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Abstract

In this paper, we have studied the degree of approximation of certain bivariate functions by double
factorable matrix means of a double Fourier series. Four theorems are proved using single rest
bounded variation sequences, single head bounded variation sequences, double rest bounded variation
sequences, and two non-negative mediate functions. These results expressed in terms of two functions
of modulus type and two non-negative mediate functions, imply many particular results as shown at
last section of this paper.
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1. Introduction

Let f(z,y) be a complex-valued function, 27-periodic in each variable, and integrable over the
two-dimensional torus —m < x,y < m; in symbols f € Lo;x2,. The double Fourier series of f is

defined by
L[f] = Z Z cjpetTThY),
Jj=—00 k=—00
where
. 1 " " —i(js+kt) .
Cik = f(s,t)e dsdt, j, k€ Z. (1.1)
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The double sequence of symmetric rectangular partial sums will be denoted by

Smn (T, ) Z Zc et tky) m,n € NU{0}.

j=—mk=—n

Let A := (amn k) denote a doubly infinite matrix with non-negative entries and row sums 1. Here
and in the sequel we shall be concerned with positive rectangular matrices; i.e., @y = 0 for j > m
or k > n, and Gpy,r > 0 for each 0 < 7 < m, 0 < k < n. For any {sjk} any double sequence, we
define

= i i AmnjkSjk, M,N € NU {0}

j=0 k=0
The double sequence {s;;} is said to be summable by A if ¢,,,, tends to a finite limit as m,n — oo
(see [23]).
A doubly infinite matrix A is said to be regular if it sums every bounded convergent double
sequence {s;;} to the same limit. Necessary and sufficient conditions of regularity of a matrix A are
known (see [30]) and are:

D =

7=0 k=0
[o.¢]
lim E Amnjr = 0,
m,n— o0
Jj=0
o
lim E Amnjr = 0,
m,n— o0
k=0
and
sup E E |amn]k| < o0.
m,n>0 =0 k=0

The matrix A will be called factor-able if there exist sequences {a,,;} and {b,x} so that a,,,r =
am;bnk and the above condition of regularity are satisfied, and we focus only on this case below (see
(291, [18], [19], [1], [22).

The transformation t,,,(x,y) of the partial sums s,,,(x,y) is

tmn x y Zzam] nksjk x y) m,n € NU {0}7

7=0 k=0
and based on (1.1)) we get
1 s s
tmn(T,y) = ﬁ/ fx+ s,y +t)Knn(s, t)dsdt, m,n e NU{0}, (1.2)
where o
Kpn(s, t)dsdt =Y~ amibueDj(s) Di(t), m,n € NU{0}, (1.3)

§=0 k=0
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is the matrix kernel and D;(s) and Dy (t) are the Dirichlet kernels in terms of s and ¢, respectively.
Moreover, as a consequence of (|1.2), the properties of the Dirichlet kernel, and the asumptions
on the matrix A, we easy obtain the equality

4 ™ ™
tmn(x> y) - f(:Ea y) = p /(; /() ¢xy(35 t>Kmn<S> t)deta (14)
where

Gay(s,t) = flx+s,y+t)+ f(z —s,y+1)
+fle+s,y—t)+ flx—s,y—1t)—4f(x,y).

The (total) modulus of continuity of a continuous function f(x,y), 2m-periodic in each variable,
in symbols f € Loyxar, is defined by (see [24], page 283)

wl(f,51,52):sup sup |f($+u,y+v)—f(:v,y)|, 5175220-

Ty [ul<o1, o] <52

The (total) modulus of symmetric smoothness of a function f € Lo;xo, is defined (see [24], page
283) by
w2(f7 51762> = sup sup |¢xy<u7 U)|7 (51762 Z 0

Y |u|<o1,|v|<o2
It is clear that
w2(f7 617 62) S 4w1(f7 517 62)

Now we shall recall the following definitions introduced in [21], [20].

Definition 1.1. A sequence ¢ := {cx} of non-negative numbers tending to zero is called of Rest
Bounded Variation, or briefly c € RBV'S, if it has the property:

o0

Z lek — 1] < K(€)ep, VYm eN,

k=m

where K := K(c) is a positive bounded constant which depends only on the sequence c.

Definition 1.2. A sequence ¢ := {c;} of non-negative numbers will be called of Head Bounded
Variation, or briefly c € HBV'S, if it satisfy the following inequalities:

3

ok — | < K(C)em,
0

B
Il

for all m € N, or only for all m < N if the sequence ¢ has only finite nonzero term, and the last
non-zero term is cy.

Now we can give the conditions to be used later on. We suppose that for all m, n and 0 < s < m,
0 < r < n, the conditions

> ams — @mjra| < K, (1.5)
j=s
Z |bnk - bn,kJrl’ S Kbm"’ (16)

k=r
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s—1
Z ‘am] - am,jJrl‘ S Kam57 (17)
j=0
and
r—1
|bnk - bn,k+1| S Kbnm (18)
k=0
hold true.

