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Abstract

In this paper, we investigate a shrinking algorithm for finding a solution of split monotone variational
inclusion problem which is also a common fixed point problem of relatively nonexpansive mapping
in uniformly convex real Banach spaces which are also uniformly smooth. The iterative algorithm
employed in this paper is design in such a way that it does not require prior knowledge of operator
norm. We prove a strong convergence result for approximating the solutions of the aforementioned
problems and give applications of our main result to split convex minimization problem. The result
present in this paper extends and complements many related results in literature.
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1. Introduction

The monotone inclusion problem is to find an element x ∈ H such that 0 ∈ B(x), where B : H → 2H

is a multi-valued operator and H is a real Hilbert space. This problem is very important in many
areas such as convex optimization and monotone variational inequalities. It is worth mentioning
that every monotone operator on Hilbert spaces can be regularized into single-valued, nonexpansive,
Lipschitz continuous monotone operator by means of Yosida approximation notion. The inclusion
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problem can also be defined in terms of sum of two monotone operators M and B, where one of
these operators is α-inverse strongly monotone which is 1

α
-Lipschitz continuous.

Let E be a real Banach space with ||.||, with dual space E∗ and 〈f, x〉 the value of f ∈ E∗ at x ∈ E.
Let B : E → 2E

∗
be a maximal monotone operator and f : E → E∗ be an α-inverse strongly

monotone operator. The Monotone Variational Inclusion Problem (MVIP) is find x ∈ E such that

0 ∈ (B + f)x. (1.1)

We denote by (M +B)−1(0) the solution set of (1.1).
Based on a series of studies in the past years, the splitting method has been known to be a popular
method for solving (1.1). The splitting methods for linear equations was introduced by Peaceman
and Rashford [34]. Extensions to nonlinear equations in Hilbert spaces were carried out by Lions
and Mercier [24]. Since then, many authors have considered approximating solutions of variational
inclusion (1.1) using this method, (see [2, 3, 14, 41] and the references contained in).
Recently, Zhang and Jiang [52] proved the following strong convergence theorem for approximating
solutions for a common zero point of the sum of two monotone operators which is also a fixed point
of a family of countable quasi-nonexpansive mapping in the framework of Hilbert spaces as follows:

Theorem 1.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H, A : C → H
be an α-inverse strongly monotone operator and B be a maximal monotone operator on H such that
Dom(B) is included in C. Let {Sn} : C → C be a family of countable quasi-nonexpansive mappings
which are uniformly closed. Assume that Γ := F (Sn)∩ (A+B)−1(0) 6= ∅. Let {rn} be a positive real
number sequence and {αn} be a real number sequence in [0,1). Let {xn} be a sequence of C generated
by 

x1 ∈ C1 = C, chosen arbitrarily;

zn = Jrn(xn − rnAxn);

yn = αnzn + (1− αn)Snzn;

Cn+1 = {z ∈ Cn : ||zn − z|| ≤ ||yn − z|| ≤ ||xn − z||};
xn+1 = PCn+1x1, n ≥ 1;

where Jrn = (I + rnB)−1, lim infn→∞ rn > 0, rn ≤ 2α and lim supn→∞ αn < 1. Then the sequence
{xn} converges strongly to q = PΓx0.

The Split Feasibility Problem (SFP) introduced by Censor and Elfving [12] is to find

x∗ ∈ C such that Ax∗ ∈ Q, (1.2)

where C and Q are nonempty, closed and convex subsets of real Banach spaces E1 and E2 respectively,
and A : E1 → E2 is a bounded linear operator. The SFP arises from phase retrievals and in medical
image reconstruction to mention a few. For more details on SFP, we refer readers to (see[13, 32, 47, 25]
and other references therein). In 2018, Ma et. al. [25] introduced an iterative algorithm to solve
the SFP (1.2) and fixed point problem of quasi-φ-nonexpansive mappings in Banach spaces. They
proved a strong convergence result to a common solution of the aforementioned problems and apply
their result to convexly constrained inverse problem and split null point problem. Motivated by SFP
(1.2), Censor et al. [11] introduced a new class of problem known as the Split Variational Inequality
Problem (SVIP) as follows: Find x∗ ∈ C such that

