraph Kn of a graph G is called a clique,
and ω(G) is the clique number of G, which is the greatest integer r ≥ 1 such that Kr ⊆ G. Note
that a graph whose vertices-set is empty is a null graph and a graph whose edge-set is empty is an
empty graph.

2. Fundamental properties of G(M)

Let M be an R-semimodule. In this section, we introduce some basic definitions and properties of
the small intersection graph G(M).

The next result shows the existence of a maximal subsemimodule in a semimodule which is similar
to the case of semirings with identity [12, Proposition 6.59].

Proposition 2.1. If M is a non-zero finitely generated R-semimodule, then M possesses a maximal
subsemimodule.

Proof . By Proposition 2.1 in [15]. �

We remark that any R-semimodule M in this paper possesses a maximal R-submodule, and every
proper subsemimodule of M is contained in a maximal subsemimodule of M .

In the following remark we recall the definition of factor semimodule see [12, Example 15.3].

Remark 2.2. If N is a subsemimodule of a left R-semimodule M , then N induces an R-congruence
relation ≡N on M , called the Bourne relation, defined by setting m ≡N m′ if and only if there exist
elements n and n′ of N such that m+ n = m′ + n′. If m ∈M then we write m/N = m+N instead
of m/ ≡N . The factor semimodule M/ ≡N is denoted by M/N .

Note that if N is a k-subsemimodule of an R-semimodule M , then M/N is an R-semimodule.

Remark 2.3. (i) Let M be an R-semimodule and N,L be two subsemimodules of M . If P is a
maximal subsemimodule of M , then N ∩ L ⊆ P implies N ⊆ P or L ⊆ P .
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(ii) Let M be an R-semimodule with max(M) = {Mi}i∈I and ν be a proper finite subset of I. Then
∩Mi is a non-small subsemimodule of M . Otherwise, if ∩νMi �M , then ∩νMi ⊆Mj for each
j ∈ I\ν. So Mi ⊆Mj for some i ∈ ν, which is a contradiction.

Now, we give the definition of small intersection graph of subsemimodules of a semimodule.

Definition 2.4. Let M be an R-semimodule. The small intersection graph G(M) is the graph with
all non-small proper subsemimodules of M as vertices and two distinct vertices N and L are adjacent
if and only if N ∩ L is not small in M .

Proposition 2.5. Let M be an R-semimodule. Then G(M) is a null graph if and only if M is a
local semimodule.

Proof . Clear. �

Example 2.6. Here, we will give two semimodules with its null graphs.

(1) Let N be the semiring of nonnegative integers and consider M = N be an N-semimodule. It is
clear that M is a local semimodule with maximal subsemimodule N\{1}. Thus G(M) is a null
graph.

(2) Let R = {0, x, 1}, define operations of addition and multiplication on R as follows.

(a) 0R = 0, 1R = 1;

(b) 1 + 1 = 1 + x = 1, x+ 0 = x+ x = x;

(c) 0× 0 = 0× 1 = 0× x = 0, 1× 1 = 1, 1× x = x× x = x.

Then (R,+,×) is a commutative semiring. Let M =RR. It is not difficult to see that M is a
local semimodule with maximal subsemimodule {0, x}. Thus G(M) is a null graph.

Since all definitions of graph theory are for non-null graph, so we remark that all graphs in this
paper are considered non-null ([7]).

Proposition 2.7. Let P be a proper subsemimodule of R-semimodule M . Then P is maximal if and
only if for each a ∈M\P , Ra+ P = M .

Proof . the proof follows directly from the definition of a maximal subsemimodule. �

Now, we have a further important Statement for cyclic subsemimodules which are not small. The
proof of the following lemma as in modules see [14, Lemma 5.1.4].

Lemma 2.8. For a ∈ RM we have: Ra is not small in M if and only if there is a maximal sub-
semimodule C of M with a /∈ C.

Proof . (⇒) If C is a maximal subsemimodule of M with a /∈ C then it follows that Ra+ C = M ,
thus Ra is not small in M .

(⇐) Proof by the use of Zorn’s Lemma. Let

Ω = {N |N �M ∧Ra+N = M}.

Since Ra is not small, there is a N ∈ Ω, i.e. Ω 6= ∅.
Let Λ 6= ∅ be a totally ordered (with respect to inclusion) subset of Ω. Then

N0 = ∪N∈ΛN
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is an upper bound of Λ. Assume a ∈ N0, then a must already be contained in N ; from which it
would follow that Ra ≤ N , hence N = Ra+N = M , a contradiction.