Also, we assume the validity of conditions

U >0, by >0, (monjk €{0,1,2,...}), YD ambu =1, (1.9)
7=0 k=0
/ Hl(zz)dzl =0 (Tsz (T’z)) , Ty — 0+, (110)
0
and i
/ 2720 (z)dz = O (H; (1)), 1 —0F, i=1,2, (1.11)

where H;(z;) > 0 are two mediate function of the variable z;, (i = 1,2), respectively, and w®(z;)
are two non-negative functions of modulus type, i.e. continues functions on the interval [0, 7], non-
decreasing, and possess the property: w®(0) = 0.

The degree of approximation of a class of functions using matrix means (with monotone entries)
of Fourier series has been studied by P. Chandra [5], and five years latter has been improved by the
same author in [6]. Many years latter, was L. Leindler [2I] who employed rest bounded variation
sequences and head bounded variation sequences to prove again four theorem obtaining the same
degree of approximation as in Chandra’s theorem, which of course, contain them in the sense of using
a broader class of matrices. In 2005, J. Nemeth [27] realized that, in first theorem of Chandra as
well as in the first theorem of Leindler, the case a = 0 is missing. This case has been completely
covered in [27]. In 2011, we have proved also four theorems of this kind, using the product of many
transformations of partial sums of the Fourier series of a continuous function. Were B. Wei and D.
Yu [34] who, in Chandra’s and Leindler’s theorems, removed the monotonicity and the rest (head)
bounded variation properties in proving of their results. Further, the B. Wei and D. Yu’s results
has been generalized (as well as Chandra’s and Leindler’s results) by present author in [12]. Very
recently, some particular results of the mentioned theorems are generalized in [13], using the so-called
generalized deferred Voronoi-Norlund means of partial sums of their Fourier series, and some other
related results can be found within [14]-[17].

On the other hand, to our best knowledge, the degree of approximation of bivariate functions by
double means of double Fourier series and conjugate double Fourier series has been obtained, for the
first time by F. Méricz and X. L. Shi [25]), who studied the rate of uniform approximation of functions
belonging to the Lipschitz class and for those belonging to the Zygmund class, by rectangular double
Cesaro means of the rectangular partial sums of double Fourier series, 2m-periodic in each variable.
These results have been generalized by F. Méricz and B. E. Rhoades (see [26]) obtaining the rate
of uniform approximation of functions belonging to the Lipschitz class and for those belonging to
the Zygmund class, using double Norlund means of the rectangular partial sums of double Fourier
series, 2m-periodic in each variable. All results obtained in [25] are special cases of those obtained
in [26]. Again, were F. Moricz and B. E. Rhoades (see [24]) in 1987, who used double Nérlund
means of rectangular partial sums of double Fourier series and double Nérlund means of rectangular



On the degree of approximation of certain bivariate functions 12 (2021) No. 2, 609-628 613

partial sums of conjugate double Fourier series. Their results are given in terms of the modulus of
symmetric smoothness. Latter on, N. L. Mittal and B. E. Rhoades, see [23], have studied the rate
of uniform approximation by rectangular double matrix means of the rectangular partial sums of
double Fourier series of continous functions, 27-periodic in each variable. Their results are given in
terms of the modulus of symmetric smoothness as well. Also, in their results, are obtained the rate
of uniform approximation for functions belonging to the Lipschitz class and for those belonging to
the Zygmund class. As corollaries, they have obtained the previous work of F. Moricz and B. E.
Rhoades. The degree of approximation of bivariate continuous functions, belonging Lipschitz classes,
by almost Euler means of double Fourier series has been treated in [2§]. They showed that the degree
of approximation depends on the modulus of continuity associated with the functions. Also, they
derived from their results some interesting corollaries. For completeness of the flow of these studies
it worth to remind the readers that results obtained in [25] are generalized further in [32], using the
so-called double submethod of the rectangular partial sums of double Fourier series of a bivariate
function 27-periodic in each variable.
Let @ := [0, 27] x [0, 27]. The purpose of this paper is to estimate the deviation

D,y = max |tmn(x7 y) - f(x7y>‘ )
(z,y)€Q

in terms of two functions of modulus type, satisfying some specific conditions, and two non-negative
mediate functions.

To do this we need to prove some helpful lemmas, which is the second section of this paper. In
third section are given main results with their proofs, and in fourth section we give some special
consequences of the main results which indeed will close the organizing of this study.

2. Auxiliary Lemmas

Lemma 2.1 ([5]). If and hold then
/0 " )t = O (n P H ).
Lemma 2.2 ([6]). If and hold then
/0 ' tlwt)dt = O (rH(r)), (r— +0).

