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Abstract

The theory of general topology view for continuous mappings is general version and is applied for
topological graph theory. Separation axioms can be regard as tools for distinguishing objects in
information systems. Rough theory is one of map the topology to uncertainty. The aim of this work
is to presented graph, continuity, separation properties and rough set to put a new approaches for
uncertainty. For the introduce of various levels of approximations, we introduce several levels of
continuity and separation axioms on graphs in Gm-closure approximation spaces.
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1. Introduction

Rough sets, presented by author in [10], and introduce the data base property by incomplete and
insufficient information. The notations (lower, upper) approximation (written as appxox-) in rough
theory, hidden information in intelligent probably disintegrated and presented of decision systems.
The closure operator is a tools in many parts of mathematics for example, in algebra theory [2, 4],
topology theory [7, 8] and computer science theory [13, 17]. Several works introduce recently for
example in structural analysis theory [14, 15], in chemistry science [16], and physics science [6]. In
this paper we will put a version for the application of topological graph theory.
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2. Preliminaries

We introduce a review of some preliminaries of rough sets [3, 10, 11] and some preliminaries of
Gm-closure spaces [1, 12, 14, 15, 18].

2.1. Some Preliminaries of Uncertainty

Rough set theory represent as a sub-sets of a universe set in terminology of equivalence classes
(written as equival. clas.) of a partition of universe set. The partition introduce a topological space,
is said to be approx-space and denoted by Ω = (X ,E ) where X is said to be the universe set and
E is an equival. relation [9, 11]. The equival. clas. of E is said to be the granules, elementary sets,
we denote the equival. clas. containing x ∈ X by Ex ⊆ X . In the approx-space, the operators of
the (upper, lower) aprox’s of A ; A ⊆X , then the lower-approx- (resp. the upper-approx-) of X is
define as

L (A) = {x ∈X : Ex ⊆ A } (resp.U (A) = {x ∈X : Ex ∩ A 6= φ })

2.2. Some Preliminaries of Gm-Closure Spaces

Closure operators on digraphs are present and many property on the Gm-closure spaces are
introduce.

Definition 2.1. [14, 15] Let G = (VG, EG) be a direct graph, P (VG) be the all direct subgraphs
of G and ClG : P (VG) → P (VG) such that ClG(VH) ⊆ VG is said to be closure subgraph, where
H = (VH , EH) a subgraph of G and define as:

ClG(VH) = VH ∪ {$ ∈ VG − VH ; (h,$) ∈ EG forall h ∈ VH }

The mapping ClG is said to be direct graph closure operator and (G,FG) is said to be G-closure
space (written as G-cl-space), such that FG is the collection of members of ClG. Clearly ClG(VH) =
∩{VF ;VF ∈ FG and VH ⊆ VF }. The direct graph interior operator IntG : P (VG) → P (VG)
defined as IntG(VH) = VG − ClG(VG − VH), where H ⊆ G¿. Clear that the direct graph interior
operator is the dual of direct graph closure operator. A collection of members of IntG is said to
be interior subgraph of H and written as TG, and have (G,TG) is a topological space. Clearly
IntG(VH) = ∪{VO;VO ∈ TG and VO ⊆ VH }. Furthermore ClG(VH) = VG − IntG(VG − VH). A
subgraph H of Gm-cl-space (G,FG) is said to be closed subgraph if ClG(VH) = VH and it is said to be
open subgraph if its complement is closed subgraph, (i.e., ClG(VG−VH) = VG−VH or IntG(VH) = VH .

Example 2.2. Let G = (VG, EG) be a digraph such that : VG = {$1, $2, $3, $4 },
EG = { ($1, $2), ($1, $3), ($2, $1), ($2, $3), ($3, $3) }.

FG = {VG, φ, {$3 }, {$3, $4 }, {$1, $2, $3 } }
TG = {VG, φ, {$4 }, {$1, $2 }, {$1, $2, $4 } }

If we did not get the ClG-cl-space from step one, we redefine direct graph closure operator as
follow :

Definition 2.3. [14, 15] Let G = (VG, EG) be a direct graph, and ClGm : P (VG) → P (VG) an
operator, so we have :
(a) It is said to be Gm-cl-operator if ClGm = ClG(ClG(ClG....), m-times, where H ⊆ G
(b) It is said to be Gm-topo-cl-operator if ClGm+1 = ClGm for allH ⊆ G.
The space (G,FGm) is said to be Gm-cl-space).
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Figure 1: Graph G in Exam. 2.2.

Table 1: According to Example 2.2, ClG for all subgraph H ⊆ G.

VH ClG(VH) VH ClG(VH)
VG VG {$1, $4 } VG
φ φ {$2, $3 } {$1, $2, $3 }
{$1 } {$1, $2, $3 } {$2, $4 } VG
{$2 } {$1, $2, $3 } {$3, $4 } {$3, $4 }
{$3 } {$3 } {$1, $2, $3 } VG
{$4 } {$3, $4 } {$1, $2, $4 } VG
{$1, $2 } {$1, $2, $3 } {$1, $3, $4 } VG
{$1, $3 } {$1, $2, $3 } {$2, $3, $4 } VG

Example 2.4. Let G = (VG, EG) be a digraph such that : VG = {$1, $2, $3, $4 },
EG = { ($1, $3), ($2, $1), ($2, $3), ($3, $4), ($4, $1) }.