〈f(x∗), x− x∗〉 ≥ 0,∀ x ∈ C, (1.3)
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and such that y∗ = Ax∗ ∈ Q solves

〈g(y∗), y − y∗〉 ≥ 0, ∀ y ∈ Q, (1.4)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces H1 and H2 respectively,
A : H1 → H2 is a bounded linear operator, f : H1 → H1 and g : H2 → H2 are two given operators.
Based on the work of Censor et al. [11], Moudafi [31] studied and introduced a new type of split
problem called the Split Monotone Variational Inclusion Problem (SMVIP) which is to find

x∗ ∈ H1 such that 0 ∈ f(x∗) + F (x∗), (1.5)

and such that y∗ = Ax∗ ∈ H2 solves

0 ∈ g(y∗) +G(y∗), (1.6)

where F : H1 → 2H1 and G : H2 → 2H2 are multivalued mappings, A : H1 → H2 is a bounded linear
operator, f : H1 → H1 and g : H2 → H2 are single-valued operators.

Remark 1.2. As observed by Moudafi, setting F = NC and G = NQ in SMVIP (1.5)-(1.6), where
NC and NQ are the normal cones of C and Q respectively, then we recover SVIP (1.3)-(1.4). In
summary, SMVIP can be seen as an important generalization of SFP, SVIP, MVIP and other related
problems in the literature.

Recently, Ezeora and Izuchukwu [17] introduced the following iterative algorithm to approximate
solution of the following problem: ∆ := {z ∈ (F + f)−1(0) : Az ∈ Fix(S)} 6= ∅. For arbitrary
x1, u ∈ H1 

un = (1− βn)xn + βnu

yn = PC(un − γnA∗(I − Tγ)Aun)

xn+1 = JMλ (I − λf)yn, n ≥ 1,

(1.7)

where Tγ = γI + (1− γ)S with γ ∈ [µ, 1), {γn} ⊂ [a, b] for some a, b ∈
(

0, 1
||A||2

)
, F : H1 → 2H1 is a

multivalued maximal monotone mapping, f : H1 → H1 is an α-ism and S : H2 → H2 being µ-strictly
pseudocontractive mapping with Tγ being a nonexpansive mapping. They proved that the sequence
{xn} converges strongly to an element of Γ.

Remark 1.3. It is well-known that stepsizes play essential roles in the convergence properties of
iterative methods, since the efficiency of the methods depends heavily on it. When the stepsize depends
on the knowledge of either the operator norm or the coefficient of an operator, it usually slows down
the convergence rate of the method. Moreover, in many practical cases, the operator norm or the
coefficient of a given operator may not be known or may be difficult to estimate, thus, making the
applicability of such method to be questionable. Therefore, iterative methods that does not depend on
any of these, are more applicable in practice. It is easy to see in Algorithm 1.7 that

a, b ∈
(

0,
1

||A||2

)
,

thus this condition makes the iterative algorithm not applicable to real life problems.
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Question: It is natural to ask if we can further generalize problem ∆ := {z ∈ (F + f)−1(0) : Az ∈
Fix(S)} 6= ∅ and makes Algorithm (1.7) more effective and applicable to real life problem.

Motivated by the works of Zhang and Jiang [52], and Ma et al. [25] and Ezeora and Izuchukwu [17],
we introduced a shrinking iterative algorithm for finding zeros of the sum of two maximal monotone
operators which is also a common fixed point of relatively nonexpansive mapping in Banach spaces.
We prove a strong convergence result for approximating solutions of the aforementioned problems
and give applications of our main result to split convex minimization problem. In simple and clear
terms, the proposed method of this paper has the following features:

1. The problem and our iterative algorithm considered in this article generalizes the ones in
[17, 25, 52] and so on.

2. As mentioned above in [17], they considered computing with the help of an operator norm (||A||)
as this gives difficulties in computation. In our article, the stepsize employed is independent
of an operator norm as this yield easy implementation of our algorithm in practice. Also, we
were able to dispense with the compactness condition during the course of obtaining a strong
convergence result.

