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Abstract

In this paper, we are concerned with a class of fractional integral inequalities of Gronwall type. New
integral results with some generalizations are proved. Then, some applications on hybrid differential
equations with Hadamard derivative are established.
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1. Introduction

Gronwall inequality, or Gronwall-Bellman inequality as it is named in different works, is an in-
equality that has been used in studying differential and integral equations. Some types of these
inequalities have been used for showing that a small perturbation in the order of differential equa-
tions causes only a small perturbation in their solutions, some others have been used to prove the
uniqueness of solutions of systems of differential equations. Also, we find applications of these type
of inequalities in finding approximations to solutions of differential equations. For more information,
we refer the reader to [4, 10, 14, 17].

Hybrid differential equations of fractional order have attracted the interest of many mathemati-
cians, like for instance [2, 3, 8, 11, 18]. They are the result of some perturbation techniques applied
to a certain type of nonlinear differential equation that was hard to solve as it is.

In this paper, we are concerned with a class of nonlinear inequalities of Gronwall-Bellman type.
The proposed main results generalize some interesting results in the papers [5] and [15]. Our results
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have some relationship with the good paper [16]. Also, our proposed integral results can be used
as an effective tool to study linear and/or nonlinear fractional differential equations and fractional
integro-differential equations. So in this sense, some applications on hybrid fractional differential
equations are also discussed in this paper.

2. Preliminaries

The integral version of the famous Gronwall-Belman inequality states that if a function x for
t ∈ [t0, T ), T ≤ ∞ satisfies

x(t) ≤ h(t) +

∫ t

t0

k(s)x(s)ds, (2.1)

for any continuous function h on [t0, T ), and any positive function k on the same interval, then
we have:

Lemma 2.1. [6] If the above assumptions on (2.1) are valid, then, we have

x(t) ≤ h(t) +

∫ t

t0

h(s)k(s)exp
[ ∫ t

s

k(u)du
]
ds, t ∈ [t0, T ). (2.2)

The following Jensen Lemma is needed in this work.

Lemma 2.2. [15] Let n ∈ N, and let a1, ..., an be nonnegative real numbers. Then, for r > 1,(
n∑
i=1

ai

)r

≤ nr−1

n∑
i=1

ari (2.3)

We are also concerned with the following interesting results:

Lemma 2.3. [15] Let I = [t0, T ) ∈ R, k, b, p ∈ C(I,R+), T ≤ ∞). Suppose that u ∈ C(I, R+), and

u(t) ≤ k(t) +

∫ t

t0

b(s)u(s)ds+

∫ t

t0

p(s)uγ(s)ds, t ∈ I, (2.4)

where 0 ≤ γ < 1. Then, for t ∈ I, we have

u(t) ≤
[
A1−γ(t) + (1− γ)

∫ t

t0

exp

(
(γ − 1)

∫ s

t0

b(σ)dσ

)
p(s)ds

]1/(1−γ) × exp

(∫ t

t0

b(s)ds

)
, (2.5)

where A(t) = max
t0≤s≤t

k(t).

Theorem 2.4. [5] Let u, a, b, hi, (i = 1, ..., n) be real valued nonnegative continuous functions and
there exists a series of positive real numbers p1, p2, ..., pn and u(t) that satisfies the integral inequality

up(t) ≤ a(t) + b(t)

∫ t

0

i=n∑
i=1

hi(s)u
pi(s)ds, (2.6)

for t ∈ R+.
Then

u(t) ≤

{
a(t) + b(t)

∫ t

0

n∑
i=1

hi(s)

(
pi
p
a(s) +

p− pi
p

)
× exp

(∫ t

s

b(σ)
n∑
i=1

pi
p
hi(σ)

)
ds

}1/p

(2.7)

for p ≥ p∗ = max pi, i = 1, ..., n.
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3. Main Results