FG = {VG, φ, {$1, $3, $4 } }, TG = {VG, φ, {$2} }

Proposition 2.5. [14] If (G,FGm) is a Gm-cl-space. If H,K ⊆ G ; H ⊆ K ⊆ G, then ClGm(VH) ⊆
ClGm(VK) and IntGm(VH) ⊆ IntGm(VK).

Proposition 2.6. [14] If (G,FGm) is a Gm-cl-space. If H,K ⊆ G, then
(a) ClGm(VH ∪ VK) = ClGm(VH) ∪ ClGm(VK),
(b) IntGm(VH ∩ VK) = IntGm(VH) ∩ IntGm(VK),
(c) ClGm(VH ∩ VK) ⊆ ClGm(VH) ∩ ClGm(VK), and
(d) IntGm(VH) ∪ IntGm(VK) ⊆ IntGm(VH ∪ VK).

Figure 2: Graph G in Exam. 2.4.
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Table 2: According to Example 2.4,ClG and ClG2 for all subgraph H ⊆ G

VH ClG(VH) ClG2(VG) VH ClG(VH) ClG2(VG)
VG VG VG {$1, $4 } {$1, $3, $4 } {$1, $3, $4 }
φ φ φ {$2, $3 } VG VG
{$1 } {$1, $3 } {$1, $3, $4 } {$2, $4 } VG VG
{$2 } {$1, $2, $3 } VG {$3, $4 } {$1, $3, $4 } {$1, $3, $4 }
{$3 } {$3, $4 } {$1, $3, $4 } {$1, $2, $3 } VG VG
{$4 } {$1, $4 } {$1, $3, $4 } {$1, $2, $4 } VG VG
{$1, $2 } {$1, $2, $3 } VG {$1, $3, $4 } {$1, $3, $4 } {$1, $3, $4 }
{$1, $3 } {$1, $3, $4 } {$1, $3, $4 } {$2, $3, $4 } VG VG

In Gm-cl-space (G,FGm) the direct subggraph H ⊆ G is said to be [14]:
(a) Regular open (written as r − osg) if VH = IntGm(ClGm(VH)).
(b) Semi-open (written as s− osg) if VH ⊆ ClGm(IntGm(VH)).
(c) Pre-open (written as p− osg) if VH ⊆ IntGm(ClGm(VH)).
(d)γ-open (written as γ − osg) if VH ⊆ ClGm(IntGm(VH)) ∪ IntGm(ClGm(VH)).
(e) α-open (written as α− osg) if VH ⊆ IntGm(ClGm(IntGm(VH)).
(f) β-open (written as β − osg) if VH ⊆ ClGm(IntGm(ClGmVH)).
The complement of above j−osg is said to be j-closed subgraph (written as j−csg) and the collection
of all j− osg′s of (G,FGm) is written as j−OGm(G) where j = r, s, p, γ, α, β. Also, all of j−OGm(G)

are bigger than TGm and closed under union property where j = r, s, p, γ, α, β. The collection of
all j − csg′s of (G,FGm) is written as j − CGm(G) where j = r, s, p, γ, α, β. The j-closure (resp.
j-interior) of H ⊆ G in a Gm-cl-space (G,FGm) is written as CljGm

(VH) (resp. IntjGm
(VH)) and

defined by

CljGm
(VH) = ∩{VF ;VF isj − csg and VH ⊆ VF }

(resp.IntjGm
(VH) = VG − CljGm

(VG − VH))wherej = r, s, p, γ, α, β.

Proposition 2.7. [14] If (G,FGm) is Gm-cl-space, we have the following statements.
(a) r −OGm(G) ⊆ TGm ⊆ α−OGm(G) ⊆ s−OGm(G) ⊆ γ −OGm(G) ⊆ β −OGm(G),
(b) α−OGm(G) ⊆ p−OGm(G) ⊆ γ −OGm(G).

3. Generalization of Pawlak Approximation Spaces

The approx-space Gm = (G,ClGm) with ClGm on G is Gm-cl-space (G,FGm) ; FGm is the Gm-
cl-space to Gm. So We have:

Definition 3.1. If Gm = (G,ClGm) is an approx-space ; G is a nonempty universe direct graph,
ClGm is define on Gm, and FGm is the Gm-cl-space to Gm. Then Gm = (G,ClGm ,FGm) is said to
be a Gm-cl-approx-space.

We present the definitions of lower (resp. near lower) and upper (resp. near upper) approx’s in
a Gm-cl-approx-space Gm = (G,ClGm ,FGm).

Definition 3.2. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space and H ⊆ G. The lower approx-
(resp. the upper approx-) of H is denoted by L (VH) (resp. U (VH) ) and is defined by

L (VH) = IntGm(VH)(resp.U (VH) = ClGm(VH)).



Rough continuity and rough separation axioms... 12 (2021) No. 2, 769-782 773

Definition 3.3. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space and H ⊆ G. The near lower
approx- ”written as j-lower-approx- (resp. near upper approx- ”written as j-upper-approx-”) of H is
denoted by L j(VH) (resp. U j(VH) ) and is defined by

L j(VH) = IntjGm
(VH)

(resp.U j(VH) = CljGm
(VH)), wherej = r, s, p, γ, α, β.