3. As seen in different algorithms that certain conditions are needed to be imposed on algorithm
before obtaining a strong convergence result, we obtain a strong convergence result by imposing
a very minimal condition.

4. It is crucial to study the SMVIP because of its potential application to mathematical models
whose constraints can be expressed as SMVIP. This happens, in particular, in practical prob-
lems in signal recovery, image processing, and network resource allocation. It is also important
to study the SMVIP because of its generalization on other optimization problems like SFP,
MVIP, SVIP, variational inequality problem and other related problems in literature.

The result present in this paper extends the result of Ma et al. [25], Zhang and Jiang [52] and other
related results in literature.

2. Preliminaries

We give some definitions and important results which will be useful in establishing our main results.
In the sequel, we denote strong and weak convergence by ”→” and ”⇀”, respectively.
Throughout this paper, we assume C to be a nonempty, closed and convex subset of a real Banach
space with norm || · ||, J : E → 2E

∗
be the normalized duality mapping defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2, ∀x ∈ E},
Consider the Lyapunov functional φ : E × E → [0,∞) defined as in [4, 5] by

φ(x, y) = ||x||2 − 2〈x, Jy〉+ ||y||2, ∀x, y ∈ E.
Alber [4] introduced a generalized projection operator ΠC : E → C which is an analogue of the
metric projection defined as follows:

ΠC(x) = argminy∈Cφ(y, x), x ∈ E.
That is, ΠC(x) = x, where x is the unique solution to the minimization problem φ(x, x) = infy∈C φ(y, x).
In real Hilbert space, we observe that ΠC(x) ≡ PC(x) and φ(x, y) = ||x− y||2. It is obvious from the
definition of the functional φ that

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x||+ ||y||)2. (2.1)

Apart from inequality (2.1), the Lyapunov functional φ also satisfy the following inequalities:
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A1. φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉;

A2. 2〈x− y, Jz − Jw〉 = φ(x,w) + φ(y, z)− φ(x, z)− φ(y, w);

A3. φ(x, y) ≤ ||x||||Jx− Jy||+ ||y||||x− y||.

Note: If E is a reflexive, strictly convex, and smooth Banach space, then for x, y ∈ E, φ(x, y) = 0
if and only if x = y, see [46]. We are also concerned with the functional V : E × E∗ → R which is
defined by

V (x, x∗) = ||x||2 − 2〈x, x∗〉+ ||x∗||2 (2.2)

for all x ∈ E and x∗ ∈ E∗. Observe that, V (x, x∗) = φ(x, J−1x∗), if E is a reflexive, strictly convex
and smooth Banach space and

V (x, x∗) ≤ V (x, x∗ + y∗)− 2〈J−1x∗ − x, y∗〉 (2.3)

for all x ∈ E and all x∗, y∗ ∈ E∗, see [38].
Let C be a closed and convex subset of E and T : C → C be a mapping a point x ∈ C is called a
fixed point of T, if x = Tx. We denote the set of fixed points of T by F (T ). A point p ∈ C is called
an asymptotic fixed point of T , if C contains a sequence {xn} such that xn ⇀ p and ||xn−Txn|| → 0

as n→∞. We denote by F̂ ix(T ) the set of asymptotic fixed points of T. A mapping T : C → C is
said to be relatively nonexpansive (see [26]) if the following conditions are satisfied:
(L1) Fix(T ) 6= ∅;
(L2) φ(p, Tx) ≤ φ(p, x), ∀ x ∈ C, p ∈ Fix(T );

(L3) Fix(T ) = F̂ ix(T ).
If T satisfies (L1) and (L2), then T is said to be relatively quasi-nonexpansive. It is easy to see that
the class of relatively quasi- nonexpansive mappings contains the class of relatively nonexpansive
mappings. Many authors have considered the relative quasi-nonexpansive mappings, (see [43, 48]).