Lemma 2.3. If, for m, n fized, {a,,;} € RBV'S and {b,;} € RBV'S, then uniformly in 0 <t; <
and 0 <ty <,

- 1

Kp(t) =) am;sin <j + 5) ty = O (Apnn) (2.1)
j=0

Kn(tZ) = kz; by SIn <k’ + §> ty = @ (Bm-Q) , (22)

where Ay, =Y 1o Qmry Bory := D e bus, and 11 A 7y denotes the integer part of % and % respec-
tively.
If {am;} € HBV'S and {b,;} € HBV'S, then

i 1
Km(tl) - Zamj sin (] + §> tl =0 (a;n_m> s (23)
=0 !
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Zb % Sin (k‘—i— )tg—O (bn0>
to

(2.4)

(2.5)

(2.6)

Proof . The proof can be done in the same way as Lemma 3 in [2I]. That is why we omit the

details. I

For further discussion we need to prove an another Lemma. To do this we first recall a definition

from [35] (see also [3]).

Definition 2.4. A double sequence auyy = {@mnji} is called DRBV'S, briefly {amn;r} € DRBVS,

if there is a positive bounded constant K(cuy,,) such that (j,k=0,1,2,...),

00
Z |A10amnjn|
j=m

S
Z |A01amnmk| < Kamnrrwu

Z Z ‘Allamnjk|

j=m k=n

)

where
Allamnjk = Omnjk — Amnj+1k — Amnjk+1 + Qmnj+1k+1,

A10amnjk = Amnjk — Amnj+1k, AOlamnjk = Amnjk — Amnjk+1-

Using the above definition we prove the following.

Lemma 2.5. Let
15 t . a 1 Sin ] + oy t Sin k + oy t
mn 1, 2 . JE mnjk J 9 1 9 2

If for m,n fized numbers {amn;r} € DRBV'S, then uniformly in ty,ts € (0, 7],

O (AmnTlTQ) I
’Tmn(tla t2)‘ = (@) (Amang) 5
O (Amm—ln) )

where

T1 T2

m
m’rLTl T2 * E § a/m’n’LlZQ 9 mang . E E a/mTL’Ll’LQ Y mnnn . E E &mnzlzg 9

11=012=0 11=012=0 11=012=0

and 11 and 1o denote the integral parts of tl and 1, respectively.
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Proof . Using the elementary identity sin Asin B = 1 [cos(A — B) — cos(A + B)] and any arbitrary
numbers A, > 0, for 0 <m; <m, 0 < ny; < n, we have

SR (1 () . 1 [t
:ZZ)\jksln(j+§)tlsln(§1>Sln(l{+§)t281n(§2>

j=m1 k=n1

1 & 1 t
— 532 sin (j + 5) t1 sin (51) {)‘jm cosnits
=m1
n—1
— Z A1 Aji cos (k4 1) ta — Ajy, cos(n + 1)t2:|

k=n1

1 1 t1
= 5[ Z Ajn, Sin (]+ )tlsm(Q)}cosnth

Jj=m1

n—1 m
1 . 1 . t
b 5 cos (k+ 1)ty 5 Ag1 Ajg sin (] + 5) t; sin (51)

k=mn1 j=m1

1 - 1 t
-5 cos(n + 1)t, jz Ajn Sin (j + 5) t1 sin (21)
=mi

m—1

1

=1 {)\mlm cosmyt; — Z AjgAjn, cos(j + 1)t

Jj=m1

1 n—1
— Ay cos(m + 1)t1} cos nyty — 1 kZ: cos (k+1)t,

-
m—1 1
X |:A01)\m1k: cosmit; — Z Ap i cos(j + 1)ty — Agg Ak cos(m + 1)751} —1 cos(n + 1)ty

Jj=m1

|i m—1

Amyn COS Mt — Z AjoAjy cos(j + 1)ty — Ay cos(m + 1)t1}

X
Jj=m1
m—1
1 )
= Z |:)‘m1n1 cosmqty — Z AIO)\j’ru COS(] + ].)tl - /\mn1 cos(m + 1)t1:|
Jj=mi
1 n—1
X coSnity — 1 L{z: Ag1 A,k cosmaty cos (k+ 1)ty
=n1

m—1 n—1
— Z Z A Ajicos(j + 1)ty cos (k4 1) to
j=m1 k=n1
n—1 1
_ Z Ag1 A\g cos(m + 1)ty cos (k+ 1) t2:| —1 {)\mm cosmqt;
k=nq
m—1
— Z AqoAjy cos(j + 1)t1 — Ay cos(m + l)tl} cos(n + 1)ty

Jj=mi
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Whence,
1 m—1 1 n—
|S2| < 1 |:)\m1n1 + Z |A1oAjn, | + )\mnl‘| + 1 [ Z | Aot Ay k|
Jj=mi k=n1

m—1 n—1

+ Z Z |A11/\]k| + Z |A01>\mk|:|
j=m1 k=n1 k=n1
] _

+ Z |:)\m1n + Z |A10>\jn| + Amn:| .