Proposition 3.4. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space and H ⊆ G, then
L (V (H)) ⊆ L j(V (H)) ⊆ VH ⊆ U j(V (H) ⊆ U (VH), for all j ∈ { s, p, γ, α, β }.
Proof .The proofs are similar for the five cases; So, we will only prove the case j = S: Now,

U (VH) = ClGm(VH)

= ∩{VF ;VF ∈ FGm and VH ⊆ VF }
⊇ ∩{VF ;VF ∈ s− CGm and VH ⊆ VF }sinceFGm ⊆ s− CGm(G)

= ClsGm
(VH) = U s(VH) ⊇ VH (3.1)

L (VH) = IntGm(VH)

= VG − ClGm(VG − VH) ⊆ VG − ClsGm
(VG − VH) since TGm ⊆ s−OGm(G)

= IntsGm
(VH) = L s(VH) ⊆ VH (3.2)

From 3.1) and (3.2) we get
L (VH) ⊆ L s(VH ⊆ VH ⊆ U s(VH ⊆ U (VH) �

Proposition 3.5. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space and H ⊆ G, then the following
holds for j = s, p, γ, α, β.
(a) L (VH) ⊆ L α(VH) ⊆ L s(VH) ⊆ L γ(VH) ⊆ L β(VH),
(b) L α(VH) ⊆ L p(VH) ⊆ L γ(VH).
Proof . By Proposition (3.1), we have L (VH) ⊆ L α(VH). To prove L α(VH) ⊆ L s(VH). Now,
L α(VH) = IntαGm

(VH) = VG − ClαGm
(VG − VH)

⊆ VG − ClsGm
(VG − VH) since αGm(G) ⊆ s−OGm(G). Thus

L α(VH) = IntαGm
(VH) ⊆ IntsGm

(VH) = L s(VH). �

The prove of the other cases are similarly.

4. Rough Continuous Mappings in Gm-Closure Approximation Spaces

The main goal of this part is to give one of the Gm-topological applications that represented by
the concept of rough continuous mappings. This notion has a great importance in the theory of rough
set, since this type of continuity can make different approximation spaces to be related to each others.
The following definition introduces rough continuous mappings between two Gm-cl-approx-space’s.

Definition 4.1. Let G 1
m = (G1, Cl1Gm

,F 1
Gm

) and G 2
m = (G2, Cl2Gm

,F 2
Gm

) be two Gm-cl-approx-
spaces. Then a mapping f : G 1

m → G 2
m is said to be rough continuous if f−1(L2(VH) ⊆ L1(f

−1(VH))
for every subgraph H in G.
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Figure 3: Graphs G1 and G2 in Exam. 4.2.

Example 4.2. Let G 1
m = (G1, Cl1Gm

,F 1
Gm

) and G 2
m = (G2, Cl2Gm

,F 2
Gm

) be two Gm-cl-approx-spaces’s
where :
G1 = (VG1 , EG1);VG1 = {$1, $2, $3 }, EG1 = { ($1, $2), ($1, $3), ($2, $3) },
G2 = (VG2 , EG2);VG2 = {u1, u2, u3 }, EG2 = { (u1, u2), (u1, u3), (u2, u3) }.

F 1
G1

= {VG1 , φ, {$3 }, {$2, $3 } },T 1
G1

= {VG1 , φ, {$1 }, {$1, $2 } } and
F 2
G1

= {VG2 , φ, {u3 }, {u2, u3 } },T 2
G1

= {VG2 , φ, {u1 }, {u1, u2 } }.

Define a mapping f : G 1
m → G 2

m such that f($1) = f($2) = u2, f($3) = u3.
Hence f is rough continuous since f−1(L2(VH) ⊆ L1(f

−1(VH)) for every subgraph H in G 2
1 .

Example 4.3. Let G 1
m = (G1, Cl1Gm

,F 1
Gm

) and G 2
m = (G2, Cl2Gm

,F 2
Gm

) be two Gm-cl-approx-spaces
wheres:
G1 = (VG1 , EG1);VG1 = {$1, $2, $3 }, EG1 = { ($1, $2), ($1, $3), ($2, $3) },
G2 = (VG2 , EG2);VG2 = {u1, u2, u3 }, EG2 = { (u2, u3), (u3, u2) }.

Figure 4: Graphs G1 and G2 given in Exam. 4.3.

F 1
G1

= {VG1 , φ, {$3 }, {$2, $3 } },T 1
G1

= {VG1 , φ, {$1 }, {$1, $2 } } and
F 2
G1

= {VG2 , φ, {u1 }, {u2, u3 } },T 2
G1

= {VG2 , φ, {u1 }, {u2, u3 } }.

Define a mapping f : G 1
m → G 2

m such that f($1) = u1, f($2) = u2, f($3) = u3.
LetH = (VH , EH);VH = {u2, u3 }, EH = { (u2, u3), (u3, u2) } be a subgraph ofG2. Then, f−1(L2(VH) =
f−1({u2, u3 }) = {$2, $3 }, but L1(f

−1(VH)) = L1({$2, $3 }) = φ.
Hence there exists a subgraph H of G2 such that f−1(L2(VH) is not subset of L1(f

−1(VH)). Thus f
is not a rough continuous mapping.
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Definition 4.4. Let G 1
m = (G1, Cl1Gm

,F 1
Gm

) and G 2
m = (G2, Cl2Gm

,F 2
Gm

) be two Gm-cl-approx-
spaces. Then a mapping f : G 1

m → G 2
m is said to be continuous if the inverse image of each open

graph in G2 is open in G1.

