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Abstract

In this work first we establish some fixed point theorems for 1 —Mizoguchi-Takahashi contractions
mappings in the setting of orthogonal metric spaces. Next, we investigate the existence of solution
for certain fractional differential equation via some integral boundary value conditions and obtained
fixed point results.
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1. Introduction

In the line of research of multi-valued mappings, one of the most important results was given by
Nadler [§]. He extended the Banach contraction principle to multi-valued mappings and then proved
the following famous theorem.

Theorem 1.1. Let (X,d) be a complete metric space and T : X — CB(X) be a multi-valued
mapping, where CB(X) denotes the family of all nonempty closed and bounded subsets of X. We say
T is a multi-valued contraction, if there exists r € [0,1) such that,

H(Tz,Ty) < rd(z,y)
holds for all z,y € X, where H is the Pompeiu-Hausdorff metric on CB(X) defined by
H(A, B) = max{supd(z, B),supd(y, A)},
z€A yeB

where d(x, B) = inf{d(x,y) : y € B}. Then there exists x* € X such that z* € Tx* (i.e., T has a
fized point).
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Reich [10] established and proved some results for multi-valued nonlinear contractions as a gen-
eralization of Theorem [LIl He then asked whether his results can be extended to multi-valued
mappings whose range consists of nonempty bounded closed sets (see [11]). This problem is called
Reich conjecture. There are some imprecise answers to this conjecture. One of the famous answers
to Reich conjecture was given by Mizoguchi and Takahashi with the substitution [0, 00) instead of
(0, 00) in hypothesis of results of Reich.

Eshaghi et.al. [4] introduced the notion of orthogonal set and gave a real generalization of Banach
contraction principle in orthogonal metric spaces (For more details on orthogonal set, also see [2]).

Definition 1.2. Let X # () and L € X x X be an binary relation. Assume that there exists xg € X
such that xoLx for all x € X. Hence we say that X is an orthogonal set (briefly O-set). We denote
orthogonal set by (X, L). Also, suppose that (X, L) be an O-set. A sequence {x,}nen is called
orthogonal sequence (briefly O-sequence) if (Vn; x, Lx,1).

Definition 1.3. Let X be a metric space and M C X.
e M is an orthogonal metric space if (M, L) is an O-set.

o T': M — M is L—continuous in x € M if for each O-sequence {x, }nen in M, lim, o d(x,, x) =
0, implies, lim,,_,o, d(Tx,, Tx) = 0. Furthermore, T is L-continuous when T is L-continuous
i each x € M.

e : M — CB(M) is L*—continuous in x € M if for each O-sequence {Tn}nen in M,
lim, o0 d(x,, ) = 0, implies, lim, o H(Tx,,Tx) = 0. Also, T is L*-continuous when T
15 L*-continuous in each x € M.

o WesayT : M — M is L-preserving if Tx LTy whence x1y.
o WesayT : M — CB(M) is L*-preserving, when xLy implies uLlv for allu € Tx andv € Ty.

e Finally, X is orthogonal complete if every Cauchy O-sequence is convergent.

Example 1.4. If0 < p <1, let A,([0, 1]) be the space of Hélder continuous functions of the exponent
p in [0;1]. That is, f € Ay([0,1]) if and only if || f||a, < oo, where

Ifla, = FO)+  sup L@ ZJWI

z,y€(0,1], z#y |‘T - y|p

For 0 < p <1, assume that

(0.1 = (£ € 0,1ty TE=IN —o. vy e o, 1)
Now for all p, 7 € (0, 1], define A,([0, 1]) LA-([0, 1]) if and only if Aez ([0,1]) be an infinite-dimensional
closed subspace of Aer([0,1]). Therefore, ({A,([0,1])}pe(o,1); L) is an O— set.

Fractional differential equations(FDEs for short) has generated much interest in recent years. Many
researchers have investigated on FDEs by utilizing different methods and techniques(see [T, 3], 14 13
15] and references therein). It is well known that The Riemann—Liouville fractional integral of order
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a of a function f is defined by I*f(t) = ﬁ fot(t —5)" 1 f(s)ds(a > 0) and the Caputo derivative of
order « for a function f is defined by

S B L O
cDf(t) = T'(n—a) /0 (t — S)afnJrld

where n = [a] + 1(for more detailes on Riemann—Liouville fractional integral and Caputo derivative
see, [6l, @, [12]).

In 2007, Xinwei and Landong [13] investigated the existence and uniqueness of solutions for the
fractional differential equation

eDu(t) = f(t,u(t),cDu(t)), 0 <t <1

with boundary values u(0) = «'(1) = 0 or v/(0) = u(1) = 0 or u(0) = u(1) = 0, whence 1 < a < 2,
0<pf<land f:[0,1] x R xR — R is continuous.

