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Abstract

In this paper, we aim to study the Ulam-Hyers stability and Ulam-Hyers-Rassias stability of the
fuzzy delay differential equation under some suitable conditions by the fixed point technique and
successive approximation method. Moreover, we provide two illustrative examples of application of
our results.
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1. Introduction

The study on fuzzy differential equations (FDEs) has been rapidly advancing in recent years.
FDEs have exited considerable interests in both mathematics and engineering areas. A lot of research
have been published to consider the qualitative theory of fuzzy differential equations (see papers
[13, 14, 12, 15] and therein). Qiu et al.[16, 17] introduced the Lyapunov-like functions stability
theory for fuzzy differential equations in the quotient space of fuzzy numbers. Some sufficient criteria
for the stability, uniformly stability and exponentially stability of the trivial solution of the fuzzy
differential equations were obtained by using the differential inequalities and the comparison principle
for Lyapunov-like functions. In [18], authors solved the initial value problem for fuzzy differential
equations provided that the involved mappings are continuous, of uniformly bounded variation, and
were bounded functions. They established a variety of comparison results for the solutions of fuzzy
differential equations in the quotient space of fuzzy numbers.
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In recent years, the Ulam stability problem of many types of differential equations have been
studied. Especially, Ulam stability of FDEs. Such as Ren [11] studied the Hyers-Ulam stability of
the Hermite fuzzy differential equation associated with the inhomogeneous Hermite fuzzy differential
equation under some suitable conditions. The fixed point method has been successfully used to
study the Ulam stability of fuzzy differential equations by [5, 4, 3]. In [5, 4], Shen considered
the Ulam stability of the first order linear (partial) fuzzy differential equations under generalized
differentiability. In [3], authors studied the Ulam stability of fuzzy differential equations by using the
fixed point technique. Ulam stability of this problem requires various prerequisites under different
types of differentiability.

Motivative by the studies of Allahviranloo et al.[13, 14, 12, 15], Khastan [6], Lupulescu [8], Shen
et al. [5, 4, 3],. . . in the field topic fuzzy differential equations and Ulam stability under uncertain
environment. In this paper, we make a connection between the Ulam stability and fuzzy delay
differential equation. We aim to study the Ulam-Hyers stability problem of the fuzzy delay differential
equations under some suitable conditions, by the fixed point technique and successive approximation
method.

We organize the present work as follows. In Section 2, preliminaries and notations are presented.
In section 3, we establish Ulam-Hyers and Ulam-Hyers-Rassias stability results for fuzzy delay differ-
ential equations via fixed point theory and successive approximation method. Section 4, we provide
two illustrative examples.

2. Preliminaries

In this section, we present some basic definitions, theorems and lemmas, which are require
throughout this paper.

Definition 2.1. (see Diaz and Margolis [2]) A function d : X×X→ [0,+∞) is called a generalized
metric on X if and only if d satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y, z ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 2.2. (see Diaz and Margolis [2]) Let d : X × X → [0,+∞) be a generalized metric on X
and (X, d) is a generalized complete metric space. Assume that T : X → X is a strictly contractive
operator with the Lipschitz constant L < 1. If there exists a nonnegative integer n such that
d
(
T n+1x, T nx

)
<∞ for some x ∈ X, then the followings are true:

(i) the sequece {T nx} converges to a fixed point x∗ of T ;

(ii) x∗ is the unique fixed point of T in

X∗ =
{
y ∈ X | d

(
T nx, y

)
<∞

}
;

(iii) if y ∈ X∗, then we have

d(y, x∗) ≤ 1

1− L
d
(
Ty, y

)
.
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Denote by RF the class of fuzzy sets u : R→ [0, 1] with the following properties: (i) u is normal,
i.e., there exists x0 ∈ R such that u(x0) = 1; (ii) u is fuzzy convex, that is, u(λx + (1 − λ)x) ≥
min{u(x), u(y)} for any x, y ∈ R, u ∈ RF and λ ∈ [0, 1]; (iii) u is upper semi-continuous; (iv)
cl{x ∈ R : u(x) > 0} is compact, where cl denotes the closure of a set.