Example 4.5. Let G 1
m = (G1, Cl1Gm

,F 1
Gm

) and G 2
m = (G2, Cl2Gm

,F 2
Gm

) be two Gm-cl-approx-spaces:
G1 = (VG1 , EG1);VG1 = {$1, $2, $3 }, EG1 = { ($1, $2), ($1, $3), ($2, $3) },
G2 = (VG2 , EG2);VG2 = {u1, u2, u3 }, EG2 = { (u2, u3), (u3, u2) }.

Figure 5: Graphs G1 and G2 in Exam. 4.5.

F 1
G1

= {VG1 , φ, {$3 }, {$2, $3 } },T 1
G1

= {VG1 , φ, {$1 }, {$1, $2 } } and
F 2
G1

= {VG2 , φ, {u1 }, {u2, u3 } },T 2
G1

= {VG2 , φ, {u1 }, {u2, u3 } }.

Define a mapping f : G 1
m → G 2

m such that f($1) = u2, f($2) = f($3) = u3.
Then f is continuous, since f−1(H) ∈ T 1

G1
for all H ∈ T 2

G1
.

Example 4.6. In example 4.5, a mapping f is not continuous, since
H = (VH , EH);VH = {u2, u3 }, EH = { (u2, u3), (u3, u2) } is an open subgraph in G2 but
f−1(H) = (Vf−1(H), Ef−1(H));Vf−1(H) = {$2, $3 }, Ef−1(H) = { ($2, $3) } is not open in G1.

Theorem 4.7. Let G 1
m = (G1, Cl1Gm

,F 1
Gm

) and G 2
m = (G2, Cl2Gm

,F 2
Gm

) be two Gm-cl-approx-space’s.
Then f : G 1

m → G 2
m is a rough continuous mapping if and only if f is continuous.

Proof . (⇒) Let f be a rough continuous mapping and H ⊆ G2 be an open graph, hence L2(VH) =
IntGm(VH) = VH). Thus f−1(VH) = f−1(L2(VH) ⊆ L1(f

−1(VH)), since f is a rough continuous
mapping.
But L1(f

−1(VH)) = IntGm(f−1(VH)). Then f−1(VH) ⊆ IntGm(f−1(VH)) and hence f−1(VH) =
IntGm(f−1(VH)). Thus f−1(VH) is an open graph in G1.
Therefore f is continuous mapping.
(⇐) Let f be a continuous mapping and H ⊆ G2. Then f−1(L2(VH) ⊆ f−1(VH), since L2(VH) ⊆ VH .
Thus
L1(f

−1(L2(VH))) ⊆ L1(f
−1(VH)) (4.1.1)

But f−1(L2(VH) = f−1(IntGm(VH)) ∈ T 1
G1

, since IntGm(VH) ∈ T 2
Gm

and f is continuous. Hence
f−1(L2(VH)) ⊆ IntGm(f−1(L2(VH)) = L1(f

−1(L2(VH))) and then from (4.1.1) we get f−1(L2(VH)) ⊆
L1(f

−1(L2(VH))) ⊆ L1(f
−1(VH)).

Therefore f is a rough continuous mapping. �
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5. Near Rough Continuous Mappings in Gm-Closure Approximation Spaces

Near rough (written as j-rough) continuous mappings represent different levels of continuity ;
j = r, s, p, γ, α, β. In this section we present thee concepts of j-rough continuous mappings between
two Gm-cl-appro-spaces.

Definition 5.1. Let G 1
m = (G1, Cl1Gm

,F 1
Gm

) and G 2
m = (G2, Cl2Gm

,F 2
Gm

) be two Gm-cl-approx-
spaces. A mapping f : G 1

m → G 2
m is said to be near rough (written as j-rough) continuous for

all j = r, s, p, γ, α, β if f−1(L2(VH) ⊆ L j
1 (f−1(VH)) for every subgraph H in G2

m.

Example 5.2. Let G 1
m = (G1, Cl1Gm

,F 1
Gm

) and G 2
m = (G2, Cl2Gm

,F 2
Gm

) be two Gm-cl-approx-spaces
where:
G1 = (VG1 , EG1);VG1 = {$1, $2, $3, $4 }, EG1 = { ($2, $3), ($3, $4), ($4, $2) },
G2 = (VG2 , EG2);VG2 = {u1, u2, u3, u4 }, EG2 = { (u1, u2), (u1, u3), (u2, u1), (u2, u3), (u4, u3) }.

Figure 6: Graphs G1 and G2 in Exam. 5.2.

F 1
G1

= {VG1 , φ, {$1 }, {$2, $3, $4 } },T 1
G1

= {VG1 , φ, {$1 }, {$2, $3, $4 } } and
F 2
G1

= {VG2 , φ, {u3 }, {u3, u4 }, {u1, u2, u3 } },T 2
G1

= {VG2 , φ, {u4 }, {u1, u2 }, {u1, u2, u3 } }.

Hence p−OG2(G
1) = the power set of vertices of G1.

Define a mapping f : G 1
m → G 2

m such that f($1) = u1, f($2) = u2, f($3) = u3, f($4) = u4.
Thus f is p-rough continuous since f−1(L2(VH) ⊆ L p

1 (f−1(VH)) for every subgraph H in G 2
1 as

illustrated in Table (3)..

Example 5.3. In example (5.1), we get s−OG2(G
1) = {VG1 , φ, {$1 }, {$2, $3, $4 } }.