As a /∈ N0 it follows that N0 � M . Since N ≤ N0 for any N ∈ Λ, then Ra + N0 = M , thus
we have N0 ∈ Ω, i.e. Λ has an upper bound in Ω. Zorn’s Lemma implies then that Ω contains a
maximal element C.

We claim that C is in fact a maximal subsemimodule of M . Let C � B ≤M , then it follows that
B /∈ Ω, since C is maximal in Ω. From M = Ra + C ≤ Ra + B ≤ M it follows that Ra + B = M
and as B /∈ Ω we must have B = M . This completes the proof. �

Theorem 2.9. Let M be an R-semimodule in which every maximal subsemimodule is subtractive.
Then G(M) is an empty graph if and only if max(M) = {M1,M2},where M1 and M2 (M1 6= M2) are
finitely generated hollow R-semimodules.

Proof . Let G(M) be an empty graph. If |max(M)| = 1, then G(M) is a null graph by Proposition
2.5, a contradiction. Assume, |max(M)| ≥ 3 and M1, M2 and M3 ∈ max(M). By Remark 2.3, M1

and M2 are adjacent, a contradiction. So |max(M)| = 2. Let max(M) = {M1,M2} with M1 6= M2.
We show that M1 and M2 are hollow R-semimodules. Since M

M2
= M1+M2

M2

∼= M1

M1∩M2
, M1 ∩M2 is a

maximal subsemimodule of M1. We show that this is the only maximal subsemimodule of M1. Let N
be a maximal subsemimodule of M1. If N is not small in M , then N ∩M1 = N implies N and M1 are
adjacent in G(M), a contradiction. So N � M . Hence N ⊆ J(M) = M1 ∩M2, which implies that
N = M1 ∩M2 by maximality of N . So M1 is a local R-semimodule with maximal subsemimodule
M1 ∩M2. Now, we show that M1 is a finitely generated R-semimodule. Let a ∈ M1\M2, so Ra is
not small of T because Ra *M1 ∩M2 = J(M). If Ra 6= M1, then Ra ∩M1 = Ra which implies Ra
and M1 are adjacent in G(M), a contradiction. So Ra = M1. Thus M1 is a finitely generated local
R-semimodule. Therefore as in modules [18], then M1 is a finitely generated hollow R-semimodule.
By the similar manner M2 is a finitely generated hollow R-semimodule.

Conversely, let max(M) = {M1,M2}, whereM1 andM2 are finitely generated hollowR-semimodules.
By a similar argument as above, M1 ∩M2 is a maximal subsemimodule of M1 and M2. Since M1

and M2 are local, M1 ∩M2 is the only maximal subsemimodule of M1 and M2. Let N 6= M1,M2 be
a non-small subsemimodule of M . Then N ⊆ M1 or N ⊆ M2. Suppose, without loss of generality,
N ⊆M1 . Since M1 is a finitely generated local R-semimodule, N ⊆M1 ∩M2 = J(M). So N �M ,
a contradiction. So the only non-small subsemimodules of M are M1 and M2 which are not adjacent.
So G(M) is an empty graph. �

In the following we give an example of a semimodule M with empty G(M).

Example 2.10. Consider M = Z6 as a Z-semimodule. It is clear that max(M) = {(2), (3)}, and
J(M) = (0). It is easy to see that G(M) is an empty graph with two vertices and (2), (3) are hollow.

The next result shows the relationship between the number of maximal subsemimodules of M
and the connectivity of G(M).

Theorem 2.11. Let M be a non-zero R-semimodule. The following statements are equivalent:

(1) G(M) is not connected;

(2) |max(M)| = 2;

(3) G(M) = G1 ∪G2, where G1, G2 are two disjoint complete subgraphs of G(M).

Proof . (1)⇒ (2) Assume that G(M) is not connected. Let G1 and G2 be two components of G(M)
and N , L be two subsemimodules of M such that N ∈ G1 and L ∈ G2. Let M1,M2 be maximal
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subsemimodules of M such that N ⊆ M1 and L ⊆ M2. If M1 = M2, then N −M1 − L is a path in
G(M) which is a contradiction. So M1 6= M2. If M1 ∩M2 is not small in M , then N −M1−M2−L
is a path between G1 and G2, which is a contradiction. Therefore M1 ∩ M2 � M , which gives
|max(M)| = 2.