Definition 2.1. Let C be a nonempty, closed and convex subset of a real Banach spaces E. A
mapping T : C → C is said to be strongly relatively nonexpansive, see [21] if the following conditions
are satisfied.

1. T is relatively nonexpansive.

2. If {xn} is a bounded sequence in C such that

lim
n→∞

(φ(p, xn)− φ(p, Txn)) = 0,

for some p ∈ Fix(T ), then limn→∞ φ(Txn, xn) = 0.

Definition 2.2. Let X ⊂ E be a nonempty subset. Then a mapping A : X → E∗ is called
(i) monotone on X if

〈Ax− Ay, x− y〉 ≥ 0, ∀ x, y ∈ X;

Below is an example of a monotone operator in quantum mechanics.
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Example 2.3. [41] Let the operator

Au := −b2∆u+ (f(x) + c)u(x) + u(x)

∫
R3

u2(y)

|x− y|
dy,

where ∆ :=
∑3

i=1
∂2

∂x2i
is the Laplacian in R3, b and c are constants, f(x) = f0(x) + f1(x), where

f0(x) ∈ L∞(R3) and f1(x) ∈ L2(R3). Let A := L+B, where the operator L which is the schrödinger
operator is the linear part of A and B defined by the last term. It is known that B is a monotone
operator on L2(R3), (see p. 23 of [6]) which also implies that A : L2(R3)→ L2(R3) is also a monotone
operator.

Definition 2.4. A multi-valued operator B : E → 2E
∗

with domain Dom(B) = {x ∈ E : Bx 6= 0}
and the range R(B) = {Bx : x ∈ D(B)} is said to be monotone if for x, y ∈ D(B), a ∈ Bx, b ∈ By,
the following inequality holds:

〈x− y, a− b〉 ≥ 0.

A monotone operator B is said to be maximal if its graph Gra(B) = {(x, y) : y ∈ Bx} is not properly
contained in the graph of any other monotone operator.
If E is a strictly convex, reflexive and smooth Banach space and B : E → 2E

∗
is a maximal monotone

operator.
For a maximal monotone operator F , the metric resolvent of F of parameter λ > 0, denoted by KF

λ

is the operator, (see [36])

KF
λ := (I + λJ−1F )−1 : E → dom(F ).

The metric resolvent is known to satisfy the following property (see [8]).

〈KF
λ x− p, J(x−KF

λ x)〉 ≥ 0,∀ x ∈ E, p ∈ Fix(KF
λ ).

It is also known that KF
λ is nonexpansive and 0 ∈ Fx if and only if KF

λ x = x, (see [36]).
Also, we know that If E is a smooth, strictly convex and reflexive Banach space, then F is maximal
monotone if and only if R(J + λF ) = E∗ . The resolvent of E with parameter λ > 0, denoted by
LFλ , is the operator

LFλ := (J + λF )−1J : E → dom(F ).

It is clear from [21] that LFλ satisfies the following properties.

1. LFλ : E → dom(F ) is a single-valued mapping.

2. 0 ∈ Fx if and only if LFλ x = x for each λ.

3. LFλ is strongly relatively nonexpansive.

Definition 2.5. A mapping f : E → E∗ is called a single-valued λ-inverse strongly monotone (ism)
(see [20]) if for any x, y ∈ E, there exists λ > 0 such that

〈J−1(Jx− λfx)− J−1(Jx− λfy), fx− fy〉 ≥ 0.

Following [39], the anti-resolvent Afλ : E → E associated with f : E → E∗ and λ > 0 defined as

Afλ := J−1 ◦ (J − λf) : E → E.

It has been shown in [45] that Afλ is strongly relatively nonexpansive. More so, assuming f−1(0) 6= ∅,
it is easy to see that f−1(0) = Fix(AFλ ).
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For a real Banach space E, the modulus of convexity of E is the function δE : [0, 2]→ [0, 1] defined
as

δE(ε) = inf{1− 1

2
||x+ y|| : ||x|| = ||y|| = 1, ||x− y|| ≥ ε}. (2.4)

Recall that E is said to be uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2]. E is said to be strictly

convex if
||x+ y||

2
< 1 for all x, y ∈ E with ||x|| = ||y|| = 1 and x 6= y. Also, E is p-uniformly convex

if there exists a constant cp > 0 such that δE(ε) > cpε
p for any ε ∈ (0, 2].