Usually, the set RF is called the space of fuzzy numbers and it is easy to see that R ⊂ RF. For
α ∈ (0, 1], we denote [u]α = {x ∈ R : u(x) ≥ α} and [u]0 = {x ∈ R : u(x) > 0}. Then it follows from
the conditions (i)-(iv) that the α-level set [u]α is a non-empty compact interval for all α ∈ [0, 1] and
each u ∈ RF. For any u, v ∈ RF and λ ∈ R, the addition u + v and scalar multiplication λu can be
defined, levelwise, by [u+ v]α = [u]α + [v]α and [λu] = λ[u]α for all α ∈ [0, 1].

The supremum metric between u and v is defined by

D : RF × RF → R+ ∪ {0},
D(u, v) = sup

α∈[0,1]
dH
(
[u]α, [v]α

)
= sup

α∈[0,1]
max

{
|uα − vα|, |uα − vα|

}
.

It is easy to see that (RF, D) is a complete metric space. It is well known that the supremum
metric has the properties as follows:

(D1) D(u+ w, v + w) = D(u, v) for any u, v, w ∈ RF;

(D2) D(λu, λv) = λD(u, v) for any λ ∈ R+, u, v ∈ RF;

(D3) D(u+ v, w + e) ≤ D(u,w) +D(v, e) for any u, v, w, e ∈ RF.

Definition 2.3. (see [7])Let u, v ∈ RF. If there exists w ∈ RF such that u = v+w, then w is called
the H-difference of u and v, and it is denoted by u	 v.

Throughout this pape, the symbol ” 	 ” always stands for the H-difference. In general, u 	 v =
u+ (−1)v.

Definition 2.4. (see [7]) Let f : (a, b)→ RF and t0 ∈ (a, b). We say f is generalized differential at
t0, if there exists an element Dg

Hf(t0) ∈ RF, such that

(1) for all h > 0 sufficiently small, there exists f(t0 + h)	 f(t0), f(t0)	 f(t0 − h) and then limits
(in metric D)

lim
h→0

f(t0 + h)	 f(t0)

h
= lim

h→0

f(t0)	 f(t0 − h)

h
= Dg

Hf(t0).

(2) for all h > 0 sufficiently small, there exists f(t0)	 f(t0 + h), f(t0 − h)	 f(t0) and then limits
(in metric D)

lim
h→0

f(t0)	 f(t0 + h)

−h
= lim

h→0

f(t0 − h)	 f(t0)

−h
= Dg

Hf(t0).

Note to that Bede and Gal ([7]) considered four cases in the definition of derivative. In this paper,
we consider only the two first cases of Definition 5 in [7]. In the other cases, the derivative reduces
to a crisp element i.e. Dg

Hf(t0) ∈ R.

Theorem 2.5. (see [7]) Let f : (a, b) → RF and denote [f(t)]α = [fα1 (t), fα2 (t)] for each α ∈ [0, 1],
t ∈ (a, b).
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(i) If f is (1)-differentiable at all t ∈ (a, b), then fα1 (t) and fα2 (t) are differentiable functions and
we have [

Dg
Hf(t)

]α
=
[
(fα1 (t))′, (fα2 (t))′

]
(ii) If f is (2)-differentiable at all t ∈ (a, b), then fα1 (t) and fα2 (t) are differentiable functions and

we have [
Dg
Hf(t)

]α
=
[
(fα2 (t))′, (fα1 (t))′

]
In Theorem 2.5, we see that if f is (1)-differentiable, then it is not (2)-differentiable and vice

versa.

Theorem 2.6. (see [7]) Let f : (a, b) → RF be a differentiable on (a, b) and assume that derivative
Dg
Hf is integrable over (a, b). For each t ∈ (a, b), we have

(i) If f is (1)-differentiable, then

f(t) = f(a) +

∫ t

a

Dg
Hf(s)ds;

(ii) If f is (2)-differentiable, then

f(t) = f(a)	 (−1)

∫ t

a

Dg
Hf(s)ds.