(2)⇒ (3) Let |max(M)| = 2 and J(M) = M1∩M2, where M1,M2 are two maximal subsemimod-
ules of M . Let Gi = {Nk : Nk ⊆Mi and Nk is a non-small subsemimodule of M} for i = 1, 2. Let N ,
L be elements of G1. If N and L are not adjacent then N ∩L� T , which implies N ∩L ⊆M1∩M2.
Hence N ∩ L ⊆ M2, which gives N ⊆ M2 or L ⊆ M2 by Remark 2.3. So N � M or L � M , a
contradiction. So G1 is a complete subgraph of G(M). By the similar manner G2 is a complete sub-
graph of G(M). Now, we show that there is no path between G1 and G2. Suppose, on the contrary,
N and L are adjacent for some subsemimodules N ∈ G1 and L ∈ G2 (note that each vertex in G(M)
is contained in G1 or G2). Since N ∩ L ⊆ M1 ∩M2 = J(M), so N ∩ L � M , a contradiction with
adjacency of N and L. So none of elements of G1 and G2 are adjacent. Hence G(M) = G1 ∪ G2,
where Gi′s are disjoint complete subgraph of G(M).

(3) ⇒ (1) Clear. �

In the following we provide an example of a semimodule M with two maximal subsemimodules
such that G(M) is not connected.

Example 2.12. Let M = Z4 ⊕ Z4 be a Z-semimodule. It is clear that max(M) = {2Z4 ⊕ Z4,
Z4⊕ 2Z4} and G(M) is disconnected. See that V (G(M)) = {2Z4⊕Z4,Z4⊕ 2Z4, 0⊕Z4,Z4⊕ 0}, and
G(M) = G1 ∪G2, where G1 = {2Z4 ⊕ Z4, 0⊕ Z4} and G2 = {Z4 ⊕ 2Z4,Z4 ⊕ 0}.

Theorem 2.13. Let M be an R-semimodule and G(M) be a connected graph, then diam(G(M)) ≤ 2.

Proof . Let N and L be two non-adjacent vertices of G(M). Hence N ∩ L � M . Assume that
N ⊆ M1 and L ⊆ M2 for some maximal subsemimodules M1, M2 of M . If N ∩M2 is not small
in M , then N −M2 − L is a path in G(M), thus d(N,L) = 2. By the similar way if L ∩M1 is
a non-small subsemimodule of M , then d(N,L) = 2. Suppose N ∩M2 � M and L ∩M1 � M .
Since G(M) is connected by Theorem 2.11, |max(M)| ≥ 3. Let M3 ∈ max(M). Since N ∩ L� M ,
so N ∩ L ⊆ J(M) ⊆ M3 which implies N ⊆ M3 or L ⊆ M3. Assume, without loss of generality,
N ⊆ M3. Now, we show that L ∩M3 is a non-small subsemimodule of M . If L ∩M3 � M , then
L ∩M3 ⊆ J(M) ⊆M1, which implies L ⊆M1. Thus L = L ∩M1 �M , a contradiction. So L ∩M3

is not small in M . Thus N −M3 − L is a path in G(M). Hence d(N,L) = 2. �

Theorem 2.14. Let M be an R-semimodule. If G(M) contains a cycle, then gr(G(M)) = 3.

Proof . If |max(M)| = 2, then G(M) is a union of two disjoint complete subgraph by Theorem
2.11. Thus if G(M) contains a cycle, then gr(G(M)) = 3. If |max(M)| ≥ 3, then by Remark 2.3,
M1 −M2 −M3 −M1 is a cycle in G(M), where Mi ∈ max(M). Therefore gr(G(M)) = 3. �

Theorem 2.15. Let M be an R-semimodule with G(M) connected. Then G(M) has no cut vertex.