The modulus of smoothness of E is the function ρE : R+ → R+ defined by

ρE(t) = sup{1

2
(||x+ ty|| − ||x− ty||)− 1 : ||x|| = ||y|| = 1}. (2.5)

E is said to be uniformly smooth if lim
t→0

ρE(t)

t
= 0. Let 1 < q ≤ 2, then E is q-uniformly smooth

if there exists cq > 0 such that ρE(t) ≤ cqt
q for t > 0. It is known that E is p-uniformly convex if

and only if E∗ is q-uniformly smooth, where p−1 + q−1 = 1. It is also known that every q-uniformly
smooth Banach space is uniformly smooth. It is also widely known that if E is uniformly smooth,
then the duality mapping J is norm-to-norm continuous on each bounded subset of E. The following
are some important and useful properties of duality mapping J, for further details, see [46]:

� For every x ∈ E, Jx is nonempty, closed, convex and bounded subset of E∗.

� If E is smooth or E∗ is strictly convex, then J is single valued. Also, If E is reflexive, then J
is onto.

� If E is strictly convex, then J is strictly monotone, that is

〈x− y, Jx− Jy〉 > 0, x 6= y ∀ x, y ∈ E.

� If E is smooth, strictly convex and reflexive and J∗ : E∗ → 2E is the normalized duality
mapping on E∗, then J−1 = J∗, JJ∗ = IE∗ and J∗J = IE, where IE and IE∗ are the identity
mappings on E and E∗ respectively.

� If E is uniformly convex and uniformly smooth, then J is uniformly norm-to-norm continuous
on bounded subsets of E and J∗ = J−1 is also uniformly norm-to-norm continuous on bounded
subsets of E∗.

We now state the following results which will be useful to prove our main result.

Lemma 2.6. [9] Let 1
p

+ 1
q

= 1, for p, q > 1. The space E is q-uniformly smooth if and only if its
dual space E∗ is p-uniformly convex.

Lemma 2.7. [49] Let E be a 2-uniformly smooth Banach space with the best smoothness constant
k > 0. Then, the following inequality holds:

||x+ y||2 ≤ ||x||2 + 2〈y, Jx〉+ 2||ky||2, ∀ x, y ∈ E.

Lemma 2.8. [49] Given a number r > 0, a real Banach space E is uniformly convex if and only if
there exists a continuous strictly increasing function g : [0,∞)→ [0,∞) with g(0) = 0 such that

||λx+ (1− λ)y||2 ≤ λ||x||2 + (1− λ)||y||2 − λ(1− λ)g(||x− y||);

for all x, y ∈ E with ||x|| ≤ r and ||y|| ≤ r and λ ∈ [0, 1].
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Lemma 2.9. [5] Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty
closed convex subset of E. Then, the following conclusions hold:
(i) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀ x ∈ C, y ∈ E.
(ii) If x ∈ E and z ∈ C, then z = ΠCx iff 〈z − y, Jx− Jz〉 ≥ 0, ∀ y ∈ C.
(iii) For x, y ∈ E, φ(x, y) = 0, iff x = y.

Lemma 2.10. [23] Let E be a uniformly convex and smooth Banach space and let {xn}, {yn} be two
sequences of E. If φ(xn, yn)→ 0 and either of {xn} or {yn} is bounded. Then, ||xn − yn|| → 0.

Lemma 2.11. [7] Let E be a real uniformly convex, smooth Banach space. Then, the following
identities hold:
(i) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, ∀ x, y ∈ E;
(ii) φ(x, y) + φ(y, x) = 2〈x− y, Jx− Jy〉, ∀ x, y ∈ E.

Lemma 2.12. [46] Let E be a smooth, strictly convex, and reflexive Banach space. Let C be a
nonempty, closed and convex subset of E and let x1 ∈ E and z ∈ C. Then, the following conclusions
hold:
(i) z = PCx1,
(ii) 〈z − y, J(x1 − z)〉 ≥ 0, ∀ y ∈ C.