Lemma 2.7. Let φ : J → [0,+∞) be a continuous function. We define the set

X :=
{
x : J → RF |x is continuous function on J

}
equipped with the metric

d(x, y) = inf
{
η ∈ [0,+∞) ∪ {+∞} |D

(
x(t), y(t

)
≤ ηϕ(t), ∀t ∈ J

}
.

Then, (X, d) is a complete generalized metric space.

Proof . The proof of this lemma can found in Shen et al. [3]. �
Let J := [0, T ] (with T > 0) be a compact interval of R. We denote by

C(J,RF) =
{
u |u : J → RF is a countinuous functions on J

}
.

On the space C(J,RF), we consider the supremum metric as follows:

D(u, v) = sup
t∈J

D[u(t), v(t)].

For a non-negative real number σ, we denote by Cσ = C([−σ, 0],RF) and the following metric
(see [8])

Dσ(u, v) = sup
t∈[−σ,0]

D[u(t), v(t)].

In next section, we consider the fuzzy delay differential equation as follows:{
Dg
Hu(t) = f(t, ut), t ∈ J,

u(t) = φ(t), t ∈ [−σ, 0],
(2.1)

where the symbol Dg
H is generalized Hukuhara derivative, the mapping f : J × RF × Cσ → RF is

continuous on J and φ : [−σ, 0]→ R is a continuous function on [−σ, 0].
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Definition 2.8. (see [6, 8]) We say that a mapping u : [−σ, T ] → RF,is continuous function on
[−σ, T ], is solution to the problem (2.1) if u(t) = φ(t) for t ∈ [−σ, 0], u is generalized Hukuhara
differentiable on [0, T ] and Dg

Hu(t) = f(t, ut) for t ∈ J .

Lemma 2.9. (see [6, 8]) Let u : [−σ, T ] → RF be a continuous function on [−σ, T ]. Problem (2.1)
is equivalent to one of the following fuzzy functional integral equations:

u(t) =

{
φ(t), t ∈ [−σ, 0],

φ(0) +
∫ t
0
f(s, us)ds, t ∈ [0, T ].

(2.2)

if u is (1)-differentiable.

u(t) =

{
φ(t), t ∈ [−σ, 0],

φ(0)	 (−1)
∫ t
0
f(s, us)ds, t ∈ [0, T ].

(2.3)

if u is (2)-differentiable.

3. Main results

In this section, we establish Ulam-Hyers-Rassias stability results of the problem 2.1 via the fixed
point technique and Ulam-Hyers stability results of the problem 2.1 by using successive approximation
method.

Definition 3.1. We say that the problem (2.1) is Ulam-Hyers stable if there exists a real number
Kf > 0 such that for ε > 0 and for each v ∈ C1([−σ, T ],RF) to the problem

D
[
Dg
Hv(t), f(t, vt)

]
≤ ε

there exists a solution to the problem (2.1) with

D[v(t), u(t)] ≤ Kfε

for all t ∈ [−σ, T ]. We call Kf a Hyers-Ulam stability constant of (2.1).

Remark 3.2. If u0 = v0, then we say that the problem (2.1) has the Hypers-Ulam stability with
initial condition.

Definition 3.3. We say that the problem (2.1) is Ulam-Hyers-Rassias stable if there exists a real
number Cf > 0 such that for ε > 0 and for each solution v ∈ C1([−σ, T ],RF) to the problem

D
[
Dg
Hv(t), f(t, vt)

]
≤ ϕ(t)

there exists a solution to the problem (2.1) with

D[v(t), u(t)] ≤ Cfϕ(t)

for all t ∈ [−σ, T ]. We call Cf a Hyers-Ulam-Rassias stability constant of (2.1).
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Theorem 3.4. Let f : J → RF → RF be a continuous function on J and the function f satisfies
the following conditions: (i) there exists a constant L > 0 such that D

[
f(t, u), f(t, v)

]
≤ LDσ(u, v)

for each (t, u), (t, v) ∈ J × Cσ; (ii) there exists a constant C > 0 such that 0 < LC < 1. Let
ϕ : J → (0,+∞) be a continuous function and increasing on J with∫ t