Jj=m1

Thus, since amy;r > 0 and supposing that m > 7, n > 7, we get

Zm:ia . SIin '—i—l t1 sin k—l—l t
mnjk J 2 1 2 2

Jj=71 k=0

T1 T2

Tt 1) < DN Gy +

k=0 j=0

b 1Y, 1
+ Z Z Ak SIN (j + 5) t1 sin (k + 5) to

7=0 k=12

R (1 . 1
+ZZamnjk51n(]+§)tlsln(k’+§)t2

=71 k=12

T1

T2
Zamnkj + Gl + GQ + Gg.

k=0 j=0
For Gy, we have

m—1
amnTl() + § |A10amnj0| + Amnm0
J=m
T2—1 m—17—1 To—1 ]

Z ’Aﬂlamnﬁk| + Z Z |A11amn]k| + Z |A01amnmk’

Jj=71 k=0

G; <

1
4

1
4

1
+ =

m—1
4 amnnn + E |A10amnjn’ + Amnmn

J=m

00
amnno + E ’Al(]amnj[)’ + Amnm0

J=T71

Z |A01amn7'1k’ + Z Z |A11amn]k| + Z ’Aﬂlamnmk‘]

Jj=71 k=0

1
< Z
4

1
4

1
+ =

4 amnnn + E |A10amnjn| + amnmn]

Jj=71

—_

1
+ Z [Kamm-lo + Kamm-lO + Kamnm()]

Amnrin + Kamm'ln + a'mnmn]

S n [amm-lO + Kamm-lO + amnm(]]

W

+ 1
4
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S {(3[( + 1)amn7’10 + (K + 1)amn7—1n + (K + 1>amnm0 + amnmn]

1
4
S Kamnn T2

taking into account that {anjx} € DHBVS implies

oo 00 o 00
Amnr0 S E E |A11amnjk| S E E |A11amnjk| S KamnTsza

7j=71 k=0 Jj=71 k=72
0o 00 co 0o
Amnrin S E g |A11amnjk:‘ S E E ‘Allamnjk’ S Kamnn‘rga
Jj=T1 k=n Jj=71 k=72
co o co 0o
Amnm0 S E E |A11amnjk| S § E ’Allamnjk| S KamnnTgv
Jj=m k=0 Jj=71 k=12
and
0o co 0o
Amnmn S E E ’Allamnjk‘ S E § |A11amnjk| S Kamn7—17—2~
j:m k=n j:Tl k=10

Similarly, we have verified that
G2 S KamnTsza and G3 S Kamnn‘rg-

Thus, we obtain

T1 T2

| T (t1,t2)] < Z Zamnkj + G+ Gy + Gy
=0 k=0

T1 T2

< Z Z Amnk;j + Kalmm'ﬂz + Kamnnfg + Kamnnrg =0 (Amnn‘rz) )
7=0 k=0

which is what we wanted to prove.
Similarly, since a,njr > 0 and supposing that n > 7, we get

m T2 m n
‘Tmn(tl,t2)| S Z Z amnkj —+ Z Z amnjk sin <k’ + %) tg

7=0 k=0 k=0 k=2

m n—1
1
S AmanQ + § Z: amnjnl + Z |A01amnjk| + amnjn:|

- k=12

S Aman2 + amnj‘rg + Kamang + amnjn:|

DO | =
Ms 1

<
Il
o

S AmanQ -+ (1 + K)a/mang + Kaman2:|

<
Il
o

\'—/ N | —

=0 (Amnmﬂ'g
With same reasoning, we have verified that for m > 7 and a1, > 0,
|Tmn(t17 t2>’ =0 (Amnnn)

holds true.
The proof is completed. [J
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3. Main Results
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One of our first main result is the following

and w?

Theorem 3.1. Let f € Logyor, , and wi(f,s,t) = O (W (s)wP(t)) hold true, where wM(s)
)(t) are two non-negative functzons of modulus type satisfying conditions (1.11 (u) If (.) holds
true, and {am;}, {bu} € HBV'S, then
[max, trn(2,y) — f(2,y)] = O [ammbnn Hi(@mm) Ha (bon)] (3.1)
z,y)€
Proof . Using (1.2)), (1.3)), (1.9), and equality
Dilz) = sin (z + %) z

 =1.2
2sin 3 (0 2),

we have

tn (2, Y) —

4 sm sin

o 1 1
Apmjbprsin ( j + = ) ssin [ &+ = ) tdsdt.
5 2 2
=0 k=0
Taking into account that

|Gy (11, 0)] < W f, 61, 62) < dwr(f,01,02) < 4wV (6y)
we can write

i S i t
SlIl sin 5

@ (62)7

;)san(k4%)t
: ( - /b"" L)

7=0 k=0

9[5S pusn s

dsdt

X

%Q(HK (8)| | K, (t)] dsdt —ZIT, say.

Based on our assumptions it is clear that

iia sin —i—l ssin k+1 t
— £ mj nk ] D) 9

and subsequently using inequality

(3.3)

<1

— Y

we obtain

/amm /bnn 14 1w(1) ) (t)dsdt
—om [ s

U@/mtlwwﬁ—O@m%ﬂmmﬂﬂbD, (3.4)
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by Lemma [2.2]
Since {am;}, {bur} € HBV'S, and |K,(t)| < 1, then using Lemma [2.2] and Lemma [2.3] we get

bn'n
/ / 5727w (5)w@ (t)dsdt

bnn
= O (mm) / s~ w(l)(s)ds/ t72w@ () dt = O (ammbrn Hy (Gmm) Ha (b)) - (3.5)
Amm 0
With similar reasoning, using once again Lemma [2.2] and Lemma 2.3} we also get
/ / s 1720 (5)w@ (t)dsdt
bnn
bnn
= O (b) / 571w (5)ds / 120 (1)dt = O (aymbun () Halbn)) . (3.6)
Amm 0
Finally, using Lemma and conditions (|1.11)), we obtain
[4 amm nn / / 72t W )U)(Q) (t)det
bnn J amm
= O(Qmmbnn)/ 2 (s)/ t7 2w (t)dsdt = O (ammbrnH1 (Gmm) Ha (b)) - (3.7)
Amm bnn

Inserting (3.4)—(3.7)) into (3.3]) we obtain (3.1)).