We propose the following main result that generalizes Theorem 4 of [15]. We have

Theorem 3.1. Let I = [t0, T ], t0 ≥ 1, α > 0, 0 < γ < 1 and a, b, p ∈ C(I,R+). If u ∈ C(I,R+) and

u(t) ≤ a(t) +

∫ t

t0

(log(
t

s
))α−1b(s)u(s)s−1ds+

∫ t

t0

(log(
t

s
))α−1p(s)uγ(s)s−1ds, (3.1)

then, the following two cases are valid:
(i) If α > 1/2, then

u(t) ≤
[
A1−γ

1 (t) + (1− γ)G1

×
∫ t

t0

exp

(
(γ − 1)G1

∫ s

t0

b2(σ)σ−1dσ

)
p2(s)s3γ−4)ds

] 1
2(1−γ)

×t3/2 exp

(
(G1/2)

∫ t

t0

b2(s)s−1ds

)
, t ∈ I,

(3.2)

where A1(t) = max
t0≤s≤t

3s−3a2(s), and G1 = Γ(2α− 1)/9α−1.

(ii) Suppose that α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α. Then, we have

u(t) ≤
[
A1−γ

2 (t) + (1− γ)G2

×
∫ t

t0

pq(s)sq(γ(
p+1
p )−2) exp

(
(γ − 1)G2

∫ s

t0

bq(σ)σ−q(
p−1
p )dσ

)
ds

] 1
q(1−γ)

×t
p+1
p exp

(
(G2/q)

∫ t

t0

bq(σ)σ−q(
p−1
p )dσ

)
,

(3.3)

where A2(t) = max
t0≤s≤t

3q−1s−q(
p+1
p )aq(s), and G2 = 3q−1

(
Γ(p(α−1)+1)

(p+1)p(α−1)+1

) q
p
.

Proof . Let t ∈ I. We have:

u(t) ≤ a(t) +

∫ t

t0

(log(
t

s
))α−1b(s)s−2su(s)ds+

∫ t

t0

(log(
t

s
))α−1p(s)s−2suγ(s)ds (3.4)

(i) Applying Cauchy-Schwartz inequality, we get:

u(t) ≤ a(t) +
(∫ t

t0

(log(
t

s
))2(α−1)s2ds

)1/2(∫ t

t0

b2(s)s−4u2(s)ds
)1/2

+
(∫ t

t0

(log(
t

s
))2(α−1)s2ds

)1/2(∫ t

t0

p2(s)s−4u2γ(s))ds
)1/2

≤ a(t) +
(3t3Γ(2α− 1)

9α

)1/2(∫ t

t0

b2(s)s−4u2(s)ds
)1/2

+
(3t3Γ(2α− 1)

9α

)1/2(∫ t

t0

p2(s)s−4u2γ(s))ds
)1/2

(3.5)
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where α > 1/2.
Using Lemma 2.2 for r = 2, the above inequality becomes

u2(t) ≤ 3a2(t) +

(
t3Γ(2α− 1)

9α−1

)(∫ t

t0

b2(s)s−4u2(s)ds

)

+

(
t3Γ(2α− 1)

9α−1

)(∫ t

t0

p2(s)s−4u2γ(s))ds

) (3.6)

Let us introduce the function w(t) := [u2(t)t−3]. Then, (3.6) gives:

w(t) ≤ A1(t) +G1

(∫ t

t0

b2s−1(s)w(s)ds

)
+G1

(∫ t

t0

p2(s)s3γ−4wγ(s))ds

)
(3.7)

Since A1(t) is nondecreasing, then by Lemma 2.3, it yields that:

w(t) ≤
[
A1−γ

1 (t) + (1− γ)G1

×
∫ t

t0

p2s3γ−4(s) exp

(
(γ − 1)G1

∫ s

t0

b2(σ)σ−1dσ

)
ds
]1/(1−γ)

× exp

(
G1

∫ t

t0

b2(s)s−1ds

)
,

(3.8)

Replacing w by its quantity, we get (3.2).
(ii) Taking α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α , then we get (1/p) + (1/q) = 1.

Thanks to Holder inequality, we obtain

u(t) ≤ a(t) +

(∫ t

t0

(
log

t

s

)p(α−1)

spds

) 1
p (∫ t

t0

bq(s)uq(s)s−2qds

) 1
q

+

(∫ t

t0

(
log

t

s

)p(α−1)

spds

) 1
p (∫ t

t0

pq(s)uqγ(s)s−2qds

) 1
q

.