Proof . Let B be a cut vertex of G(M), so G(M)\{B} is not connected. Therefore there exist
vertices N , L such that B lies on every path from L to N . By Theorem 2.13, the shortest path from
B to N is of length 2. So N −B−L is a path between N , L. Thus N ∩L�M , N ∩B is not small
in M and L ∩ B is not small in M . Firstly, we prove that B is a maximal subsemimodule of M . If
not, so there exists a subsemimodule H of M such that B ⊆ H (as B is a non-small subsemimodule
of M , H is non-small). Since N ∩ B ⊆ N ∩ H and N ∩ B is not small in M , N ∩ H is not small
in M . By a analogous way L ∩ H is a non-small subsemimodule of M . Hence N − H − L is a
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path in G(M)\{B}, a contradiction. So B is a maximal subsemimodule of M . We claim that there
exists a maximal subsemimodule Mi 6= B of M such that N * Mi. Otherwise, if N ⊆ Mi for each
B 6= Mi ∈ max(M), then N ⊆ (∩Mi 6=BMi), so N ∩B ⊆ ∩Mi∈max(M)Mi = J(M). Hence N ∩B �M ,
a contradiction. By the similar way there exists a maximal subsemimodule Mj 6= B of M such that
L * Mj. Now, we show that for each Mt ∈ max(M), L ⊆ Mt or N ⊆ Mt. Because N ∩ L � M ,
hence N ∩ L ⊆ J(M) ⊆Mt for each Mt ∈ max(M). So N ⊆Mt or L ⊆Mt for each Mt ∈ max(M).
Since G(M) is connected, |max(M)| ≥ 3 by Theorem 2.11. Now, let B 6= Mi,Mi ∈ max(M) such
that L *Mi and N *Mj. Thus L ⊆Mj and N ⊆Mi. So N−Mi−Mj−L is a path in G(M)\{B},
a contradiction. Hence G(M) has no cut vertex. �

Theorem 2.16. Let M be an R-semimodule. Then G(M) cannot be a complete n-partite graph (n
is a positive integer).

Proof . Suppose that G(M) is a complete n-partite graph with n parts V1, V2, . . . , Vn. By Remark
2.3, Mi and Mj are adjacent, for each Mi, Mj ∈ max(M). So each Vi contains at most one max-
imal subsemimodule of M . Hence by Pigeon hole principle |max(M)| ≤ n. Now, we prove that
|max(M)| = n. In contrary way, assume max(M) = {M1,M2, . . . ,Mm}, where m < n. Let Mi ∈ Vi
for 1 ≤ i ≤ m. Hence Vm+1 contains no maximal subsemimodule. Since |max(M)| is finite, by
Remark 2.3, then ∩j 6=iMj is a non-small subsemimodule of M . Since ∩j 6=iMj ∩Mi = J(M)�M , so
∩j 6=iMj and Mi are not adjacent. Hence ∩j 6=iMj ∈ Vi, because Mi ∈ Vi. Let N be a vertex in Vm+1

and N ⊆Mk for some Mk ∈ max(M). So N is adjacent to Mk. Since G(M) is a complete n-partite
graph and Mk ∈ Vk, so N is adjacent to all elements of Vk. Thus N is adjacent to ∩j 6=kMj, a contra-
diction, because N ∩ (∩j 6=kMj) ⊆Mk ∩ (∩j 6=kMj) = J(M)�M . Thus |max(M)| = n. Now, assume
the subsemimodule L = ∩ni=3Mi. By Remark 2.3, L is not small in M . Since L∩M1 = ∩i 6=2Mi is not
small in M , L is adjacent to M1. By the analogous way L is adjacent to M2. So L /∈ V1, V2. Further,
L ∩Mi = L is not small in M , for each 3 ≤ i ≤ n. So L is adjacent to all maximal subsemimodules
Mi of M . So L /∈ Vi for each 1 ≤ i ≤ n, which is a contradiction. �

Theorem 2.17. Let M be an R-semimodule with finitely many maximal subsemimodules. Then

(1) There is no vertex in G(M) which is adjacent to every other vertex,

(2) G(M) cannot be a complete graph.

Proof . (1) Assume max(M) = {M1,M2, . . . ,Mm}, where m ≤ n. In contrary way, assume that
G(M) is a complete graph. So, any vertex N in G(M) is adjacent to every other vertex. It is Clear
that N ⊆ Mi for some Mi ∈ max(M). By Remark 2.3, H = ∩j 6=iMj is a non-small subsemimodule
of M . Since N is adjacent to every vertex, N and K are adjacent. Hence N ∩ H is a non-small
subsemimodule of M . But N ∩ H ⊆ Mi ∩ (∩j 6=iMj) = J(M). Thus N ∩ H � M , which is a
contradiction. Hence there is no vertex in G(M) which is adjacent to every other vertex.

(2) From (1) we have G(M) cannot be a complete graph. �

The condition |max(M)| is finite of Theorem 2.17 is not superfluous, as the next example shows.