In 2009, Su and Zhang [14] reviewed the existence of solutions for the following fractional differ-
ential equation

eDu(t) = f(t,u(t),cDPu(t)), 0 <t <1

with boundary values a;u(0) — asu/(0) = A and bju(l) — /(1) = B, where «, ay, as, by, by satisfy
some conditions.

Motivated by the above results, we consider the following fractional differential equation

eDYu(t) = f(t,u(t),cDPu(t),cDPu(t),...cDPu(t)), 0<t<1, 0<fi<1,i=1,2,..n
with boundary values

a1u(0) 4+ az(cDVu(0)) = f?l go(s,u(s))ds,
biu(1) + ba(cDu(1)) = [, g91(s,u(s))ds

bru(n) + by(cDu(n)) = Jy' g2 (s, uls))ds

where, 2 < a < 3,0 <y <1, 0<mn a #0, a,b;,bo € R and gg, 91,92 : [0,1] x R — R and
f:[0,1] x R™™ — R are continuous.

2. Fixed point results

In this section we state and prove two fixed point theorems for Mizoguchi-Takahash type con-
tractions mappings in the setting of orthogonal metric spaces.
We denote by As the set of all functions 6 : (0,+00) — (0, 1) satisfying the following condition:

limsup,_, .+ 0(t) < 1, Vs € [0,00).
Theorem 2.1. Let (X,d, L) be an orthogonal complete metric space. Let T : X — CB(X) be an

1 *—preserving multifunction. There exists 6 € Ags such that

{ ifyy — H(Tx,Ty) < 6(d(z,y))d(z, y). (2.1)

Also, T is 1*—continuous. Then T has a fized point.
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Proof . From Definition there exists o € X such that oLy for all y € X. Let z; € Tz, so
zoLlxy. If 29 = x1 then xg is a fixed point of T'. Hence we assume that x¢ # x1. and d(zg, 1) > 0.
Since Txg, Tx1 € CB(X), there exists a point xs € T'xq such that,

d(zy,x9) < H(Txo,Txy) + (ﬁ — 1)H(Txo, Txy)
_ 1
= —é(d(xo,an)) H(TIO, T.l’l)

and so from " we have,
—1
d(xlax2> <— 5(d(zo,x1))]1 71‘0,1271 \/ 1'0,1'1 d 1'0,1'1

Since T is an | *—preserving then, zyLx, implies ulv for all u € T'xy and v € T'z;. This implies
xr1Lxe. If 11 = x5 then z is a fixed point of T'. Hence we assume that z¢ # 1. If d(x1, 25) = 0, then
r1 = x9, which is a contradiction, so we assume that d(x1,z2) > 0. Again, since T'zy, Tzy € CB(X),
there exists a point x3 € T'x, such that

d(l‘g,ﬂ?g) S H(Tﬂ?l,TZEQ) + (m — 1)H(T£L‘1, T$2)

_ 1
= —é(d(:m,:l?z)) H(TSL’l, Txg),

and so from (2.1]) we have,
I S /5
d(l’g, l‘g) S 5(d(x1,x2))H Tl’l, TI’Q l’l, ZL‘Q d 1'1, ZL‘Q

Continuing in this fashion, we obtain a sequence {x,} in X such that z,, € Tx, 1, v,1lx, 1, T, #
Tp_1, d(xy_1,2,) > 0 and

xnaanrl \/ xn 17xn dxn 1axn <d<xn 1>xn)

for all n € N. Thus, the sequence {d(z,,—1,2,)} is decreasing and so convergent. Since, 5 € Ag, then
there exist b € (0,1) and ny € N such that §(d(x,—1,x,)) < b for all n > ny. Now, we obtain, for all

nZ”O:
d xnaxn-‘rl \/ xn 1axn dxn 17-Tn

< \/5(d<xn—2a xn—1>>\/a(d($n—1v xn))d(xn—% In—l)

< V 6(d<x07 xl)) Tt \/5(d(l‘no—17 $n0))\/5(d(In0, xno-ﬁ-l)) s
VO(d(@n—2,20-1))\/0(d(2-1, 25))d(z0, 1)
< \/6(d(l’n0_1, xno))\/5(d<xno7 xno+1)) s

VO(d(@n—2, 3-1))/0(d(0-1, ) d(w0, 21)

< (VB "d(xo, 21).
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That is,
d(x'nn xn—i—l) S T(n_nO)d(x(]? x1)~

for all n > ng, where 0 < r := Vb < 1. Now for all m > n > nog we have,
A, ) < S0 (i, wi41) < 00 (g, w1) < 30, rT0d(o, 1)
Since the series Y 00 7(7"0)d (2, 1), is convergence, this implies

m}ériloo d(zp, ) = 0.