Let H = (VH , EH);VH = {u1, u2 }, EH = { (u1, u2), (u2, u1) } be a subgraph of G2. Then f−1(L2(VH)) =
f−1({u1, u2 }) = {$1, $2 }, but L s

1 (f−1(VH)) = L s
1 ({$1, $2 }) = {$1 }. Hence there exists a sub-

grap H of G2 such that f−1(L2(VH) is not subset of L s
1 (f−1(VH)). Thus f is not a s-rough continuous

mapping.

Proposition 5.4. The implication between rough continuity and j-rough continuity for all j =
r, s, p, γ, α, β are given by the following diagram.

r-rough continuous
⇓

α-rough continuous ⇒ s-rough continuous
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Table 3: L2(VH), f−1(VH), L p
1 (f−1(VH)) and f−1(L2(VH) for every subgraph H in G 2

1 , where H, G2, L1, L2 and
f are given in Example 5.2.

H ⊆ G2 L2(VH) f−1(VH) L p
1 f
−1(VH) f−1(L2((VH)

VG2 VG2 VG1 VG1 VG1

φ φ φ φ φ
{u1 } φ {$1 } {$1 } φ
{u2 } φ {$2 } {$2 } φ
{u3 } φ {$3 } {$3 } φ
{u4 } {u4 } $4 {$4 } {$4 }
{u1, u2 } {u1, u2 } {$1, $2 } {$1, $2 } {$1, $2 }
{u1, u3 } {φ } {$1, $3 } {$1, $3 } {φ }
{u1, u4 } {u4 } {$1, $4 } {$1, $4 } {$4 }
{u2, u3 } {φ } {$2, $3 } {$2, $3 } {φ }
{u2, u4 } {u4 } {$2, $4 } {$2, $4 } {$4 }
{u3, u4 } {u4 } {$3, $4 } {$3, $4 } {$4 }
{u1, u2, u3 } {u1, u2 } {$1, $2, $3 } {$1, $2, $3 } {$1, $2 }
{u1, u2, u4 } {u1, u2, u4 } {$1, $2, $4 } {$1, $2, $4 } {$1, $2, $4 }
{u1, u3, u4 } {u4 } {$1, $3, $4 } {$1, $3, $4 } {$4 }
{u2, u3, u4 } {u4 } {$2, $3, $4 } {$2, $3, $4 } {$4 }

⇓ ⇓
p-rough continuous ⇒ γ-rough continuous ⇒ β-rough continuous.
Proof . By using Proposition 2.7 and Proposition 3.5, the proof if obvious. �

The implication of the other side of Proposition 5.4 is not true as illustrated by the example:

Example 5.5. In example (5.1), we get α−OG2(G
1) = {VG1 , φ, {$1 }, {$2, $3, $4 } }.

Let H = (VH , EH);VH = {u4 }, EH = φ, be a subgraph of G2. Then f−1(L2(VH)) = f−1({u4 }) =
{$4 }, but L α

1 (f−1(VH)) = L α
1 ({$4 }) = φ. Hence there exists a subgrap H of G2 such that

f−1(L2(VH) is not subset of L α
1 (f−1(VH)). Thus f is not a α-rough continuous mapping, but it is

p-rough continuous.

6. Rough Separation Axioms in Gm-Closure Approximation Spaces

The main goal of this section is to give one of the Gm-topological applications that represented by
the concept of rough separations axioms. Two different objects of the universe can be belong to the
same category and then they are indiscernible in view of the available information which making the
imprecise and uncertainty about data. The main purpose of separation axioms is to make vertices
and graphs of spaces topologically distinguishable that is a very useful in the information systems to
extracting the given data.

Definition 6.1. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. Then Gm is said to be a rough
Gm0 space (written as Gm0-space), if for every two distinct vertices $, u ∈ G, find a subgraph H ⊆ G
; either $ ∈ L (VH), u ∈ VG–L (VH) or u ∈ L (VH), $ ∈ VG–L (VH).
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Theorem 6.2. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. Then Gm is Gm0-space if and only
if U ({$ }) 6= U ({u }) for every two distinct vertices $, u ∈ G.
Proof . (⇒) If Gm = (G,ClGm ,FGm) is a Gm0-space. Then for every two distinct vertices $, u ∈
G find a subgraph H ⊆ G ; $ ∈ L (VH) = IntGm(VH) and u /∈ L (VH) = IntGm(VH). Thus
$ /∈ [IntGm(VH)]c, u ∈ [IntGm(VH)]c and [IntGm(VH)]c is closed graph. Hence $ /∈ ∩{K;VK ⊆
[IntGm(VH)]c, K ∈ FGm , {u } ⊆ H } = ClGm({u }) = U ({u }). Thus $ /∈ U ({u }), but $ ∈
ClGm({$ }) = U ({$ }). Therefore U ({$ }) 6= U ({u }).
(⇐) Let U ({$ }) 6= U ({u }) for every two distinct vertices $, u ∈ G. Then find w ∈ G ; w ∈
U ({$ }) and w /∈ U ({u }). Now, suppose thus $ ∈ U ({u }), then U ({$ }) ⊆ U ({u }), since
$ ∈ U ({$ }) and thus w ∈ U ({u }), which is a contradiction. Hence $ /∈ U ({u }) and then
$ ∈ [U ({u })]c = L ({u }c). But u /∈ [U ({u })]c = L ({u }c), hence for every two distinct vertices
$, u ∈ G find a subgraph H = {u }c of G ; $ ∈ L (VH) = L ({u }c) and u /∈ L (VH) = L ({u }c)
(i.e. u ∈ VG–L (VH)). Therefore Gm = (G,ClGm ,FGm) is a Gm0-space. �

Definition 6.3. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. Then Gm is said to be a rough
Gm1 space (written as Gm1-space), if for every two distinct vertices $, u ∈ G, find two subgraph H
and K of G ; $ ∈ L (VH), u /∈ L (VH) and u ∈ L (VK), $ /∈ L (VK).