0

ϕ(s)ds ≤ Cϕ(t), for each t ∈ J. (3.1)

If a continuously (1)-differentiable function u : [−σ, T ]→ RF satisfies the following inequality

D
[
Dg
Hu(t), f(t, ut)

]
≤ ϕ(t) (3.2)

for any t ∈ J , then there exists a unique (1)-solution ũ : [−σ, T ]→ RF of (2.1) such that ũ(t) = φ(t)
for t ∈ [−σ, 0] and

ũ(t) = φ(0) +

∫ t

0

f(s, ũs)ds

for any t ∈ J and

D
[
u(t), ũ(t)

]
≤ C

1− LC
ϕ(t) (3.3)

for any t ∈ J .

Proof . The general structure of this proof is similar the proof of Theorem 3.5. �

Theorem 3.5. Suppose that f and ϕ satisfy all the conditions as in Theorem 3.4. Let u : [−σ, T ]→
RF be a continuous and the H-difference φ(0)	 (−1)

∫ t
0
f(s, us)ds exists on J for φ ∈ C([−σ, 0],R).

If u is (2)-differentiable and satisfies the inequality (3.2) for any t ∈ J , then there exists a unique
(2)-solution ũ : [−σ, T ]→ RF of (2.1) such that ũ(t) = φ(t) for t ∈ [−σ, 0] and

ũ(t) = φ(0)	 (−1)

∫ t

0

f(s, ũs)ds (3.4)

for any t ∈ J . Moreover, we have

D
[
u(t), ũ(t)

]
≤ C

1− LC
ϕ(t) (3.5)

for any t ∈ J .

Proof . Let us define

X =
{
v : [−σ, T ]→ RF | v(t) = φ(t) for t ∈ [−σ, 0] and v is continuous on J

}
equipped with the metric

d(v, w) = inf
{
C ∈ [0,+∞) ∪ {+∞} |D

[
v(t), w(t)

]
≤ Cϕ(t), ∀t ∈ J

}
.

By Lemma 2.7 in [3], it is easy to see that (X, d) is also a complete generalized metric space.
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Let Q : X→ X be defined by

(
Qv
)
(t) =

{
φ(t), for t ∈ [−σ, 0],

φ(0)	 (−1)
∫ t
0
f(s, vs)ds, for t ∈ [0, T ].

(3.6)

for all v ∈ X. Base on Khastan et.al. by [6], We see that Qv is (2)-differentiable and so Qv ∈ X.
Now, we shall prove that the operator Q is strict contractive on X. For any v, w ∈ X and let

Cv,w ∈ [0,+∞) ∪ {+∞} be a arbitrary constant with d(v, w) ≤ Cv,w, that is, by the definition of d
we have

D
[
v(t), w(t)

]
≤ Cv,wϕ(t) (3.7)

for any t ∈ J . Since f satisfies a Lipschitz condition and by the inequality (3.7), we obtain

D
[(
Qv
)
(t),
(
Qw
)
(t)
]

= D

[
φ(0)	 (−1)

∫ t

0

f(s, vs)ds, φ(0)	 (−1)

∫ t

0

f(s, ws)ds

]
≤
∫ t

0

D
[
f(s, vs), f(s, ws)

]
ds ≤ L

∫ t

0

D
[
vs, ws

]
ds

≤ L

∫ t

0

sup
θ∈[−σ,0]

D
[
v(θ), w(θ)

]
ds+ L

∫ t

0

sup
θ∈[0,s]

D
[
v(θ), w(θ)

]
ds

≤ LCv,w

∫ t

0

sup
θ∈[0,s]

ϕ(θ)ds ≤ CLCv,wϕ(t)

for any t ∈ J . By the definition of d, we have

d
((
Qv
)
(t),
(
Qw
)
(t)
)
≤ CLCv,wϕ(t)

for any t ∈ J . Hence, we can conclude that

d
((
Qv
)
(t),
(
Qw
)
(t)
)
≤ CLd(v, w)

for any t ∈ J . By assumption (ii), we infer that the operator Q is a strict contractive on X.
For arbitrary w̃ ∈ X, there exists a constant 0 < C < +∞ such that

D
[(
Qw̃
)
(t), w̃(t)

]
= D

[
φ(0)	 (−1)

∫ t

0

f(s, w̃s)ds, w̃(t)

]
≤ Cϕ(t)

for any t ∈ J , since f(t, w̃t) and w̃(t) are bounded on J , and mint∈Jϕ(t) > 0. Thus, by definition of
d, we imply that

d
(
Qw̃, w̃

)
≤ C < +∞.