(3.9)

Consequently,

u(t) ≤ a(t) +

(
tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

) 1
p
(∫ t

t0

bq(s)uq(s)s−2qds

) 1
q

+

(
tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

) 1
p
(∫ t

t0

pq(s)uqγ(s)s−2qds

) 1
q

(3.10)

Using Lemma 2.2 with r = q, we can write

uq(t) ≤ 3q−1aq(t) + 3q−1

(
tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

) q
p

×
(∫ t

t0

bq(s)uq(s)s−2qds+

∫ t

t0

pq(s)uqγ(s)s−2qds

)
.

(3.11)
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Considering the function w(t) := (u(t)t−(p+1)/p)q, it yields that

w(t) ≤ A2(t) +G2

∫ t

t0

bq(s)s−q(
p−1
p )w(s)ds+G2

∫ t

t0

pq(s)wγ(s)sq(γ(
p+1
p )−2)ds. (3.12)

Thanks to Lemma 2.3, we observe that

w(t) ≤
[
A1−γ

2 (t) + (1− γ)G2

×
∫ t

t0

pq(s)sq(γ(
p+1
p )−2) exp

(
(γ − 1)G2

∫ t

t0

bq(σ)σ−q(
p−1
p )dσ

)
ds

]1/(1−γ)

× exp
(
G2

∫ t
t0
bq(σ)σ−q(

p−1
p )dσ

)
.

(3.13)

By replacing w with its value, we get the inequality (3.3). The proof is thus achieved. �
Example:
Let t0 = 1, T = e, and a(t) = exp(t), b(t) =

√
3t−2, p(t) = t

−3
2
γ. It is obvious that a, b, and p are

in C(I,R+). So, for γ = 1
2

and α = 3
4
, we have:

u(t) ≤ exp(t) +

∫ t

1

(log(
t

s
))

−1
4

√
3s−2u(s)s−1ds+

∫ t

1

(log(
t

s
))

−1
4 s

−3
4 u

1
2 (s)s−1ds, (3.14)

Since, α > 1/2 and thanks to (3.2), we get:

u(t) ≤
[
(3t−3 exp(2t))1/2 +

1

3
exp

(
−
√
π

2
√

3
(t−3 − 1)

)
− 1

3

]−1

×t3/2 exp

(
−
√
π

2
√

3
(t−3 − 1)

)
.

(3.15)

We propose this second main result that generalizes Theorem 2.3 of [5].

Theorem 3.2. Let u, a, ki real nonnegative functions defined on t ∈ [t0, T ] where t0 ≥ 1, δi < 1 for
i = 1, ..., n. If

u(t) ≤ a(t) +

∫ t

t0

(
log

t

s

)α−1 i=n∑
i=1

ki(s)u
δi(s)s−1ds, (3.16)

then, we have the following results:
(i) If α > 1/2, then

u(t) ≤

{
2a2(t) +

6t3

9α
Γ(2α− 1)

∫ t

t0

n∑
i=1

nk2
i (s)s

−4
(
δi2a

2(s) + 1− δi
)

×exp

(∫ t

s

6σ3

9α
Γ(2α− 1)

n∑
i=1

nδik
2
i (σ)(σ)−4dσ

)
ds

}1/2 (3.17)
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(ii)Suppose that α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α. Then, we have

u(t) ≤

{
2q−1aq(t) + 2q−1

(
tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

)q/p
×
∫ t

t0

n∑
i=1

nq−1kqi (s)s
−2q
(
δi2

q−1aq(s) + (1− δi)
)

×exp

(∫ t

s

2q−1

(
σp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

)q/p n∑
i=1

nq−1δik
q
i (σ)σ−2q

)
ds

}1/q

(3.18)

Proof . For t ∈ [t0, T ], we have

u(t) ≤ a(t) +

∫ t

t0

(
log

t

s

)α−1

s
i=n∑
i=1

ki(s)u
δi(s)s−2ds. (3.19)