Theorem 6.4. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. Then Gm is a Gm1-space if and
only if {$ } = U ({$ }) for every $ ∈ G.
Proof . (⇒) If Gm = (G,ClGm ,FGm) is a Gm1-space. Then for every two distinct vertices $, u ∈ G
there exists two subgraph H and K of G such that $ ∈ L (VH), u /∈ L (VH) and u ∈ L (VK), $ /∈
L (VK). Clearly $ ∈ {u }c and u ∈ {$ }c, thus for all u ∈ {$ }c find a subgraph Ku of G ;
u ∈ L (VKu) = IntGm(VKu) ⊆ {$ }c and thus {$ }c = ∪u∈{$ }cL (VKu) = ∪u∈{$ }cIntGm(VKu).
Hence {$ }c ∈ TGm, that is {$ } ∈ FGm. Thus {$ } = ClGm({$ }) = U ({$ }). Therefore
{$ } = U ({$ }) for every $ ∈ G.
(⇐) Let {$ } = U ({$ }) for every $ ∈ G. Then {$ } ∈ FGm and {$ }c ∈ TGm for every $ ∈ G.
Thus for every two distinct vertices $, u ∈ G, we get $ ∈ {u }c, u /∈ {u }c and u ∈ {$ }c, $ /∈ {$ }c
such that {$ }c, {u }c ∈ TGm. Since L ({$ }c) = {$ }c and L ({u }c) = {u }c, then for every two
distinct vertices $, u ∈ G there exists two subgraphs H = {u }c and K = {$ }c of G such that
$ ∈ L (VH), u /∈ L (VK) and u ∈ L (VK), $ /∈ L (VK). Therefore Gm = (G,ClGm ,FGm) is a
Gm1-space. �

Theorem 6.5. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. If Gm is a Gm1-space and { v } =
L ({ v }) for all $ ∈ G, then for all subgraph H of G, H is an exact graph and TGm is the discrete
topology.
Proof . If Gm = (G,ClGm ,FGm) is a Gm1-space. Then by Theorem (6.2), for all $ ∈ G, {$ } =
U ({$ }) = ClGm({$ }), hence
{$ } ∈ FGmand{$ }c ∈ TGm (6.5.1)
But it is given that for all v ∈ G, {$ } = L ({$ }) = IntGm({$ }). Hence
{$ } ∈ TGm and {$ }c ∈ FGm (6.5.2)
Thus for all $ ∈ G, {$ } is exist graph (i.e. L ({$ }) = {$ } = U ({$ }).
Let H be any subgraph of G, then VH = ∪$∈VH{$ } and VG−VH = ∪u∈VG−VH{u } (6.5.3)
Hence VH , VG−VH ∈ TGm since by (6.5.3) VH and VG−VH are union of open graphs. By taking the
complement of (6.5.3) we get
VG − VH = ∩$∈VH{$ }c and VG − (VG − VH) = VH = ∩u∈VG−VH{u }c.
Then VG − VH , VH ∈ FGm since VG − VH , VH are intersection of closed graphs. Therefore H is an
exact graph for every subgraph H of G and thus TGm is the discrete topology. �
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Definition 6.6. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. Then Gm is said to be a rough
Gm2 space (written as Gm2-space), if for every two distinct vertices $, u ∈ G, there exists two subgraph
H and K of G such that $ ∈ L (VH), u ∈ L (VK) and L (VH) ∩L (VK) = φ.

Remark 6.7. The implication between Gm0-spaces, Gm1-spaces and Gm2-spaces are given in the fol-
lowing diagram.

Gm2 − spaces ⇒ Gm1 − spaces ⇒ Gm0 − spaces.

In general, the converse of Remark 6.7 is not true as an example:

Example 6.8. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-spaces;
G = (VG, EG);VG = {$1, $2, $3 }, EG = { ($2, $3) },
FG1 = {VG, φ, {$1 }, {$3 }, {$1, $3 }, {$2, $3 } },
TG1 = {VG, φ, {$1 }, {$2 }, {$1, $2 }, {$2, $3 } }

Figure 7: Graph G in Exam. 6.8.

7. Near Rough Separation Axioms in Gm-Closure Approximation Spaces

The concepts of near approximation have an important role in separation axioms. By using these
concepts we can construct many several separation axioms. The following definition introduces some
new separation axioms.

Definition 7.1. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. Then for all j = r, s, p, γ, α, β,
Gm is said to be near rough G j

m0 space (written as G j
m0-space), if for every two distinct vertices $, u ∈

G, find a subgraph H ⊆ G ; either $ ∈ L j(VH), u ∈ VG−L j(VH) or u ∈ L j(VH), $ ∈ VG−L j(VH).