The proof is completed. [

Theorem 3.2. Let [ € Logyxar, and wi(f,s,t) = O (w(s)w@(t)), where w(s) and w?(t) are
two non-negative functions of modulus type satisfying conditions - If {am;},{bux} € HBV'S,

then
D=0 (7)1 (7) s (7)1 7)
Ya,w® (%) H, (%) + @b Hy (%) H, (%) ) 5.

If, in addition, w9 (2), (i = 1,2), satisfy , then

mn_@(<1+zb Hzamj) ooty (Z) 1 (n)>. 39

Proof . Following ({3.3]) we write

vo ([ [ L) //)

y w(l )(5)w(2)( )
sin § sm

| K ()| | Kn (t)] dsdt -= ZJH, say. (3.10)

ri=1
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At first we estimate J;. Using the inequality }sin (d + %) z‘ < (d + %) z and our assumptions, we

have

|Ji| = O (mn / / w3 (t)dsdt = O <w(1) (%) w? (%)) :

To estimate Jy we use and ( - Indeed,

o] = O (mbuy) /0 " / "o ()20 (1) dsdt = O (b (Z) 112 (X))

In analogy, we use (2.3 and ([1.11)) to obtain

|J3] = O (namm) /7T /Z 520D (s)w P (t)dsdt = O (ammw(2) (%) H, (%)) :
= Jo

Finally, using (23), ([24), and (TII), we get

| 4] = O (@mmbnn) /:f /; s 2wW (s)t 2w (t)dsdt = O (ammbmHl <m) H, <n>>

Putting (3.11))-(3.14) into (3.10) we get
D —ofLoW (1) L) (E) 1 w® (1) H, (E)
" m n m n
£ () 1 () ety (7)1 (7))
m m m n
which proves (3.8)).

Further, applying Lemma [2.1] we have

=0 [ [~ (- () 1 (2).

However for m > p >0, n > v > 0, since {am;}, {bux} € HBV'S, we have

m—1 m—1
|am,u - amm’ < Z ’amj - amj+1’ < Z |amj - aijrll
Jj=p j=0

< Kamm = Gy < (K + 1)y,

-1
m/ - nn| < Z |bnk nk—i—l S Z bnk+1|
k=0

and thus

m n 1
=> amub,w < K(m+1)(n+ 1Dammbum = — = O (ammbun) -
mn
pn=0 v=

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Whence, (3.16]) becomes

PAES (ammbnnHl <m> H, <n>) (3.19)

To estimate the quantity |Jo| we use (2.4]). Namely,

| Jo| = O (mb,) /0 " / " oW ()42 (1) dsdt = O (%Hl (%) H, (g)) . (3.20)

However, for m > 1> 0 and {a,,;} € HBV'S, we get

v=0

pn=0 v=0

Therefore,

| = O (ammbm > b H, (m) H, <n>> . (3.21)

Similarly, we have found that

| = O (ammmeamﬂl (m) H, (n)> . (3.22)

Finally, inserting (3.19)),(3.21), (3.22) and (3.14) into (3.10]), we obtain

Do =0 ((mmb O SR zam> Ay (n)) ,

7=0

which proves (3.9).

The proof is completed. [J

Remark 3.3. Note that if, in Theorem the additional conditions Z] Lo @mj =1 and >} b
1, (m,n € {0,1,2,...}) are satisfied, then (3.9) takes the following simpler form

D=0 (st (2 1 (2))

Next statement holds true not only for factorable but also for non-factorable matrices (see [2]).

Theorem 3.4. Let f € Logyor and wi(f,s,t) = O (W (s)w® (1)), where wM(s) and w(t) are two
non-negative functions of modulus type. If

g = 0, (m,n, 5k € 0,1,2,.01), Y ) g = 1,
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and {amn;r} € DRBV'S, then

o -0+ (34 ()

m—1n—1
n Z ij%flw(l) <§> w® <%> AmnijH). (3.23)

Proof . As in Theorem [3.2] we have
D,., < J1—|—J2+J3+J4,

and -0 (w(l) (1) 0@ (E)) ' (3.25)

m n

(3.24)

The use of the Lemma [2.5| implies
Jo = O(m) /o:; ﬁﬂ w(l)(s)flw(z) (1) Apnmn, dsdt
= O(m) /:1 wW (s)ds /7r 72w () Ay di
0
—0 (w(l) <1>> Z/ £ 1w0® (£) Ay i

o ( et () o (%) Amnmkﬂ) | (326

Similarly, using Lemma [2.5] we have obtained

m—1
Js=0 (Zj_lw(l) (;—T) W (%) Amnj+1k> . (3.27)
j=1
Moreover, using Lemma once again, we have

Ji = O(1) / / s () () Ay dsdt

m—1n—1 ™ z
oYY / / WO (1) Ay rdsdt

=1 k=
m—1n—1 - -
=0 ( j_lk_lw(l) (—) (JJ(l) (E) Amnj+1k+1> . (328)
j=1
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Inserting (3.25))-(3.28)) into (3.24) we clearly obtain (|3.23]).