Hence we proved that {z,} is a Cauchy sequence. Since X is an complete, then there exists
z € X such that z, — z as n — oo. Since T is L*—continuous, then

lim H(Tx,-1,Tz) = 0.

n—oo

For each z,, € Tx, 1 (n € N) there exists y,, € Tz such that

1
d(xn,yn) < HTxp1,T2) + —.
n

Then lim,, o d(Zy, yn) = 0. Therefore
d(z,yn) < d(z,2n) + d(2p, Yn).

By taking limit as n — oo in the above inequality we get lim, ,,, d(z,y,) = 0. That is the
sequence {y,} converges to z. Since Tz is closed then z € T'z. O

The following Corollary is Theorem of Nadler (Theorem in the setting of orthogonal metric
spaces.

Corollary 2.2. Let (X,d, L) be an orthogonal complete metric space. Let T : X — CB(X) be an
1 *—preserving multifunction. There exists 0 < k < 1 such that

T # Y,
{ vly. = H(Tz,Ty) < kd(x,y).

Also, T is 1*—continuous. Then T has a fized point.

If in Theorem [2.1| we take 6(t) = %H(t > 0) then we obtain the following Corollary.

Corollary 2.3. Let (X,d, L) be an orthogonal complete metric space. Let T : X — CB(X) be an
L*—preserving multifunction. Assume that for x # vy and x Ly,

d(z, y)
H(Tz,Ty) < Hd—(x,y)

Also, T is 1*—continuous. Then T has a fized point.

For | —Mizoguchi-Takahash that is not | —continuous we have the following theorem.
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Theorem 2.4. Let (X,d, L) be an orthogonal complete metric space. Let T : X — CB(X) be an
1 *—preserving multifunction. There exists 6 € Ag,

{ ifyy = H(Tz,Ty) < (d(z,y))d(z,y). (2.2)

Let {x,} be an O—sequence in X with x, — x as n — oo, then x, Lz hold for alln € N. Then T
has a fixed point.

Proof . As in the proof of Theorem we deduce an O-sequence {z,} starting at z, is Cauchy and
so converges to a point z € X. Then, we have

Tplz.
Now if z,, = 2z for some n € N, then clearly,
H(Tx,,Tz) < d(z,, 2).
Also, if z,, # z for some n € N, then from ([2.2)) we obtain,
H(Tx,,Tz) < 6(d(zy, 2))d(zn, 2) < d(zp, 2).

That is, for all n € N, we have,
H(Tx,,Tz) < d(zy,, 2).

Now we can write,

d(z,Tz) <d(z,Tx,)+ Hi(Tx,, Tz)
<d(z,xps1) + Hi(Tx,, Tz)
<d

(Z’ xn+1) + d(‘rna Z)

Letting n — oo in the above inequality we get, d(z,Tz) = 0. Now there exists a sequence {y,} C Tz
such that lim,, . d(2,y,) = 0. Since Tz is closed then z € Tz. O

Corollary 2.5. Let (X,d, L) be an orthogonal complete metric space. Let T : X — CB(X) be an
1 *—preserving multifunction. There exists 0 < k < 1 such that

x# Y,
{ oy, = H(Tz,Ty) < kd(x,y).

Let {z,,} be an O—sequence in X with x, — x as n — oo, then x,Lx hold for alln € N. Then T
has a fized point.

Corollary 2.6. Let (X,d, L) be an orthogonal complete metric space. Let T : X — CB(X) be an
L*—preserving multifunction. Assume that for x # y and x Ly,

d(z, y)
H(Tz,Ty) < Hd—(x,y)

Let {x,} be an O—sequence in X with x, — x as n — oo, then x, Lz hold for alln € N. Then T
has a fized point.
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Corollary 2.7. Let (X,d, L) be an orthogonal complete metric space. Let T : X — X be an
L —preserving self-mapping. There exists § € Ag,

{ ifyy — d(Tz,Ty) < 6(d(z,y))d(z,y).

Let {x,} be an O—sequence in X with x, — x as n — oo, then x, Lz hold for alln € N. Then T
has a fixed point.

Corollary 2.8. Let (X,d, L) be an orthogonal complete metric space. Let T : X — CB(X) be an
1 *—preserving multifunction. Assume that for x # y and x_Ly,

d(z,y)

H(Txz,Ty) < T de.y)

Let {x,} be an O—sequence in X with x, — x as n — oo, then x, Lz hold for alln € N. Then T
has a fixed point.

Corollary 2.9. Let (X,d, L) be an orthogonal complete metric space. Let T : X — X be an
L —preserving self-mapping. There exists 6 € Ag,

{ ifyi% - d(Tl', Ty) S (5<d($,y))d(l‘, y)'

Let {z,,} be an O—sequence in X with x, — x as n — oo, then x,Lx hold for alln € N. Then T
has a fized point.