(i) Using Cauchy-Shwartz inequality and Lemma 2.2, we can write:

u(t) ≤ a(t) +

(∫ t

t0

(
log

t

s

)2(α−1)

s2ds

)1/2(∫ t

t0

i=n∑
i=1

nk2
i (s)u

2δi(s)s−4ds

)1/2

. (3.20)

Which becomes

u(t) ≤ a(t) +

(
3t3

9α
Γ(2α− 1)

)1/2
(∫ t

t0

i=n∑
i=1

nk2
i (s)u

2δi(s)s−4ds

)1/2

(3.21)

where α > 1/2.
Thanks to the inequality (3.21) and Lemma 2.2, we get:

u2(t) ≤ 2a2(t) +

(
6t3

9α
Γ(2α− 1)

)(∫ t

t0

i=n∑
i=1

nk2
i (s)s

−4u2δi(s)ds

)
(3.22)

Now, if we put p̃ = 2, p̃i = 2δi, h̃i(t) = nk2
i (t)t

−4, ã(t) = 2a2(t), b̃(t) = 6t3

9α
Γ(2α− 1), the inequality

becomes:

up̃(t) ≤ ã(t) + b̃(t)

(∫ t

t0

i=n∑
i=1

h̃i(s)u
p̃i(s)ds

)
(3.23)

which, thanks to Theorem 2.4, gives

u(t) ≤

{
ã(t) + b̃(t)

∫ t

0

n∑
i=1

h̃i(s) (δiã(s) + 1− δi) ×exp

(∫ t

s

b̃(σ)
n∑
i=1

δih̃i(σ)dσ

)
ds

}1/2

, (3.24)

from which we conclude (3.17).
(ii) Let α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α , then we get (1/p) + (1/q) = 1.
Using Holder inequality and Lemma 2.2, the inequality (3.19) becomes
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u(t) ≤ a(t) +

(∫ t

t0

(
log

t

s

)p(α−1)

spds

)1/p(∫ t

t0

i=n∑
i=1

nq−1kqi (s)u
qδi(s)s−2qds

)1/q

(3.25)

So we get

u(t) ≤ a(t) +

(
tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

)1/p
(∫ t

t0

i=n∑
i=1

nq−1kqi (s)u
qδi(s)s−2qds

)1/q

(3.26)

Thanks to (3.26) and using Lemma 2.2, we obtain

uq(t) ≤ 2q−1aq(t) + 2q−1

(
tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

)q/p(∫ t

t0

i=n∑
i=1

nq−1kqi (s)u
qδi(s)s−2qds

)
(3.27)

If we put p̂ = q, p̂i = qδi, â(t) = 2q−1aq(t), b̂(t) = 2q−1
(

tp+1

(p+1)p(α−1)+1 Γ(p(α− 1) + 1)
)q/p

, ĥi(t) =

nq−1kqi (t)t
−2q, then,

up̂(t) ≤ â(t) + b̂(t)

(∫ t

t0

i=n∑
i=1

ĥi(s)u
p̂i(s)ds

)
. (3.28)

According to Theorem 2.4, we have

u(t) ≤

{
â(t) + b̂(t)

∫ t

0

n∑
i=1

ĥi(s) (δiâ(s) + (1− δi))× exp

(∫ t

s

b̂(σ)
n∑
i=1

δiĥi(σ)

)
ds

}1/q

(3.29)

Therefore, we have (3.18) which completes the proof. �

4. Applications

In this section, we are concerned with the following hybrid differential problem:
HD

α

(
x(t)

f(t, x(t))

)
= g(t, x(t)) + h(t)x(t), 1 ≤ t ≤ T, 0 < α ≤ 1,

HI
1−αx(t)|t=1 = η,

(4.1)

where HD
α is the Hadamard fractional derivative, f ∈ C([1, T ]×R,R\{0}), g ∈ C([1, T ]×R,R),

h ∈ C([1, T ],R), HI
1−α is the Hadamard fractional integral, and η ∈ R.

It is to note that in the case where h is identically zero, the associated problem has been discussed
by B. Ahmed et al., see [1].

The following definitions and lemmas are important for better understanding Hadamard fractional
operators.