So, by Theorem 2.2, there exists a continuous function ũ on J such that Jnw̃ → ũ as n → +∞ in
the space (X, d) and Jnũ = ũ.

Moreover, we have X =
{
w ∈ X | d

(
w̃, w

)
< +∞

}
.Indeed, for any w ∈ X, there exists a constant

0 < C < + <∞ such that

D
[
w̃(t), w(t)

]
≤ Cϕ(t),
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since w̃ and w are bounded on J and mint∈J ϕ(t) > 0. It follows form the preceding inequality that

d
(
w̃, w

)
< +∞

for all w ∈ X, that is, X =
{
w ∈ X | d

(
w̃, w

)
< +∞

}
By (iii) of Theorem 2.2, we infer that w̃ is a unique fixed point of J in X. It is obvious that w̃ is

a unique fuzzy function in X which satisfies the equality Jw̃ = w̃.
On the other hand, it follows from (3.1) and (3.2) that

D

[
u(t), φ(0)	 (−1)

∫ t

0

f(s, us)ds

]
= D

[
φ(0)	 u(t), (−1)

∫ t

0

f(s, us)ds

]
= D

[ ∫ t

0

Dg
Hu(t), (−1)

∫ t

0

f(s, us)ds

]
≤
∫ t

0

D
[
Dg
Hu(t), f(t, ut)

]
≤
∫ t

0

ϕ(s)ds ≤ Cϕ(t)

for any t ∈ J , which implies that

d
(
u,Qu

)
≤ C. (3.8)

Finally, Theorem 2.2 together with inequation (3.8) implies that

d
(
u, ũ
)
≤ 1

1− LC
d
(
u,Qu

)
≤ C

1− LC
ϕ(t)

for any t ∈ J , which means that inequality (3.5) holds true for all t ∈ J . �

Corollary 3.6. Assume that f : J → RF → RF be a continuous function on J satisfies the following
conditions: (i) there exists a constant L > 0 such that D

[
f(t, u), f(t, v)

]
≤ LDσ(u, v) for each

(t, u), (t, v) ∈ J × Cσ; (ii) there exists a constant C > 0 such that 0 < LT < 1. If a continuously
(1)-differentiable (or (2)-differentiable) function u : [−σ, T ]→ RF satisfies the following inequality

D
[
Dg
Hu(t), f(t, ut)

]
≤ ε (3.9)

for any t ∈ J , then there exists a unique (1)-solution (or (2)-solution ) û : [−σ, T ] → RF of (2.1),
where û is define as in Theorem 3.5. Moreover, we have

D
[
û(t), u(t)

]
≤ T

1− LT
ε (3.10)

for any t ∈ J .

Next, we consider the following inequation

D
[
Dg
Hv(t), f(t, vt)

]
≤ ε for v ∈ RF. (3.11)

Definition 3.7. We say that

(a) A function v ∈ C1([−σ, T ],RF) is a (1)-solution of the problem (3.11) if and only if there exists
a function δ1 ∈ C([−σ, T ],RF) such that
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(i) D[δ1(t), 0̂] ≤ ε for any t ∈ J ;

(ii) Dg
Hv(t) = f(t, vt) + δ1(t) for any t ∈ J .

(b) A function v ∈ C1([−σ, T ],RF) is a (2)-solution of the problem (3.11) if and only if there exists
a function δ2 ∈ C([−σ, T ],RF) such that

(i) D[δ2(t), 0̂] ≤ ε for any t ∈ J ;

(ii) Dg
Hv(t) = f(t, vt) + δ2(t) for any t ∈ J .