3. Fractional Differential Equation

In this section, we study the existence of solutions for the following fractional differential equation

eDu(t) = f(t,u(t), cDPru(t),eD?u(t),...cDPu(t)), 0<t <1, 0< B <1,i=1,2,..n (3.1

with boundary values

a1u(0) + az(ecDYu(0) f go(s, u(s
biu(1) + by(cDVu(1) fo g1(s,u(s) (3.2)
biu(n) + be(cDVu(n fo g2(s,u(s)

where, 2 < a < 3,0< v <1,0<mn, a #0, ay,b;,bo € R and ¢g, 91,92 : [0,1] x R — R and
f:10,1] x R — R are continuous.
In this way we need the following Lemma.

Lemma 3.1. [6/ Assume that a > 0 and n = [o] + 1. Then,
I%cDu(t) = u(t) + lo + It + Iot® 4+ ... 4 L1 t" 1,
where ly, l1,1la, ..., l,,_1 are some real numbers.

First, we prove the following Lemma.
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Lemma 3.2. Let u € C(J,R) and

ba byn* ba byn'
R(n) = (by + =———)(bin* — (b b 0
Then the problem
eDu(t) = y(t) (3.3)
with boundary values has the unique solution
u(t) = 06(t) r(a) [5(t — s)°y(s)ds
(1)t Jn = )7 1y() (5 — 5)*y(s)ds]
+wo(t [F(a) fo (1—s)2"1y(s) ds—i— F(a = fl - ’Qy(s)ds}
where
1 1 1
O(t) =w(t) | go(s,2(s))ds ~walt) [ gr(s.a(o)ds —a(®) [ gals(s))ds.
0 0 0
2—v
olt) =2+l (M0F — 1)+ el o)
ki (011 = 1) + ba(ra=; — va)):
t2 by by
wi(t) = b + — by +
1) R(n)(1 F(3—7)) R(n)<1 F(2—7))
and
t 2 1727’]2_’y t2 bg?]l_’y

W9 (t) =

—— (b + —~ bin + ————).
ro " TG =) T R T TR =)
Proof . According to Lemma , the general solution of (3.3]) is
u(t) = I%y(t) + lo + Lt + lat?,

ie.,
ult) = w5 Jo (t = ) y(s)ds + lo + Iyt + Lot?

where [y, [1, 5 are real arbitrary constants. Then,

“Dru(t) = iy Jy (= )7 y(s)ds + 5 + 5

So we can write,

a1u(0) + az(“Du(0)) = aily = fol go(s,u(s))ds, (3.4)
blu(l) + bQ(CD’YU( )) = bllo + (b1 + )l1 + (bl —|- )lz (3 5)
s Jo (1= )2 My(s)ds + 2= fo 1—3 o=y (g ds_fo g1(s,u(s))ds '

and

blu(n) + bQ(CD'yu( )) =bily + (blﬁ + ?\2(2 )ll + (bln + 122(g ’; )lg
Ly(s) —san( ds-foggsu(s))ds.
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Assume that A(t) := %fot(t — 5)2 ly(s)ds 't — $)* "1y (s)ds. Now by applying (3.4),

and we get
(by + o 7))ll + (b + r(3 ))12 =_b fol go(s,u(s))ds + fol g1(s,u(s))ds
F(a)fo (1—3s)2"1y(s)ds
F(a - fo (1—s)* 7 y(s)ds
= fo g1(s,u(s))ds — 211 fo go(s,u(s))ds — A(1)
and
(bin + 1212(2 = )1+ (bin? + ?\2(?2__,;)”2 =_h fol 9o s,u(s) )ds + fol g2(s,u(s))ds
o b1 f() )a )dS
a 'y) fO a i ( )dS
1
= fo g2(s, u(s ))dS — o go(s, u(s))ds — A(n).
Hence,
= |0+ ) (U s ao)ds = 3 Y ol u(s))ds = AGw)

@W+MM(LmSMD%——L%SMD%—MW]

and
o= %H— (2 g5, uls))ds — =2 2 go(s, u(s))ds — A(n)

wm+%g(kmsw»w—%ﬁ%@www—Mmi

and so,

“@=w%HWww*@w+i£%@www
| (0 + 525 (Jy 9205, u(s))ds — & [ go(s, u(s))ds — A(n))

—@ﬁ+?*”(Lmsu<»s——kwwu<»w—Mwﬂ
Rt;?) (b1 + 7 3 7) (fol g2(s,u(s))ds — 2—11 fol go(s,u(s))ds — A(n))
@m+ﬁ§](Lglsw)ﬂﬁ—%ﬁﬁd&M@M&—MDﬂ

= ﬁfé(t_s)a_ly(s)d” { + iy (07 = 1) + b= — )

i (011 = 1) + ba(ry — Ay )} Jo g0(s, u(s))ds
i )~ i K e
+[@(b ) — (b1 + 5 7))] I go(s,u(s))ds
+[%(b g) R (bl T Te- ’Y)>]A<n)

bg b2 =7
[ gy (0r? ; =) — (1 + 1) ] AL,
This completes the proof. [1
If in the above Lemma we take by = 0 and a; = as = by = 1 then we have the following Remark.