Example 2.18. Let M be the Z-semimodule Z. It is clear that max(M) is infinite and the only small
subsemimodule of M is {0}. Since for every non-zero subsemimodules N and L of M , N ∩L 6= {0},
hence N and L are adjacent in G(M). Hence G(M) is a complete graph.

Theorem 2.19. Let M be an R-semimodule. Then the following hold:

(1) G(M) contains an end vertex if and only if |max(M)| = 2 and G(M) = G1 ∪G2, where G1, G2

are two disjoint complete subgraph of G(M) and |V (Gi)| = 2 for some i = 1, 2;
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(2) G(M) cannot be a star graph.

Proof . (1) Suppose that N is an end vertex of G(M). Assume, |max(M)| ≥ 3. By Remark 2.3, for
any Mi ∈ max(M), Mi is adjacent to every other maximal subsemimodules of M , so deg(Mi) ≥ 2.
Thus N is not a maximal subsemimodule of M . Without loss of generality, assume N ⊆M1, thus N
and M1 are adjacent. Since deg(N) = 1, hence M1 is the only vertex of G(M) which is adjacent to N
and there is no maximal subsemimodule Mi 6= M1 of M such that N ⊆Mi. Also N∩M2 �M . Hence
N ∩M2 ⊆Mj for each Mj 6= M1,M2. So N ⊆Mj, which is a contradiction. Thus |max(M)| = 2. By
Theorem 2.11, G(M) = G1 ∪ G2, where G1, G2 are two complete subgraph of G(M). Let N ∈ Gi.
Since Gi is a complete subgraph of G(M) and deg(N) = 1, |V (Gi)| = 2. This completes the proof
since the converse is clear.

(2) Suppose that G(M) is a star graph. Hence G(M) contains an end vertex. So |max(M)| = 2
by (1). By Theorem 2.11, G(M) is not connected, which is a contradiction. Thus G(M) cannot be
a star graph. �

Proposition 2.20. Let M be an R-semimodule. If N and L are two vertices of G(M) such that
N ⊆ L, then deg(N) ≤ deg(L).

Proof . Let N and L be two vertices of G(M) such that N ⊆ L. Let H be a vertex adjacent to N .
So N ∩H is a non-small subsemimodule of M , which implies L ∩H is a non-small subsemimodule
of M . Hence H is adjacent to L. Thus deg(N) ≤ deg(L). �

3. Clique number, domination number and independence number

In this section, we obtain some results on the clique number, domination number and independence
number of the small graph. In the beginning, we find the clique number of G(M).

Proposition 3.1. Let M be an R-semimodule. The following statements hold.

(1) ω(G(M)) ≥ |max(M)|.
(2) If ω(G(M)) <∞, then the number of maximal subsemimodules of M is finite.

(3) ω(G(M)) = 1 if and only if max(M) = {M1,M2}, where M1 and M2 are finitely generated
subtractive hollow R-semimodules.

(4) If the number of maximal subsemimodules of M is finite, then ω(G(M)) ≥ 2|max(M)|−1 − 1.

Proof . (1) By Remark 2.3, the subgraph of G(M) with vertex set {Mi}Mi∈max(M) is a complete
subgraph of G(M). Hence ω(G(M)) ≥ |max(M)|.

(2) This is a direct consequence of (1).
(3) This is a direct consequence of Theorem 2.9.
(4) Let max(M) = {M1,M2, . . . ,Mr} and for each 1 ≤ i ≤ r, consider

Ei = {M1,M2, . . . ,Mi−1,Mi+1, . . . ,Mr}.

Let P (Ei) be the power set of Ei. For each X ∈ P (Ei), set SX = ∩S∈XS. Then by Remark
2.3, the subgraph of G(M) with vertex set {SX}X∈P (Ei)\{∅} is a complete subgraph of G(M). Since
|P (Ei)\{∅}| = 2|max(M)|−1−1, so |{SX}X∈P (Ei)\{∅}| = 2|max(M)|−1−1. Thus ω(G(M)) ≥ 2|max(M)|−1−1.
�

Definition 3.2. An idempotent in a semiring R is an element e with e2 = e. Let I be a k-ideal of
a semiring R. Then an idempotent x+ I ∈ R/I can be lifted mod I, if there is an idempotent e ∈ R
such that e+ I = x+ I.
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Lam [16, p. 356] calls a ring R semiperfect if R/I is semisimple and idempotents in R/I can be
lifted mod I. Analogously, we give the next definition.