The proof is completed. [

Theorem 3.5. Let f € Logxon, (1.10), and wi(f,s,t) = O (wV(s)wP(t)) hold true, where w(s)
and w? (1) are two non-negative functions of modulus type satisfying conditions f holds
true, and {am;}, {bn} € RBV'S, then

m‘;ié(Q tmn(2,y) — f(@,y)] = O (amobroH1(amo) H2(bpo)) - (3.29)

(z,y

Proof . We do the same reasoning as in the proof of Theorem [3.1 Namely, we decompose the
integral [" [ as follows

am0 bno ™ bro amo 0 U ™
VA A A A A Y A
0 0 amo 70 0 bno amo 7 bno

wD (s)w® (t) 1
——————— | K, (s)K,(t)| dsdt := Iy, . 3.30
gt Fn 0ot =3 sy (3.30)
As (3.6) we obtain
amo bro
Il = O(l)/ / Siltilw(l) (S)W(Q) (t)det =0 (amobnoHl (CLmo)HQ(bno)) s (331)
0 0

by Lemma [2.2]
Since {anm;}, {bar} € RBV'S, then using (2.5)—(2.6) of Lemma 2.3 and Lemma [2.2) we get

T bno
]2 =0 (a,m()) / / S_Qt_lw(l) (S)W(Q) (t)det =0 (amobnOHl (amo)Hz(bno)) s (332)
amo v 0
I3 = O (bno) / / 5712w (5)wP (t)dsdt = O (amobno H1(amo) Ha(bno)) , (3.33)
0 bno
and
]4 =0 (amobng) / / s_2t_2w(1) (S)W(Q) (t)det =0 (amobnoHl (Cbmo)Hg(bno)) . (334)
amo J bno

Inserting (3.31))-(3.34)) into (3.30)) we obtain (|3.29)).

The proof is completed. [J

4. Corollaries

Suppose that A := (@) is a doubly matrix defined as follows (see [§], [9]):

DA 0<j<m;0<k<n
mnjk = "

0 otherwise,

where {p;} and {qv} 7,k = 0,1,..., are sequences of non-negative numbers with py,qo > 0 and
Poi= 300 00gs Qk = Do @h (myn = 0,1,...). In this case, the matrix A := (ayn;x) is called
factorable double Riesz matrix and the means R,,,(x,y) are called factorable double Riesz means
i.e., we write R, (x,y) for t,,,(x,y).

Whence, we obtain the following corollary from Theorem [3.1]
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Corollary 4.1. Let f € Loryor, ,and wi(f,s,t) = O (wV(s)w@(t)) hold true, where wM(s)
and w® (t) are two non-negative functions of modulus type satisfying conditions f holds
true, and {p;},{qx} € HBV'S, then

e [Fo(o) = flo)l = 0| () o (5 ) (8)] (41

We say that the function f belongs to the generalized Lipschitz class, briefly f € Lip (w™,w®),

if
Lip (@, 0®) = { ] € Lynxar : |f(@+ 1w,y +0) = f(z,9)] = O (@D (@ (v)) },
where w (u) and w® (v) are two non-negative functions of modulus type for u > 0, v > 0.

In particular, if w®(u) = u®, 0 < a < 1, WP () =%, 0 < B <1, and f € Lip (wh,w®?) =
Lip (o, ), then

wi(f,s,t) = O (5?55) . 81,8, > 0.

Thus, if f € Lip (7,72) and

Hi () Wil 0<y <1, (i =1,2);
i\uw) = .
log (%) Vi = 17 t= 1727

then from Corollary we get a two-dimensional version of a theorem proved in [4].