688 Paknazar

Remark 3.3. Let u € C(J,R) and R(n) = W(?ﬁ” —n'™7) > 0. Then the problem

cDu(t) = y(t)
with boundary values
u(0) + cD'Vu fo go(s

cDVu(1 fo 91 s, u(s ))ds
cDVu(n fo g2(s,u(s))ds

has the unique solution

u(t) = O F(a s Jo(t = 5)2 "ty (s)ds
F(a Z, fon ) 1y($)ds
F(a o fol )* 7 y(s)ds
where
o(t) = / go(5, 2(5))ds — ws () / 61 (5, 2(5))ds — wn (2) / go(5, 3(5))ds,
i (t) = 2 B t
RmMT@B—-7v) RmI2-7)
and
) = ! ch

RmI(B-7) RMI2-7)

Similarly, we have the following Remark,
Remark 3.4. Let u € C(J,R) and R(n) =n* —n > 0. Then the problem

eDYu(t) = y(t)

with boundary values

has the unique solution

where

2 2 2
wo(t):1+ﬁ(n2_1)+t_(1—7l>,w1(t)=ﬁ—% and wy(t) = L — 2
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Assume that C(I) be the space of all continuous real-valued functions on I = [0, 1]. Consider the
Banach space

X ={ulueC()and cDuc C(I), 0<p;<1,i=12,..n}
endowed with the norm
lull = sup |u] + 2L, sup [eD%u(t)].
tel tel

Define the mapping F': X — X by

(F )(t) o(t) + F(la fo (t—s)* 1Fﬁ(s u)ds
t

+wi(t) [5s5 Jo (0 — 8)* 1 FO(s, ) (1= 8)* P (s, u)ds]
—i—wg(t)[ f( —5) LFB (s, ud8+ = 7) fo — 5)* T B (s, u)ds]
where
FP(s,u) = f(s,u(s),cD"u(s),cDu(s), ...,cD"u(s)).
Put
O =t e (b4 o) (R + 28
I'(a+1) (177) ) F(Sb—'y 2 F(a-i-;) F(oz—'yz-l)
+W(bl77 T FZ(g—’Y))(F(aEi-l) + F(a—%y+1))
and

= 2? | T 7D
&0 [(bl + ( )>(FZ();T1) + Ff;zoiyi:l))

(bm + 1112(727 77))(r(31+1) + r<af’i+1>)} > i1 TR
=0 [(bm + bz(n W))(1‘(abir1) + r(af?m)

(bl + T 277)>(rl();n+1) + r?iﬁjn)} 2 ﬁ

We denote by A, the set of all functions v : R x R — R satisfying the following condition:

(v1) v(0,2) <0 for all z € R.
Now, we are ready to state and prove main result of this section.

Theorem 3.5. Assume that there exist § € & and v € A, for all u,v € X and t € [0,1] with
v(u(t),v(t)) <0 and u # v,

P00 = P00 < g0 = ol ) = ()
+  |eDPru(t) — eDPru(t)]| + |eDP2u(t) — eDP2u(t)| + ... + |eDPru(t) — CDB"U(t)|).

Also the following conditions hold:

(i) v((Fz)@), (Fy)(t)) < v((z)@), (y)(¢)) for all 2,y € X and t € [0, 1],

(it) Let {x,} be an sequence in X such that v(x,(t), z,11(t)) <0 for alln € N and t € [0, 1] with
xp(t) = z(t) as n — oo, then v(z,(t),z(t)) <0 hold for alln € N and t € [0, 1].

Then the problem with boundary values has a solution.
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Proof . We define a binary relation L (in X) by z(¢) Ly(t) < v(z(t),y(t)) < 0 for all ¢ € [0, 1].
Clearly, by putting zo = 0, (X, L) is an O-set. Let xLly. So v(x,y) < 0. Hence, from (i) we have,
V(F2)(t), (Fy)(H) < v{(@)(), ()(1) < 0. e, (Fa)(t)L(Fy)(t). That is F is an 1 —preserving
self-mapping. Let {z,} be an O—sequence in X with x,(t) = x(t) as n — oo for all £ € [0,1]. Then
V(2 (t), xpe1(t)) <0 for all n € N and ¢ € [0, 1]. Therefore, from (ii), we have v(z,(t), z(t)) < 0 for
alln € Nand t € [0,1]. i.e., z,(t)Lz(t) for all n € N and ¢t € [0,1]. Let v(u(t),v(t)) <0 and u # v.
Then we have,