Theorem 3.8. Assume that

(i) the function f : J × Cσ → RF is Lipschitz with respect to the second variable, that is, there
exists a non-negative real number L such that

D
[
f(t, u), f(t, v)

]
≤ LDσ(u, v)

for each (t, u), (t, v) ∈ J × Cσ;

(ii) for each ε > 0, if the function v : [−σ, T ]→ RF satisfies

D
[
Dg
Hv(t), f(t, vt)

]
≤ ε

for t ∈ J , then there exists a unique solution u : [−σ, T ] → RF of (2.1) with initial condition
u(0) = v(0) = φ(0) and

D
[
v(t), u(t)

]
≤ eLT−1

L
ε,

for t ∈ [−σ, T ].

Proof . Without loss of generality, in the proof of this theorem, we only consider that the functions
u, v are (2)-differentiable on [−σ, T ] and assume that the Hukuhara differences exist. The proof of
another cases are similar.

By assumption (ii), we have for each ε > 0, let v : [−σ, T ]× RF is a (2)-solution of inequality

D
[
Dg
Hv(t), f(t, vt)

]
≤ ε, for all t ∈ J. (3.12)

Then there exists a function δ2 ∈ C([−σ, T ],RF) such that

D[δ2(t), 0̂] ≤ ε for all t ∈ J. (3.13)

and

Dg
Hv(t) = f(t, vt) + δ2(t), for all t ∈ J. (3.14)

If v(t) satisfies the equation (3.14) then in view of Lemma 2.9 it satisfies equivalent fuzzy delay
integral equation

v(t) =

{
φ(t), t ∈ [−σ, 0],

φ(0)	 (−1)
∫ t
0
f(s, vs)ds	 (−1)

∫ t
0
δ2(s)ds, t ∈ [0, T ].

(3.15)
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Define

u0(t) = v(t) for t ∈ [−σ, T ]

It is easy to see that u0 ∈ C([−σ, T ],RF) and hence (t, x0t ) ∈ J×C([−σ, 0],RF). Further, we construct
a sequence of the continuous functions um(t), m = 1, 2, 3, . . . as follows:

um+1(t) =

{
v(t), for t ∈ [−σ, 0],

v(0)	 (−1)
∫ t
0
f(s, ums )ds, for t ∈ [0, T ].

(3.16)

Hence (t, u0t ) ∈ J × C([−σ, 0],RF), assuming that (t, umt ) ∈ J × C([−σ, 0],RF) and proceeding
recursively, we obtain (t, um+1

t ) ∈ J×C([−σ, 0],RF) for any m = 1, 2, . . .. So, this sequence functions
is well-defined.

Next, we prove that

D
[
um(t), um−1(t)

]
≤ ε

L

(Lt)m

m!
, for all t ∈ J,m = 1, 2, . . . . (3.17)

Using the inequalities (3.13),(3.14) and for all t ∈ J , we have

D
[
u1(t), u0(t)

]
≤
∫ t

0

D
[
f(s, u0s), D

g,2
H v(s)

]
ds ≤

∫ t

0

D[δ2(s), 0̂]ds ≤ tε

for all t ∈ J . Therefore,

D
[
u1(t), u0(t)

]
≤ tε

which proves the inequality (3.17) for m = 1.
Assume that the inequality (3.17) holds for any m = n with n = 1, 2, . . .. We shall prove the

inequality (3.17) holds for m = n + 1 with n = 1, 2, . . .. For any t ∈ J and by assumption (i), we
obtain

D
[
un+1(t), un(t)

]
≤
∫ t

0

D
[
f(s, uns ), f(s, un−1s )

]
ds

≤ L

∫ t

0

Dσ

[
uns , u

n−1
s

]
ds

≤ L

∫ t

0

sup
r∈[−σ,0]

D
[
un(s+ r), un−1(s+ r)

]
ds

≤ L

∫ t

0

sup
θ∈[s−σ,s]

D
[
un(θ), un−1(θ)

]
ds. (3.18)

Since the inequality (3.17) holds for m = n, we have

D
[
un(t), un−1(t)

]
≤ ε

L

(Lt)n

n!
(3.19)

for t ∈ J .
Combining the inequalities (3.18), (3.19), we get

D
[
un+1(t), un(t)

]
≤ ε

L

(Lt)n+1

(n+ 1)!
(3.20)
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for any t ∈ J , that is, the inequality (3.17) holds for m = n + 1. By mathematical induction, the
proof of the inequality (3.17) is completed.