Theorem 7.2. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. Then Gm is a G j
m0-space for all

j = s, p, γ, α, β iff U j({$ }) 6= U j({u }) for every two distinct vertices $, u ∈ G.
Proof . For j = β: Now,
(⇒) If Gm = (G,ClGm ,FGm) is a G j

m0-space. Then for every two distinct vertices $, u ∈ G find
a subgraph H ⊆ G ; either ∈ L β(VH) = IntβGm

(VH) and u /∈ Lβ(VH) = IntβGm
(VH). Thus

$ /∈ [IntβGm
(VH)]c, u ∈ [IntβGm

(VH)]c and [IntβGm
(VH)]c ∈ βCGm(G). Hence $ /∈ ∩{K;VK ⊆

[IntβGm
(VH)]c, K ∈ βCGm(G), {u } ⊆ H } = ClβGm

({u }) = U β({u }). Thus v /∈ U β({u }), but

$ ∈ ClβGm
({$ }) = U β({$ }). Therefore U β({$ }) 6= U β({u }).

(⇐) Let U β({$ }) 6= U β({u }) for every two distinct vertices $, u ∈ G. Then find w ∈ G ;
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w ∈ U β({$ }) and w /∈ U β({u }). Now, suppose that $ ∈ U β({u }), then U β({ v }) ⊆ U β({u }),
since $ ∈ U β({ v }), and thus w ∈ U β({u }), which is a contradiction. Hence $ /∈ U β({u })
and then $ ∈ [U β({u })]c = L β({u }c). But u /∈ [U β({u })]c = L β({u }c), hence for every
two distinct vertices $, u ∈ G find a subgraph H = {u }c of G ; v ∈ L β(VH) = L β({u }c) and
u 6/∈ L β(V (H)) = L β({u }c). Therefore Gm = (G,ClGm ,FGm) is a G β

m0-space. �

The proofs of the other cases are similar

Definition 7.3. Let Gm = (G,ClGm ,FGm) be a Gm-cl-approx-space. Then for all j = r, s, p, γ, α, β,
Gm is said to be near rough G j

m1 space (written as G j
m1-space), if for every two distinct vertices

$, u ∈ G, there exists two subgraph H and K of G such that $ ∈ L j(VH), u /∈ L j(VH) and
u ∈ L j(VK), $ /∈ L j(VK).

Theorem 7.4. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. Then Gm is a G j
m1-space for all

j = s, p, γ, α, β iff {$ } = U j({ v }) for every $ ∈ G.
Proof . For j = α: Now,
(⇒) If Gm = (G,ClGm ,FGm) is a G α

m1-space. Then for every two distinct vertices $, u ∈ G find
two subgraph H and K of G ; $ ∈ L α(VH), u /∈ L α(VH) and u ∈ L α(VK), $ /∈ L α(VK). Clearly
α ∈ {u }c and u ∈ { v }c, thus for all u ∈ {$ }c find a subgraph Ku of G ; u ∈ L α(VKu) =
IntαGm

(VKu) ⊆ {$ }c and thus {$ }c = ∪cu∈{$ }L α(VKu) = ∪u∈{$ }cIntαGm
(VKu). Hence {$ }c is an

α-open graph, that is {$ } is an α-closed graph. Thus {$ } = ClαGm
({$ }) = U α({$ }). Therefore

{$ } = U α({$ }) for every $ ∈ G.
(⇐) Let {$ } = U α({ v }) for every $ ∈ G. Then {$ } is an α-closed graph and {$ }c is an α-open
graph for all $ ∈ G. Thus for every two distinct vertices $, u ∈ G, we get $ ∈ {u }c, u /∈ {u }c
and u ∈ {$ }c, $ /∈ {$ }c such that {$ }c, {u }c are α-open graphs. Since L α({$ }c) = {$ }c and
L α({u }c) = {u }c, then for every two distinct vertices $, u ∈ G there exists two subgraph H = {u }c
and K = {$ }c such that $ ∈ L α(V (H)), u /∈ L α(VK) and u ∈ L α(VK), $ /∈ L α(VK). Therefore
Gm = (G,ClGm ,FGm) is a G α

m1-space. �

The proofs of the other cases are similar

Theorem 7.5. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. If Gm is a G j
m1-space and {$ } =

L j({$ }) for all $ ∈ G and j = s, p, γ, α, β, then for every subgraph H of G, H is a j-exact graph
and the family of all j-open graphs is the discrete topology.
Proof . For j = p: Now, let Gm = (G,ClGm ,FGm) be a G P

m1-space. Then by Theorem 7.4, for all
$ ∈ G, {$ } = U p({$ }) = ClpGm

({$ }), hence

{$ } ∈ p− CGm(G) and {$ }c ∈ p−OGm(G) (7.1)

But it is given that for all $ ∈ G, {$ } = L p({$ }) = IntpGm
({$ }). Hence

{$ } ∈ p−OGm(G) and {$ }c ∈ p− CGm(G) (7.2)

Thus for all $ ∈ G, {$ } is a p-exist graph (i.e. L p({$ }) = {$ } = U p({$ })). Let H be any
subgraph of G, then

VH = ∪$∈VH{$ } and V (G)− VH = ∪u∈VG−VH{u } (7.3)

Hence VH , VG − VH ∈ p − OGm(G) since by (7.3) VH and V − G − VH are union of p-open graphs.
By taking the complement of 7.3) we get
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VG − VH = ∩$∈VH{$ }c and VG − (VG − VH) = VH = ∩u∈VG−VH{u }c.
Then VG−VH , VH ∈ p−CGm(G) since VG−VH , VH are intersection of p-closed graphs. Therefore H
is a p-exact graph for every subgraph H of G and thus the family of all p-open graphs is the discrete
topology. �

The proofs of the other cases are similar.