Definition 4.1. [9] Let t ∈ R+, and R(α) > 0. The Hadamard fractional integral of order α,
applied to the function y ∈ Lp[a, b], 1 ≤ p < +∞, 0 < a < b <∞, for t ∈ [a, b], is defined as

HI
αy(t) =

1

Γ(α)

∫ t

a

(log
t

τ
)α−1y(τ)

dτ

τ
. (4.2)
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Definition 4.2. [9] Let δ = t d
dt

, R(α) > 0, and n = [α] + 1, where [α] is the integer part of α. The
Hadamard fractional derivative of order α applied to the function y ∈ ACn

δ [a, b], 0 ≤ a < b < ∞, is
defined as

HD
αy(t) =

1

Γ(n− α)
(t
d

dt
)n
∫ t

a

(log
t

τ
)n−α−1y(τ)

dτ

τ
= δn(HI

(n−α)y)(t) (4.3)

where
ACn

δ [a, b] = {y : t ∈ [a, b]→ R such that (δn−1y) ∈ AC[a, b]}. (4.4)

Corollary 4.3. [9] Let R(α) > 0, n = [R(α)] + 1, and 0 < a < b <∞. The equality (HD
αy)(x) = 0

is valid if, and only if,

y(x) =
n∑
j=1

cj(log
x

a
)α−j (4.5)

and the following formula holds:

HI
α(HD

αy(x)) = y(x) +
n∑
j=1

cj(log
x

a
)α−j

where cj ∈ R, j = 1, 2, ..., n, and n− 1 < α < n.

Thanks to [1], the integral equation that is equivalent to (4.1) is given by:

x(t) = f(t, x(t))
( η

Γ(α)
(logt)α−1 +

1

Γ(α)

∫ t

1

(log
t

s
)α−1(g(s, x(s)) + h(s)x(s))

ds

s

)
, t ∈ [1, T ] (4.6)

Introducing the following two hypotheses,
(H.1) For t ∈ [1, T ], there exist a positive constant F, such that |f(t, x(t))| ≤ F .
(H.2) For b(t), p(t) ∈ C([1, T ],R+), 0 < γ < 1, we have |h(t)x(t) + g(t, x(t)| ≤ b(t)|x(t)| +

p(t)|x(t)|γ,
we prove the following theorem.

Theorem 4.4. Suppose that (H.1) and (H.2) are valid. If x(t) is a solution of (4.1), then the
following estimations hold:

(i) Suppose that α > 1/2. Then

|x(t)| ≤
[
Ã1−γ

1 (t) + (1− γ)
G1F

2

Γ2(α)

×
∫ t

1

exp

(
(γ − 1)

(
G1F

2

Γ2(α)

)∫ s

1

b2(σ)σ−1dσ

)
p2(s)s3γ−4ds

] 1
2(1−γ)

×t3/2 exp

((
G1F

2

Γ2(α)

)∫ t

1

b2(s)s−1ds

)
, t ∈ I

(4.7)

where Ã1(t) = max
1≤s≤t

3s−3 η2F 2

Γ2(α)
(logs)2(α−1), and G1 = Γ(2α− 1)/9α−1.
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(ii) Suppose that α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α. Then

|x(t)| ≤
[
Ã1−γ

2 (t) + (1− γ)
G2F

q

Γq(α)

×
∫ t

1

pq(s)sq(γ(
p+1
p )−2) exp

(
(γ − 1)

(
G2F

q

Γq(α)

)∫ s

1

bq(σ)σ−q(
p−1
p )dσ

)
ds

] 1
q(1−γ)

×t
p+1
p exp

((
G2F

q

qΓq(α)

)∫ t

1

bq(σ)σ−q(
p−1
p )dσ

)
(4.8)

where Ã2(t) = max
1≤s≤t

3q−1s−q(
p+1
p ) |η|qF q

Γq(α)
(logs)q(α−1), and G2 = 3q−1

(
Γ(p(α−1)+1)

(p+1)p(α−1)+1

)q/p
.