Definition 3.3. A semiring R is called semiperfect in case R/J(R) is semisimple and every idem-
potent of R/J(R) can be lifted mod J(R).

The semiring R is semiperfect if and only if the regular semimodule RR is semiperfect. As in
modules, we can see that each subtractive local semimodule is semiperfect.

An ideal I of a semiring R is called small if I + K = R, for some ideal K of R, implies K = R
[15]. We use I(R) and NSI(R) to denote the set of ideals of R and the set of proper non-small ideals
of R, respectively.

Theorem 3.4. Let R be a semiring such that ω(G(R)) <∞. Then the following statements holds.

(1) If J(R) is a subtractive ideal of R, then R is semiperfect.

(2) If R = R1 ×R2 × · · · ×Rr where r ≥ 2, (Ri, Pi) is a local semiring, then G(R) is finite.

(3) If R has the form as in (2), then R is Artinian.

(4) If R has the form as in (2), then ω(G(R)) ≥ max{(
∏r

j=1,j 6=i |I(Ri)|)− 1 : 1 ≤ i ≤ r}.

Proof . (1) Since J(R) is a subtractive ideal of R. Then R/J(R) is a semiring. Since ω(G(R)) <∞
then by Proposition 3.1, max(R) is finite. Therefore, R/J(R) is semisimple. Now, we show that
idempotent of R/J(R) can be lifted. Let x + J(R) be a nonzero idempotent of R/J(R). Clearly
x /∈ J(R), so xn /∈ J(R) for each n ∈ N. Thus Rx ⊇ Rx2 ⊇ Rx3 ⊇ · · · is a descending chain
of non-small proper ideals of R (if Rxn = R, then x + J(R) = 1 + J(R)) by Lemma 2.8. Since
ω(G(R)) < ∞, so there exists n ∈ N such that Rxn = Rxn+1. Thus xn = xn+1r for some r ∈ R.
Let e = xnrn. Then e = (xn+1r)rn = xn+1rn+1. This implies that e = e2 and x + J(R) =
xn + J(R) = xn+1r + J(R) = (xn+1 + J(R))(r + J(R)) = (x + J(R))(r + J(R)) = xr + J(R). So,
x+ J(R) = (x+ J(R))2 = (x+ J(R))n = (xr + J(R))n = e+ J(R). Thus R is semiperfect.

(2) Let R = R1 × R2 × · · · × Rr, where (Ri, Pi) is a local semiring for 1 ≤ i ≤ r. As G(R) is
non-null, r ≥ 2, by Proposition 2.5. Now, we will show that G(R) is finite. It suffices to show that
I(Ri) is finite for all 1 ≤ i ≤ r. Suppose, on the contrary, I(Ri) is infinite for some 1 ≤ i ≤ r. Put

E = {R1 ×R2 × · · · ×Ri−1 × F ×Ri+1 × · · · ×Rr | F ∈ I(Ri)}.

Then E is an infinite clique in G(R), which is a contradiction. Thus I(Ri) is finite for all 1 ≤ i ≤ r.
Hence I(R) is finite and so G(R) is finite.

(3) From the proof of (2), we have I(R) is finite. Therefore, R is Artinian.
(4) Consider

Cj = {L < R : L = L1 × L2 × · · · × Lj−1 ×Rj × Lj+1 × · · · × Lr, Lt ∈ I(Rt), for 1 ≤ t 6= j ≤ r},

for each 1 ≤ j ≤ r. As 0 × 0 × · · · × Rj × · · · × 0 ⊆ L for each L ∈ Cj, Cj is a clique in R. Since
|Cj| = (

∏r
i=1,j 6=i |I(Ri)|)− 1, therefore ω(G(R)) ≥ max{(

∏r
j=1,j 6=i |Id(Ri)|)− 1 : 1 ≤ i ≤ r}. �

Corollary 3.5. Let R = R1 × R2 × · · · × Rr where r ≥ 2, (Ri, Pi) is a local semiring such that
NSI(R) 6= ∅. Then NSI(R) is finite if and only if I(R) is finite.

Proof . Let NSI(R) 6= ∅. Then G(R) is a non-null graph. If NSI(R) is finite, then by Theorem 3.4,
ω(G(R)) is finite and so G(R) is finite. Thus |I(R)| <∞.