1

(PO = FOO = | [ =9 (s = P

+ wi(t) [Fl();) /On(n — ) N (F(s,u) — F(s,v))ds
b2 ! — ) N FP (s, u) — FP(s,v)ds

o [ P s - s as

+ wQ(t)[Fl()IOé)/o (1—s)*" Y (FP(s,u) — F’(s,v)ds
bg ! DV

+ 11(06_7>/0(1—5)“ v (Fﬁ(s,u)—Fﬁ(s,v))ds}

L t —8)* P (s,u) — FP(s,v)|ds
< [ @ ) = s fa
+ )| s [ =0 F ) = s ol

b ! — 8)* T FP(s,u) — FP(s,v)|ds
ot e 9 s - s i
+ wg(t)[rl();)/o (1—s)* ! FP(s,u) — FP(s,v)|ds

b2 ! _Sa—'y—l ﬁSU— BSU S
ot [ e P s - P
1 1 t -
ma el [ =9
(1uts) -

+  |eDPru(s) — CDB"U(S>|>d8

IN

(5)| + |eDPu(s) — eD%o(s)| + |eDP2u(s) — eDP2u(s)| + ...

bl s ool [ -

(|u(s) —v(s)| + [eDP u(s) — eDPu(s)| + |eDP2u(s) — eDu(s)| + ...

4+ |eDPru(s) — CDB"’U(S)OdS
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+

IN

_|_

bQ 1 K a—y—1
g = [ =)

(|u(s) —v(s)| 4 |eDPu(s) — eD*o(s)| 4 |eD™u(s) — eD™2v(s)| + ...

lcDPru(s) — cD’B"v(s)\)ds]

) g o) =9

(|u(s) —v(s)| + |eDPu(s) — eDPu(s)| + [eDPu(s) — ecD2u(s)| + ...

leDPru(s) — CDB“U(S)\) ds

by 1 /1 o
O(lu — v 1—s)*7"
et [ -9

(|u(s) —v(s)| 4 |eDPu(s) — eDo(s)| 4 |eDu(s) — eD™2v(s)| + ...

leDPru(s) — cDﬁnv(s)\)ds]

O(llu —vlllu—ol [ 1 [ a-1
00, {F(Oé)/o(t_S) ds

0 [rl();) /01(1 — ) lds + % /01(1 - 5)a71d8]]
ol = ol [ L2 s ) L + s 2
wa(t) [rlg;)é i P(ab2— ") a i 7}}

(]l ;;'fyg — ol [F(Oi iy tenlt) [F(I;ﬂfl) F(o?i?av_l D)
abi RE _bQ%L 1)]]

Since, 0 <t <1, then wy(t) < == (b1 + F(é’—iv) and wy(t) < == (bin? + 222). So we get,

[(Fu)(t) — (Fo)(@)] <

1
R(n) )

O(llu = vDllw =ff ;1

G0, TasD " EW
b27]a7'y 2

691

+ ) + (b1?72 +

1
Ma=~v+1)"  R(n)
Q10([Ju — o) lu — vl
0 4y '
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Also we have,

cDP (Fu)(t) — cD" (Fv)(t)‘

t—(t_s)_ﬁi u) (s)ds — s v)'(s)ds
/0 F(l—ﬁi)(F el /0 F(l—ﬂi)(F )

[ (06 + iy [ P e

Paknazar

Bi)
wi(s) [Fl();> /On(n — 1) PP (r w)dr + F(abQ_ 2 /On(n — )RR (g, u)dr]
we(s b 1 — )RR (1 w)dT b 1 — ) EB () dr) ) ds
s [ 0= P+ gt [ ) )a

/i“_s);( )+ oy | -

I'(1
n
{bl —TalFﬁTUdT
[(a) Jo

n

(n — 1) 7 FA (7, U)dT}

7) 0
wh b1 1 — 1) A (1 v)dr —b2 1 — )T B v)dr S
2<>[F(a/0<1 Y A A T )T
RS
)51) Fa—l 5—7'0‘ YWES(1,u) — FP(r,v)|dr
%@ﬂrmyénﬁ—ﬂ“WFWTw FA(7,v)|dr
L ! — A\ UEB (- W) — FP(r. v)ldr
fat [ o= ) - P olar)
wg(s){rlg;)/o (1 —7)YFP(r,u) — FP(r,v)|dr
b 1 — 1) YFB (1 w)) — FP(r,v)|dr S
ot | =P ) - Pl )
O(Jlu —v[)lu—wvl| [*(t—s)" 1 ’ a1
Q1+ Qs o D(1—=25) (F(oz—l)/o(s_T) dr

/ bl K a—1 b2 ! a—y—1 T
wl(s>[F(a)/0 (U_T> dT+F<a_7)A (77_7—) d}

w(s) [% /0 W e (abQ_ 5 /0 - T)O‘_'Y_ldﬂ)ds

O(flu —vl)llu— vl [*(t—s)F 1 o b,
O+ oru—@>( 9l
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and so

cDPi(Fu)(t) — cDP (FU)(t)‘

d((lu—v[Dllu—v]| i ot
S oo, al'(1 m)r(a ) fo “Pistds + ¢ T(-5) [r(a+1)77
e =) ’wl(s)ds
1 b )
+ -5y [F(alﬂ) (a— v+1 } fo “iw (S)d8>
_ S(lu—v|Dllu—v| i oy b
= T o+ al'(1 BZ)F (a—1) fo “Pisds + r(1 1) [F(ah—l)n

b a—

T ] fo —s) [ (bl + s 7)) (bl +r ))}dé’