Corollary 4.2. Assume that f € Corxor and f € Lip (71,72), 0 <7 <1, (i =1,2). If {p;},{ax} €

HBVS, then
Y1 V2
O (& An : 0<y <1,
max_[Ron(z,y) — f(z,9)] = (Pm> (Q“p> | 0
(z,)€Q @ pmq" log (” m)log< ")} ;=1

If we consider the particular case, when that A := (@) is @ doubly matrix defined by (see [7]):

(m+1)(n+1)?

oy 0<i<m;0<k<n
a k=
" 0 otherwise,

or simply we put p; =1, 0 < j <m, and ¢, = 1, 0 < k < n, then we obtain:

Corollary 4.3. Assume that f € Coryar and f € Lip (71,7%2), 0 <~ <1, (i =1,2). Then

o <+> 0<~y <1
(m+ D71 (nt1)72 ) 2 C
max 1Cran(,y) — f2,y)| =
o [z, -
where m n
Crnn(2,y) 1= Z k(@ y), mn € NU10}.
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When A := (@mnjx) is a doubly matrix defined by (see [33]):

1 ; .
a _ {(mj+l)logm(nk+l)logn’ 0< J=m O<k<n
mnjk —

0 otherwise,

then we have the following:

Corollary 4.4. Assume that f € Coryar and f € Lip (71,72), 0 <~ <1, (i =1,2). Then

] (R E
(logm)71(logn)¥2 ) ? z )

max |H,,(z,y) — f(z,y)| =

(@.9)€Q | ( ) ( )| O []og(;rolgofrfm)) log(;;{g()i(n))} . Y= 1’

where

1 1
Hmn —_— . ’
(#.y):= logmlogn Zojkz; (m—j+1)(n—Fk+ 1)5114(55 Y)

are double harmonic means.

Also, if

PmQ’VL )

Pm—jin-k ) <j<m 0<k<n
a ik = .
" 0 otherwise,

then the matrix A := (@ k) is called factorable double Norlund matrix and the means N,,,(z,y)
are called double Norlund means i.e., we write Ny, (z,y) for t,,,(x,y). For this factorable matrix
the Theorem [B.5] reduces to:

Corollary 4.5. Let f € Logxor, , and wi(f,s,t) = O (wW(s)w®(t)) hold true, where w(s)

and W (t) are two non-negative functwns of modulus type satisfying conditions (1.11 (u) If (.) holds
true, and {p;},{qx} € RBV'S, then

i o -ol(E) (R ()

Remark 4.6. From and we note that we have obtained the same degree of approximation
even if we have used the different conditions on the entries of the matrices on the different means

Now we give the following corollary from Theorem 3.1 which indeed is a two-dimensional version
of a result proved in [10] for single Norlund means of a Fourier series.

Corollary 4.7. Let [ € Copxor and wi(f,s,t) = O (wW(s)w?(t)), where wV(s) and w®(t) are
two non-negative functions of modulus type. If {p;} € DRBV'S, then

max |Rmn($7y)_f(‘r7y)|:0< : Z

(z,9)€Q
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Proof . Since p;j, € DRBV'S, then for ny > ny and my > m;, we have

Pmny = |pmn2| S Z |A01pmk| S Z |A01pmk’| S Kpmnp

k=n> k=nq

) [eS)
Pman = |pm2n| S E |A10pjn| S E |A10pjn| S Kpm1n7
Jj=ma Jj=m1
and
o) ) S 9
Pman, = |pm2n2| S E E |A11pjk| S E E |A11pjk:| S Kpmlnl-
Jj=ma2 k=ngo j=m1 k=n1
Thus, we obtain
m  k+1
mnmk+1 — E § pmm - - P )

mn mn mn
11=012=0
J+l n

]+1n Pjn
Am”j'H” = E : § Diyn = =0 (P ) )

mn 3 mn mn

11=0129=0
and
J+1 k+1 P
J+1k+1 7k
Amnj+1k+1 E E DPiyio = =0 (P ) .

mn mn mn

i1=012=0

which mean that sequence {k™'P,,;} is non-increasing with respect to k, the sequence {j~*P;,} is

non-increasing with respect to j, and the sequence {j~'A7'Pj.} is non-increasing with respect to
both j and k.

Whence, we get

and

T 1 T, _
o () A = O <Pmn o (5) P) |
Consequently, (3.23|) takes the form
Uk>1w“>(§)af”(%)f%).
The proof is completed. [

1 m
= O ( >
j=1 k=1
Now we give the following result from Corollary
Corollary 4.8. Let f € Cyryor and f € Lip (o, 3), 0 < a, 8 < 1. If {pjx} € DRBV'S, then

i [Ron(r) = f()] = O 5 303501 ).

m”j 1 k=1

n

Once more, Corollary shows a two-dimensional version of a result proved in [31I] for single
Norlund means of a Fourier series.



On the degree of approximation of certain bivariate functions 12 (2021) No. 2, 609-628 627

References

[1]
2]

C. R. Adams, On summability of double series, Trans. Amer. Math. Soc. 34(2) (1932) 215-230.

C. R. Adams, On non-factorable transformations of double sequences, Proc. Natl. Acad. Sci. USA 19 (1933)
564-567.

N. A. Bokayev and Zh. B. Mukanov, Weighted integrability of double trigonometric series and of double series
with respect to multiplicative systems with coefficients of class R(J{ BV S?, Translation of Mat. Zametki 91 (2012),
no. 4, 617-620. Math. Notes 91 (2012), no. 3-4, 575-578.

P. Chandra, On the degree of approzimation of functions belonging to the Lipschitz class, Nanta Math. 8(1) (1975)
88-91.

P. Chandra, On the degree of approzimation of a class of functions by means of Fourier series, Acta Math.
Hungar. 52 (1988) 199-205.