Notice that for t ∈ J and using the inequality (3.17), we obtain

∞∑
m=1

D
[
um(t), un(t)

]
≤ ε

L

∞∑
m=1

(Lt)m

m!
. (3.21)

Hence, the sequence {um(t)} is uniformly convergent on J . It follows that there exists a continuous
function u : J → RF such that

sup
t∈J

D
[
um(t), u(t)

]
→ 0 (3.22)

as m→∞. From assumption (i), we obtain

D
[
f(t, umt ), f(t, ut)

]
≤ LDσ(um, u) ≤ L sup

t∈J
D
[
um(t), u(t)

]
.

Together with (3.22), we deduce that D
[
f(t, umt ), f(t, ut)

]
converges uniformly to 0 as m → ∞ for

any t ∈ J .
Notice also that

D

[ ∫ t

0

f(s, ums )ds,

∫ t

0

f(s, us)ds,

]
≤
∫ t

0

D
[
f(s, ums ), f(s, us)

]
ds

≤ L

∫ t

0

sup
s∈J

D
[
um(s), u(s)

]
ds,

and combine with (3.22), we infer that∫ t

0

f(s, ums )ds→
∫ t

0

f(s, us)ds

as m→∞ for t ∈ J .
For any t ∈ J , letting m→∞ on both sides of

um+1(t) = v(0)	 (−1)

∫ t

0

f(s, ums )ds

we have

u(t) = v(0)	 (−1)

∫ t

0

f(s, us)ds. (3.23)

Therefore, the function u is a (2)-solution of the problem (2.1) on [−σ, T ]. Furthermore, from (3.21)
and (3.23), we have

D
[
v(t), u(t)

]
≤ eLT−1

L
ε,

for t ∈ [−σ, T ]. This proves that (2.1) is Ulam-Hyers stable.
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Finally, we shall prove the uniqueness of the problem (2.1) on [−σ, T ]. Assume that ũ : [−σ, T ]→
RF is a another (2)-solution of the problem (2.1) with the initial conditions v(0). For any t ∈ J , we
have

D
[
u(t), ũ(t)

]
≤
∫ t

0

D
[
f(s, us), f(s, ũs)

]
ds ≤ L

∫ t

0

Dσ

(
us, ũs

)
ds

≤ L

∫ t

0

sup
θ∈[s−σ,s]

D
[
u(θ), ũ(θ)

]
ds.

Put ξ(s) = supθ∈[s−σ,s]D
[
u(θ), ũ(θ)

]
for any s ∈ [0, t], we have

ξ(t) ≤ L

∫ t

0

ξ(s)ds.

Applying Bellman-Gronwall lemma, we obtain ξ(t) = 0 for any t ∈ J . This completes the proof. �

4. Applications

To illustrate the applicability of our main results, we consider the following examples correspond-
ing to the fuzzy version of Malthusian model of population and a tumor growth model.

Now, we shall notice that u(t) is neither the unique nor necessarily the best approximate element
without the initial condition.

Example 4.1. Consider the following fuzzy time-delay Malthusian model

Dg
Hu(t) = u(t− 1), t ∈ [0, 1]. (4.1)

Then v(t) = (−1, 0, 1) ∈ RF for t ∈ [−1, 1] satisfies D
[
Dg
Hv(t), v(t− 1)

]
≤ 1 for t ∈ [0, 1]. Indeed, we

have

D[Dg
Hv(t), v(t− 1)] = sup

α∈[0,1]
dH
(
[Dg

Hv(t)]α, [v(t− 1)]α
)

= sup
α∈[0,1]

max
{
|
(
vα(t)

)′ − vα(t− 1)|; |
(
vα(t)

)′ − vα(t− 1)|
}
≤ 1,

where v(t− 1) = (−1, 0, 1) ∈ RF for t ∈ [0, 1].
In the case u is (1)-differentiable. Using the method of steps, we construct a solution

[u(t)]α =

{
[α− 1, 1− α], for t ∈ [−1, 0],

[α− 1, 1− α](1 + t), for t ∈ [0, 1].