1 b 2
-5y [F(alﬂ) (a— 7+1 } fo [R(n <b177 + (3 7)> R(n) (b177+ (2 y))s]d‘s)

d(lu—v|Dllu—vl| —Bi g b a
< T o Yy o 1) o1 ds + §= 52)[ (oiu)??

b a—y _ —Bi —Bi
+1“(a1—2~,+1)77b ][R(n (lzl + F(3 7 fo (1 bs Vsds bl + 7 2 T2—) fo ds]
+F(1—6¢)[ (o) T Taz 27+1)M (bm + r2(g fo )~%ds

1

(b177 + b2;’ J) fo Bzgds])

Now since, B(a, b) fo (1 = &)blde = —+$)7 we get,

leDPi(Fu)(t) — cDPi(Fo)(t)]

S(lu—vDllu—vl| I(a+1) b
S Q1409 aF(a 1) ( ,314’2) + [F(ail)n

(67

b a— 1 b
TG 7}b[R(m =) (01 F ) - ~ more (1 et
+es + fes ) [R(n>r(2—m> <b177 + ra)

2 b R
— mra T (0 + B8]

_ 0(lu—v|Pllu—v| Flat1) 2 a—
= T o of(a—D)(a—Fit2) T BTGB (bl + ( ))(r(a+1)77 + T 7+1)77 ")

1 b
_Rm)rl(z—ﬁi)(bl + r(zbiv )S (‘”i)n + (abm)” )
2
+R(n)F(2—Bi)(b177 + FQ(g—v))(F(a:—l) + r(a_27+1))

2 bont—Y b b
— =g (0 + Fay) (red + rarn)

_ S(lu—v|Dllu—v| [(a+1) -
=T o (aF(a—l)F(a—ﬁm) ) {(ler ) (e + ™)

b Y 1
—(bin + 2(2 ) (e + s 7+1))} TG—5,)

+ 17 {(bﬂ’/ + b2(737 ’y’y))( (a+1) + T'(a— ’y+1))

a— 1
—(b1 + 7 T(2— '7))( (a+1)77 + T 7+1)n 7)] r(2—6¢))
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which implies,

Z |CDB1(FU)(15) _ CDBi(FU)(tH < QQ(S(HU - UH)HU — 'UH '
Py Qy +
Therefore,
Qué([lu—v|lu=vl| | Q28(lu—v|)]u—v]|
[Fu— Fol| < == 20— + =g 1q,
_ (@+2)0(Jlu—v|)[lu—v]
Q14+Q2

= 0([[u = vl = ol].
Hence all conditions of Corollary[2.9/hold and F has a fixed point, which is the solution of problem

B1). O
If in Theorem we take by = 0 and a; = ay = by = 1 then we deduce the following Corollary.

Corollary 3.6. Assume that there exist 6 € & and v € A, for all u,v € X and t € [0,1] with
v(u(t),v(t)) <0 and u # v,

|[F2(tu) — FP(t,v)] < 5(|IU-UH)(!U(t)—v(t)I

O+ Q
+  |eDPru(t) — eDPru(t)] + |eDP2u(t) — eDP2u(t)] + ... + |eDPru(t) — CDB”U(t)|).

Also the following condition hold:
(i) v((Fz)(t), (Fy)@)) < v((z)@®), (y)(¢)) for all z,y € X and t € [0,1],

(it) Let {x,} be an sequence in X such that v(x,(t),z,11(t)) <0 for alln € N and t € [0, 1] with
xn(t) = x(t) as n — oo, then v(x,(t), z(t)) < 0 hold for alln € N and t € [0, 1].

Then the problem with boundary values

u(0) + eDu(0) = [ gols, u(s))ds,
cDVu(l) = fol g1(s,u(s))ds
eDuln) = J! ga(s, u(s))ds

has a solution.

If in Corollary [3.6| we take 6(t) = 1+rt(t > 0) then we deduce the following Corollary.

Corollary 3.7. Assume that there exists v € A, for all u,v € X and t € [0, 1] with v(u(t),v(t)) <0
and u # v,

1
(1 + Q) (1 4 [Ju —v]])

(1, 0) — F7(1,0)] < (1ut0 )
+  |eDP*u(t) — eDPro(t)| 4 |eDP2u(t) — eD2v(t)| + ... + |eDPru(t) — CDB"v(t)|).