Proof .
For t ∈ [1, T ], we have:

|x(t)| ≤ |f(t, x(t)|
(
| η

Γ(α)
(logt)α−1|+ 1

Γ(α)

×
∫ t

1

(log
t

s
)α−1|h(t)x(t) + g(s, x(s))|ds

s

)
(4.9)

Thanks to hypothesis (H.1) and (H.2), we get:

|x(t) ≤ F | η

Γ(α)
(logt)α−1|+ F

Γ(α)

×
∫ t

1

(log
t

s
)α−1b(s)|x(s)|+ p(t)|x(t)|γ ds

s

(4.10)

Using Theorem 3.1, we get the desired results. �
Now, let’s consider the following equation:

HD
α

(
x(t)

f(t, x(t))

)
=

i=n∑
i=1

gi(t, x(t)), 1 ≤ t ≤ T, 0 < α ≤ 1,

HI
1−αx(t)|t=1 = η,

(4.11)

where HD
α is the Hadamard fractional derivative, f ∈ C([1, T ] × R,R\{0}), gi ∈ C([1, T ] × R,R)

(i = 1, ..., n), HI
1−α is the Hadamard fractional integral, and η ∈ R.

The equivalent integral representation of (4.11) can be given by:

x(t) = f(t, x(t))
( η

Γ(α)
(logt)α−1 +

1

Γ(α)

∫ t

1

(log
t

s
)α−1

i=n∑
i=1

gi(s, x(s))
ds

s

)
, t ∈ [1, T ]. (4.12)

Introducing the following hypothesis,
(H.3) For i = 1, ...n, ki(t) ∈ C([1, T ],R+), 0 < δi < 1, we have |gi(t, x(t)| ≤ ki(t)|x(t)|δi ,

we present to the reader the following main result.
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Theorem 4.5. Suppose that (H.1) and (H.3) are satisfied.
Then, the following two cases are valid:
(i) If α > 1/2, we have

|x(t)| ≤

{
2Â2(t) +

6t3F 2Γ(2α− 1)

9αΓ2(α)

∫ t

1

n∑
i=1

nk2
i (s)s

−4
(
δi2Â

2(s) + 1− δi
)

×exp

(∫ t

s

6σ3F 2Γ(2α− 1)

9αΓ2(α)

n∑
i=1

nδik
2
i (σ)(σ)−4dσ

)
ds

}1/2

,

(4.13)

where, Â(t) =
(
F |η|

Γ(α)
|(logt)|α−1

)
.

(ii) Suppose that α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α. Then, we have

|x(t)| ≤

{
2q−1Âq(t) + 2q−1

(
F

Γ(α)

)q (
tp+1Γ(p(α− 1) + 1)

(p+ 1)p(α−1)+1

)q/p
×
∫ t

1

n∑
i=1

nq−1kqi (s)s
−2q
(
δi2

q−1Âq(s) + (1− δi)
)

×exp

(∫ t

s

2q−1

(
F

Γ(α)

)q (
σp+1Γ(p(α− 1) + 1)

(p+ 1)p(α−1)+1

)q/p n∑
i=1

nq−1δik
q
i (σ)σ−2q

)
ds

}1/q

.

(4.14)

Proof . Let t ∈ [1, T ]. Then,

|x(t)| ≤ |f(t, x(t))|
( |η|

Γ(α)
|(logt)|α−1 +

1

Γ(α)

∫ t

1

(log
t

s
)α−1

i=n∑
i=1

|gi(s, x(s))|ds
s

)
(4.15)

Thanks to (H.1) and (H.3), we can write:

|x(t)| ≤
(
F
|η|

Γ(α)
|(logt)|α−1 +

F

Γ(α)

∫ t

1

(log
t

s
)α−1

i=n∑
i=1

|ki(s)||xδi(s)|
ds

s

)
(4.16)

Thanks to Theorem 3.2, we achieve the proof of this theorem. �

5. Conclusion

In this paper, we have proved some integral results to certain types of inequalities of Gronwall-
Bellman. Some results on the papers [5, 15] have been generalized to expand their usefulness so
they can accommodate the cases with Hadamard derivative. We have also provided some hybrid
fractional differential equations with Hadamard derivative to show the applicability of our integral
results. We think that these kinds of results can be very useful in resolving fractional differential
equations with the numerical approach and that is another kind of research to be pursued.
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