Conversely, let I(R) is finite. Since NSI(R) ⊆ I(R), so |NSI(R)| <∞. �
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Proposition 3.6. Let M be a semisimple R-semimodule isomorphic to M1 ⊕M2 ⊕ · · · ⊕Mn where
Mi, i = 1 . . . , n is a simple R-semimodule. Then G(M) is a finite graph.

Proof . Straightforward. �

Let G be a graph. By a dominating set for G we mean a subset D of the vertex set of G such
that every vertex not in D is joined to at least one vertex in D by some edge. A dominating set D is
called a minimal dominating set if D′ is not a dominating set for any subset D′ of D with D′ 6= D.
The domination number of G is the smallest of the cardinalities of the minimal dominating sets for
G. For a graph G we denote by γ(G) the domination number of G. See, for instance, [17]. In the
following theorem, for a semimodule M , the domination number of G(M) is determined.

Theorem 3.7. Let M be an R-semimodule. Then the following hold:

(1) γ(G(M)) ≤ 2,

(2) If J(M) is a k-subsemimodule of M , then max(M) is infinite if and only if γ(G(M)) = 1,

(3) If J(M) is a k-subsemimodule of M , then max(M) is finite if and only if γ(G(M)) = 2.

Proof . (1) From G(M) is non-null, we have |max(M)| ≥ 2 by Proposition 2.5. Consider S =
{M1,M2} where M1, M2 ∈ max(M). Let N be a vertex of G(M). If N ⊆ M1 or N ⊆ M2, then
N ∩M1 is a non-small subsemimodule of M or N ∩M2 is a non-small subsemimodule of M . Thus
N is adjacent to M1 or M2. Suppose that N * M1 and N * M2. If N is not adjacent to M1, then
N ∩M1 � M . So N ∩M1 ≤ M2. This implies N ⊆ M2, a contradiction. So N is adjacent to M1.
Similarly, N is adjacent to M2. Thus γ(G(M)) ≤ 2.

(2) Let J(M) be a k-subsemimodule of M , then M/J(M) is an R-semimodule. If max(M)
is infinite, then M/J(M) is not semisimple. Hence there is a subsemimodule N of M such that
N/J(M) is an essential subsemimodule of M/J(M). So N is not small and for each subsemimodule
B of M such that J(M) ⊂ B we have B ∩N is a non-small subsemimodule of M . Let F be a proper
non-small subsemimodule of M . As N ∩ (F + J(M)) = J(M) +N ∩ F is not small in M , N ∩ F is
not small in M . So N is adjacent to every other vertex of G(M), and hence γ(G(M)) = 1.

Conversely, suppose that γ(G(M)) = 1. Thus there is a subsemimodule which is adjacent to
every other vertex of G(M). So max(R) is infinite by Theorem 2.17.

(3) This is a direct consequence of Theorem 2.17 and (2). �

A graph G = (V,E) is said to be totally disconnected if it has no edges. A set S ⊆ V is an
independent set if the subgraph induced by S is totally disconnected. The independence number
α(G) is the maximum size of an independent set in G.

Finally, the following result shown that the independence number of G(M) is equal to |max(M)|,
for a semimodule M with a finite number of maximal subsemimodules.

Proposition 3.8. Let M be an R-semimodule with a finite number of maximal subsemimodules.
Then α(G(M)) = |max(M)|.

Proof . Assume that max(M) is finite and max(M) = {M1,M2, . . . ,Mn}. As {
⋂n
j=1,i 6=jMj}ni=1 is an

independent set inG(M), n ≤ α(G(M)). Let α(G(M)) = m and S = {N1, N2, . . . , Nm} be a maximal
independent set in G(M). For each N ∈ S, N is a non-small subsemimodule of M . So by Lemma
2.8, N * P for some P ∈ max(M). If m > n, then by Pigeon hole principle, there exist 1 ≤ i, j ≤ n
and P ∈ max(M) such that Ni * P and Nj * P . Thus Ni ∩Nj * P . As S is an independent set in
G(M), Ni and Nj are not adjacent and Ni ∩ Nj � M . Hence Ni ∩ Nj ⊆ P , a contradiction. This
proves that α(G(M)) = |max(M)|. If α(G(M)) =∞, then by a similar argument as above (by using
Pigeon hole principle), we obtain a contradiction. Therefore α(G(M)) = |max(M)|. �
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Remark 3.9. The condition ”max(M) is finite” in Proposition 3.8 is not superfluous. To see this,
let R = Z and consider the R-semimodule M = Z. Clearly, |max(M)| =∞, while α(G(M)) = 0.
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