Also the following condition hold:
(i) v((Fz)(@), (Fy)(t)) < v((@)@), (y)(¢)) for all z,y € X and t € [0,1],
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(it) Let {x,} be an sequence in X such that v(x,(t), z,11(t)) <0 for alln € N and t € [0, 1] with
Ty (t) = 2(t) as n — oo, then v(x,(t), 2(t)) < 0 hold for alln € N and t € [0, 1].

Then the problem with boundary values
u(0) + cD"u(0) = fol go(s,u(s))ds,

cDVu(l) = foi g1(s,u(s))ds
cDYu(n) = [y g2(s, uls))ds

has a solution.
If in Corollary we take d(t) = k where 0 < k < 1 then we deduce the following Corollary.

Corollary 3.8. Assume that there exist 0 < k < 1 and v € A, for all u,v € X and t € [0, 1] with
v(u(t),v(t)) <0 and u # v,

|FP(t,u) — FP(t,v)] < Ql‘]T‘QZ (\u(t) —v(t)]
4+ |eD%u(t) — eDPo(t)| 4 |eDP2u(t) — eD2u(t)| + ... + |eDPru(t) — cDﬂ”v(t)\).

Also the following condition hold:

(i) v((Fz)@), (Fy)(t)) < v((z)@), (y)(¢)) for all 2,y € X and t € [0, 1],

(it) Let {z,} be an sequence in X such that v(x,(t), z,11(t)) <0 for alln € N and t € [0, 1] with
z,(t) = x(t) as n — oo, then v(x,(t),z(t)) <0 hold for alln € N and t € [0, 1].

Then the problem with boundary values
u(0) +eD7u(0) = [ go(s, uls))ds,

cDu(l) = foi g1(s,u(s))ds
cDu(n) = [y g2(s, u(s))ds

has a solution.

Similarly we can deduce the following Corollaries.

Corollary 3.9. Assume that there exist § € & and v € A, for all u,v € X and t € [0,1] with
v(u(t),v(t)) <0 and u # v,

1
F(t0) = F(0.0) < g 00 = ol (Ju(®) - o60)
+  |eDPu(t) — eDPo(t)| 4 |eDP2u(t) — eD2u(t)| + ... + |eDPru(t) — cDﬂ"v(t)\).
Also the following condition hold:

(i) v((Fz)@), (Fy)(t)) < v((z)@), (y)(¢)) for all 2,y € X and t € [0, 1],

(it) Let {z,} be an sequence in X such that v(x,(t), z,11(t)) <0 for alln € N and t € [0, 1] with
Zn(t) = x(t) as n — oo, then v(x,(t),z(t)) < 0 hold for alln € N and t € [0, 1].
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Then the problem with boundary values

u(0) = foi go(s,u(s))ds,
u(l) = fol g1(s,u(s))ds
u(n) = [, g2(s,u(s))ds

has a solution.

Corollary 3.10. Assume that there existsv € A, for allu,v € X andt € [0, 1] with v(u(t),v(t)) <0
and u # v,

1
(Q1 + Q) (1 + [Ju—v]|) (|u(t) —u(t)]

+  |eDPu(t) — eDPru(t)| + |eDP2u(t) — eD%u(t)| + ... + |eDPru(t) — CDB"v(t)|).

|FA(t,u) — FP(t,v)| <

Also the following condition hold:

(i) v((Fz)(t), (Fy)(t)) < v((@)(@), (y)(¢)) for all 2,y € X and t € [0, 1],

(it) Let {z,} be an sequence in X such that v(x,(t), z,11(t)) <0 for alln € N and t € [0, 1] with
xn(t) = x(t) as n — oo, then v(x,(t),z(t)) < 0 hold for alln € N and t € [0, 1].

Then the problem with boundary values
u(0) = 2 gos, u(s))ds,

u(l) = foi g1(s,u(s))ds
u(n) = [, g2(s,u(s))ds

has a solution.

Corollary 3.11. Assume that there exist 0 < k <1 and v € A, for all u,v € X and t € [0, 1] with
v(u(t),v(t)) <0 and u # v,

|FA(t,u) — FP(t,v)| < o f_ o (|u(t) —o(t)|
+  |eDPru(t) — eDPru(t)| + |eDP2u(t) — eDP2u(t)| + ... + |eDPru(t) — CDB"U(t)|).

Also the following condition hold:

(i) v((Fz)@), (Fy)(t)) < v((@)@), (y)(¢)) for all 2,y € X and t € [0, 1],

(it) Let {x,} be an sequence in X such that v(x,(t), z,11(t)) <0 for alln € N and t € [0, 1] with
xn(t) = x(t) as n — oo, then v(x,(t),z(t)) < 0 hold for alln € N and t € [0, 1].

Then the problem with boundary values
u(0) = [, gols. u(s))ds,

u(l) = foi g1(s,u(s))ds
u(n) = [, g2(s,u(s))ds

has a solution.
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