
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,929 |
تعداد دریافت فایل اصل مقاله | 7,656,388 |
Hybrid medical image compression using the IKL transform with an efficient encoder | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 757-767 اصل مقاله (467.73 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5126 | ||
نویسندگان | ||
S. Saravanan* ؛ Sujitha Juliet | ||
Department of Computer Science and Engineering, Karunya Institute of Technology and sciences, India. | ||
تاریخ دریافت: 04 اسفند 1399، تاریخ بازنگری: 25 اسفند 1399، تاریخ پذیرش: 23 فروردین 1400 | ||
چکیده | ||
Medical images are generated in a huge number in the research centers and hospitals every day. Working with the medical images and maintain the storage needs an efficient fund and huge storage space. Retaining the quality of the medical image is also very essential. Image compression without losing its quality is the only term to achieve the desired task. Achieving the desired task using the integer Karhunen Loeve transform attains a quality output and also with less storage space. JPEG and JPEG 2000 are also challenging to the integer transform based compression. Resulting the compression quality in terms of peak signal noise ratio, compression ratio is attained. Proposed method of compression is compared with the other efficient algorithms. Thus this proposed method can be used efficiently for the medical image in order to store and retrieve in healthcare industry. | ||
کلیدواژهها | ||
Image Compression؛ IKLT؛ SPIHT | ||
مراجع | ||
[1] A. A. Mohammed and J. A. Hussein, Hybrid transform coding scheme for medical image application, IEEE Int. Symp. Signal Process. Inf. Technol. ISSPIT (2010) 237–240. [2] A. J. Hussain, A. Al-Fayadh and N. Radi, Image compression techniques: A survey in lossless and lossy algorithms, Neurocomput. 300 (2018) 44–69. [3] A. Mofreh, A new lossless medical image compression technique using hybrid prediction model, Signal Process. An Int. J. 10(3) (2016) 20–30. [4] D. Zhang and S. Chen, Fast image compression using matrix K-L transform, Neurocomput. 68(1-4) (2005) 258– 266. [5] I. Blanes and J. Serra-sagrist, Clustered reversible-KLT for progressive lossy-to-lossless 3d image coding *, Data Compression Conf. (2009) 233–242. [6] K. R. Rao and P. C. Yip, The transform and data compression handbook, Transform Data Compression Handbook, 2000. [7] L. Galli and S. Salzo, Lossless hyperspectral compression using KLT, Int. Geosci. Remote Sens. Symp. 1 (2004) 313–316. [8] N. B. Harikrishnan, V. V. Menon, M. S. Nair and G. Narayanan, Comparative evaluation of image compression techniques, Int. Conf. Algorithms, Methodol. Model. Appl. Emerg. Technol. ICAMMAET 2017, vol. -Janua, (2017) 1–4. [9] P. Hao and Q. Shi, Matrix factorizations for reversible integer mapping, IEEE Trans. Signal Process. 49(10) (2001) 2314–2324. [10] P. L. Dragotti, G. Poggi and A. R. P. Ragozini, Compression of multispectral images by three-dimensional SPIHT algorithm, IEEE Trans. Geosci. Remote Sens. 38(1) (2000) 416–428. [11] P. N. Tackie Ammah and E. Owusu, Robust medical image compression based on wavelet transform and vector quantization, Inf. Med. Unlocked, 15 (2019) 100183. [12] P. Waldemar and T. A. Ramstad, Hybrid KLT-SVD image compression, ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., 4 (1997) 2713–2716. [13] R. Smith-Bindman, D. L. Miglioretti and E. B. Larson, Rising use of diagnostic medical imaging in a large integrated health system, Health Aff. 27(6) (2008) 1491–1502, [14] R. M. Thanki and A. Kothari, Hybrid and advanced compression techniques for medical images, Springer International Publishing, 2019. [15] R. Nagendran and A. Vasuki, Hyperspectral image compression using hybrid transform with Different waveletbased transform coding, Int. J. Wavelets, Multiresolution Inf. Process. 17(2) (2019) 1–21. [16] S. A. Wilson and A. A. Farag, Image compression using neural networks, Intell. Eng. Syst. Through Artif. Neural Networks, 5 (1995) 503–508. [17] S. Juliet, E. Blessing and K. Ezra, A novel medical image compression using Ripplet transform, J. Real-Time Image Process. (2016) 401–412. [18] S. S. Bhairannawar and S. Sarkar, Implementation of optimized Karhunen – Loeve transform for image processing applications, J. Real-Time Image Process. 17(2) (2020) 357–370. [19] T. Karthikeyan and C. Thirumoorthi, A hybrid medical image compression techniques for lung cancer, Indian J. Sci. Tech. 9(39) (2016). [20] L. Wang , J. Wu , L. Jiao and G. Shi, 3D Medical image compression based on multiplierless low- complexity rklt and shape-adaptive wavelet transform, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, (2009) 2521-2524. | ||
آمار تعداد مشاهده مقاله: 15,620 تعداد دریافت فایل اصل مقاله: 486 |