By Theorem 3.8, we have

D[v(t), u(t)] = sup
α∈[0,1]

max
{
|vα(t)− uα(t)|; |vα(t)− uα(t)|

}
= sup

α∈[0,1]
max

{
|(1− α)t|; |(α− 1)t|

}
≤ 1 for any t ∈ [−1, 1].

But we can find a function fuzzy u1(t) defined by

[u1(t)]
α =

{
2
3
[α− 1, 1− α], for t ∈ [−1, 0],

2
3
[α− 1, 1− α](1 + t), for t ∈ [0, 1]
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which is also a solution of (4.1) and it is easy to see that

D[v(t), u1(t)] = sup
α∈[0,1]

max

{
1

3
|(1− α)t|; |1

3
(α− 1)t|

}
≤ 1

3

for any t ∈ [−1, 1]. That is, u1(t) is a better approximation element.
For case u is (2)-differentiable, our calculations are similar as case a above.

Example 4.2. Consider the following fuzzy Ehrlich ascites tumor model

Dg
Hu(t) = ru(t− 1)

(
1− u(t− 1)

)
, ∀t ∈ [0, T ] := J, (4.2)

where r > 0 is the net reproduction of the rate tumor.
Let B be a bounded subset of the Cσ. Assume that Dσ(u, 0̂) ≤ K̃ for any u ∈ B with K̃ > 0.

We choose the constant L = r(1 + 2K̃) > 0 and C ≥ 1 − e−t for all t ∈ J . Let the function
ϕ : J → (0,+∞) defined by ϕ(t) = εet for all t ∈ J .

Assume that the function v : [−σ, T ]→ RF is a continuous and (2)-differentiable on J and satisfies

D
[
Dg
Hv(t), f(t, vt)

)]
≤ εet.

Then there exists a unique u : [−σ, T ]→ RF is a continuous function such that

D
(
v(t), u(t)

)
≤ Cεet

1 + LC

for all t ∈ J .
Indeed, we set f(t, ut) = ru(t− 1)

(
1− u(t− 1)

)
and by Khastan et.al. [6], we have

D[f(t, us), f(t, vs)] = rD
[
u(t− 1)

(
1− u(t− 1), v(t− 1)

(
1− v(t− 1)

]
≤ r
(

1 + sup
α∈[0,1]

|
(
v(t− 1)|+ |u(t− 1)|

))
Dσ(u, v)

≤ r(1 + 2K̃)Dσ(u, v) = LDσ(u, v)

for any t ∈ [−σ, T ], u, v ∈ B.
Moreover, for t ∈ J we can infer that∫ t

0

ϕ(s)ds =

∫ t

0

εesds = εet − ε ≤ Cεet = Cϕ(t)

for any t ∈ J .
We see that the equation (4.2) satisfies all conditions of Theorem 3.8. Therefore, Equations

(4.2) has a Ulam-Hyers-Rassias stability in the sense (2)-differentiable so there exists a unique v :
[−σ, T ]→ RF such that

D
(
v(t), u(t)

)
≤ Cεet

1 + LC

for all t ∈ J .
In particular, if we choose ϕ(t) = ε, then we have

D
(
v(t), u(t)

)
≤ Cε

1 + LC

for all t ∈ J . That is, the equation (4.2) has a Ulam-Hyers stability in the sense (2)-differentiable.
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5. Conlusion

In this paper the Ulam stability and Ulam-Hyers-Rassias stability of the fuzzy functional dif-
ferential equations via the fixed point technique and successive approximation method are studied.
Moreover, we provide two illustrative examples. In future work, we will study Ulam stability problem
of fuzzy delay differential equations in the quotient space of fuzzy numbers, introduced by [17].
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