P. Chandra, A note on the degree of approzimation of continuous functions, Acta Math. Hungar. 62 (1993) 21-23.
Y. S. Chow, On the Cesaro summability of double Fourier series, Tohoku Math. J. 5 (1953) 277-283.

J. G. Herriot, Norlund summability of double Fourier series, Trans. Amer. Math. Soc. 52 (1942) 72-94.

E. Hille and J. D. Tamarkin, On the summability of Fourier series, Trans. Amer. Math. Soc. 32 (1932) 757-783.
A. S. B. Holland, B. N. Sahney, J. Tzimbalario, On degree of approzimation of a class of functions by means of
Fourier series, Acta Sci. Math. (Szeged) 38(1-2) (1976) 69-72.

Xh. Z. Krasniqi, On the degree of approximation of continuous functions that pertains to the sequence-to-sequence
transformation, Aust. J. Math. Anal. Appl. 7(2) (2011) 1-10.

Xh. Z. Krasniqi, On the degree of approximation of continuous functions by matriz means related to partial sums
of a Fourier series, Comment. Math. 52(2) (2012) 207-215.

Xh. Z. Krasniqi, Approzimation of continuous functions by generalized deferred Voronoi-Nérlund means of partial
sums of their Fourier series, An. Stiint. Univ. Al. I. Cuza Iagi. Mat. (N.S.) 66(1) (2020) 37-53.

Xh. Z. Krasniqi, On the degree of approximation of continuous functions by a specific transform of partial sums
of their Fourier series, Acta Comment. Univer. Tartuensis de Math. (accepted)

Xh. Z. Krasniqi, On the degree of approximation of conjugate functions of periodic continuous functions, Poincare
J. Anal. Appl. 7(2) (2020) 175-184.

Xh. Z. Krasniqi, On the degree of approximation of continuous functions by a linear transformation of their
Fourier series, Commun. Math. (accepted).

Xh. Z. Krasniqi, Applications of the deferred generalized de la Vallée Poussin means in approximation of contin-
uous functions, Studia Univ. Babeg-Bolyai Math.(accepted).

S. Lal and V. N. Tripathi, On the study of double Fourier series by double matrix summability method, Tamkang
J. Math. 34(1) (2003) 1-16.

S. Lal and H. P. Singh, Double matriz summability of double Fourier series, Int. J. Math. Anal. (Ruse) 3(33-36)
(2009) 1669-1681.

L. Leindler, On the uniform convergence and boundedness of a certain class of sine series, Anal. Math. 27(4)
(2001) 279-285.

L. Leindler, On the degree of approximation of continuous functions, Acta Math. Hungar. 104 (2004) 105-113.
V. N. Mishra, S. K. Paikray, P. Palo,; P. N. Samanta, M. Misra, U. K. Misra, On double absolute factorable matriz
summability, Thilisi Math. J. 10(4) (2017) 29-44.

N. L. Mittal and B. E. Rhoades, Approximation by matrix means of double Fourier series to continuous functions
in two variables, Rad. Mat. 9(1) (1999) 77-99.

F. Méricz and B. E. Rhoades, Approzimation by Norlund means of double Fourier series to continuous functions
in two variables, Constr. Approx. 3(3) (1987) 281-296.

F. Moéricz and X. L. Shi, Approzimation to continuous functions by Cesaro means of double Fourier series and
conjugate series, J. Approx. Theory 49(4) (1987) 346-377.

F. Moricz and B. E. Rhoades, Approximation by Norlund means of double Fourier series for Lipschitz functions,
J. Approx. Theory 50(4) (1987) 341-358.

J. Németh, A remark on the degree of approzimation of continuous functions, Acta Math. Hungar. 106(1-2) (2005)
83-88.

A. Rathore, U. Singh, Approzimation of certain bivariate functions by almost Euler means of double Fourier
series, J. Inequal. Appl. 2018, Paper No. 89, 15 pp.

B. E. Rhoades, On absolute normal double matriz summability methods, Glas. Mat. Ser. IIT 38(58) (2003) 57-73.
M. G. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc. 28(1) (1926) 50-73.

B. N. Sahney and D. S. Goel, On the degree of approximation of continuous functions, Ranchi Univ. Math. J. 4
(1973) 50-53.



628 Xhevat Zahir Krasniqi

[32] S. Sezgek and I. Dagadur, Approzimation by double Cesdro submethods of double Fourier series for Lipschitz
fuctions, Palest. J. Math. 8(1) (2019) 71-85.

[33] P. L. Sharma, On the harmonic summability of double Fourier series, Proc. Amer. Math. Soc. 91 (1958) 979-986.

[34] B. Wei and D. Yu, On the degree of approzimation of continuous functions by means of Fourier series, Math.
Commun. 17 (2012) 211-219.

[35] Y. Zhao and D. Yu, Approzimation by T -transformation of double Walsh-Fourier series to multivariable functions,
ISRN Math. Anal. 2014, Art. ID 713175, 14 pp.



	Introduction
	Auxiliary Lemmas
	Main Results
	Corollaries