Definition 7.6. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-space. Then for all j = r, s, p, γ, α, β,
Gm is said to be a near rough Gm2 space (written as G j

m2-space), if for every two distinct vertices
$, u ∈ G, there exists two subgraph H and K of G such that $ ∈ L j(VH), u ∈ L j(VK) and
L j(VH) ∩L j(VK) = φ.

Remark 7.7. The implication between G j
m0-spaces, G j

m1-spaces and G j
m2-spaces for all j = r, s, p, γ, α, β

are given in the diagram.

G j
m2-spaces ⇒ G j

m1-spaces ⇒ G j
m0-spaces.

In general, the converse of Remark 7.7 is not true. Example 7.8 illustrated that the converse of
Remark 7.7 is not true if j = p.

Example 7.8. If Gm = (G,ClGm ,FGm) is a Gm-cl-approx-spaces in example 2.2.
FG1 = {VG, φ, {$3 }, {$3, $4 }, {$1, $2, $3 } },TG1 = {VG, φ, {$4 }, {$1, $2 }, {$1, $2, $4 } and
p−OG1(G) = {VG, φ, {$1 }, {$2 }, {$4 }, {$1, $2 }, {$1, $4 }, {$2, $4 }, {$1, $2, $4 },
{$1, $3, $4 }, {$2, $3, $4 } }.
Hence Gm = (G,ClGm ,FGm) is a G P

m0-space, but it is not a G P
m1-space.

Theorem 7.9. The implications between Gmi-spaces and G j
mi-spaces for all i ∈ { 0, 1, 2 } and j ∈

{ r, s, p, γ, α, β } are given by the following diagram.

Gm2-spaces ⇒ Gm1-spaces ⇒ Gm0-spaces.
⇓ ⇓ ⇓

G j
m2-spaces ⇒ G j

m1-spaces ⇒ G j
m0-spaces.

Proof . Using Remark 6.7 (resp. Remark 7.7 ), it is clear that
Gmi-spaces ⇒ Gmi-spaces ⇒ Gmi-spaces.
(resp. G j

mi-spaces ⇒ G j
mi-spaces ⇒ G j

mi-spaces. for all j ∈ { s, p, γ, α, β });
Now, we shall prove that Gm0-spaces⇒ G j

m0-spaces for all j ∈ { s, p, γ, α, β }. Let Gm = (G,ClGm ,FGm)
be a Gm0-space. Then for every two distinct vertices $, u ∈ G find a subgraph H of G ; $ ∈ L (VH) =
IntGm(VH) and u /∈ L (VH) = IntGm(VH). But IntGm(VH) ∈ TGm, then IntGm(VH) is a j-open
graph for all j ∈ { s, p, γ, α, β }. Hence IntGm(VH) = IntjGm(VH) = L j(VH). Thus for every two
distinct vertices $, u ∈ G find a subgraph H of G ; $ ∈ L j(VH) and u /∈ L j(VH). Therefore
Gm = (G,ClGm ,FGm) is a G j

m0-space for all j ∈ { s, p, γ, α, β }.
Similarly we can show that
G j
mi-spaces ⇒ G j

mi-spaces ⇒ G j
mi-spaces. for all j ∈ { s, p, γ, α, β } �

In general, the converse of Theorem 7.9 is not true, as illustrated by the following example.

Example 7.10. Using the same Gm-cl-approx-space Gm = (G,ClGm ,FGm) which is given in example
(7.8), we get
FG1 = {VG, φ, {$3}, {$3, $4}, {$1, $2, $3}},TG1 = {VG, φ, {$4}, {$1, $2}, {$1, $2, $4} and β −
OG1(G) = {VG, φ, {$1 }, {$2}, {$4}, {$1, $2}, {$1, $3}, {$1, $4}, {$2, $3 }, {$2, $4 }, {$3, $4 },
{$1, $2, $3 }, {$1, $2, $4 }, {$1, $3, $4}, {$2, $3, $4}}.
Hence Gm = (G,ClGm ,FGm) is a G β

10-space, but it is not a G10-space.
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Theorem 7.11. The implications between G j
mi-spaces for all i ∈ { 0, 1, 2 } and j ∈ { s, p, γ, α, β } are

given by the following diagram.

G α
mi-spaces ⇒ G S

mi-spaces.
⇓ ⇓

G P
mi-spaces ⇒ G γ

mi-spaces ⇒ G β
mi-spaces.

Proof . Using Proposition 5.4, the proof is similar to Theorem 7.9. �

In general, the converse of Theorem 7.11 is not true, as illustrated by the following example.

Example 7.12. Using the same Gm-cl-approx-space Gm = (G,ClGm ,FGm) which is given in example
7.8, we get
s−OG1(G) = {VG, φ, {$4 }, {$1, $2 }, {$3, $4 }, {$1, $2, $3 }, {$1, $2, $4 } },
β −OG1(G) = {VG, φ, {$1 }, {$2 }, {$4 }, {$1, $2 }, {$1, $3 }, {$1, $4 }, {$2, $3 }, {$2, $4 },
{$3, $4 }, {$1, $2, $3 }, {$1, $2, $4 }, {$1, $3, $4 }, {$2, $3, $4 }}.
Hence Gm = (G,ClGm ,FGm) is a G β

10-space, but it is not a G10-space.

8. Conclusions

The continuity in the Gm-cl-approx-spaces is useful, since it connected two different Gm-cl-approx-
spaces and this helps to make a comparison between the Gm-cl-approx-spaces. Also, the separation
axioms which introduce in this paper considered as tools for separate the vertices under certain
condition.
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