Lemma 2.13. [19] Let C be a nonempty, closed and convex subset of a uniformly convex Banach
space E and S : C → E be a nonexpansive mapping. Then, I − S is demiclosed on C, i.e., if {xn}
is a sequence of C such that xn ⇀ x and ||(I − S)|| → 0, then x = Sx.

Lemma 2.14. [41] Let B : E → 2E
∗

be a maximal monotone operator and M : E → E∗ be an
operator. Define an operator

Tλx := JBλ ◦ J−1(J − λM), x ∈ E, λ > 0.

Then Fix(Tλ) = (M +B)−1(0).

Remark 2.15. It can be seen from the above Lemma that (F + f)−1(0) = Fix(LFλ ◦ A
f
λ).

3. Main result

Lemma 3.1. Suppose F : E → 2E
∗

is a maximal monotone operator and f : E → E∗ is a λ-ism
mapping with λ > 0 such that (F + f)−1(0) 6= ∅. Then

φ(u, LFλ ◦ A
f
λ(x)) + φ(LFλ ◦ A

f
λ(x), x) ≤ φ(u, x),

for any u ∈ (F + f)−1(0) and x ∈ E.

The proof of the Lemma stated above is similar to the one in [33].

Lemma 3.2. Let E be a real Banach space, T : E → E be a relatively nonexpansive mapping and
F : E → 2E

∗
be a maximal monotone operator. Suppose f : E → E∗ is a λ-ism mapping for λ > 0

and (f + F )−1(0) 6= ∅, then

Fix(T (LFλ ◦ A
f
λ)) = Fix(T ) ∩ Fix(LFλ ◦ A

f
λ).
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Proof . Clearly, Fix(T )∩Fix(LFλ ◦A
f
λ) ⊆ Fix(T (LFλ ◦A

f
λ)). We only need to prove that Fix(T (LFλ ◦

Afλ)) ⊆ Fix(T ) ∩ Fix(LFλ ◦ A
f
λ). Let p ∈ Fix(T (LFλ ◦ A

f
λ)) and q ∈ Fix(T ) ∩ Fix(LFλ ◦ A

f
λ), then

φ(q, p) = φ(q, T (LFλ ◦ A
f
λ)x)

≤ φ(q, (LFλ ◦ A
f
λ)x). (3.1)

Now by applying Lemma 3.2 and (3.1), we get

φ(p, (LFλ ◦ A
f
λ)) = φ(q, p)− φ(q, (LFλ ◦ A

f
λ)x)

≤ φ(q, p)− φ(q, p)

= 0.

Hence, p ∈ Fix(LFλ ◦ A
f
λ).

Next, we show that p ∈ Fix(T ) since p ∈ Fix(T (LFλ ◦ A
f
λ)), we obtain

φ(p, Tp) = φ(p, (T (LFλ ◦ A
f
λ)p))

= φ(p, Tp)

= 0.

Hence p ∈ Fix(T ). This implies that p ∈ Fix(T ) ∩ Fix(LFλ ◦ A
f
λ). Therefore, we conclude that

Fix(T (LFλ ◦ A
f
λ)) = Fix(T ) ∩ Fix(LFλ ◦ A

f
λ). �

Theorem 3.3. Let E1, E2 be 2-uniformly convex and uniformly smooth real Banach spaces with
smoothness constant k satisfying 0 < k ≤ 1√

2
and duals E∗1 , E

∗
2 , respectively. Let Q be a nonempty,

closed and convex subset of E2, T : E1 → E1 and S : E2 → E2 be relatively nonexpansive mappings
respectively. Suppose that A : E1 → E2 is a bounded linear operator with adjoint A∗, F : E1 → 2E

∗
1

and G : E2 → 2E
∗
2 are maximal monotone operators. Let f : E1 → E∗1 and g : E2 → E∗2 be

single-valued λ, µ-ism operators with RF
λ ◦ B

f
λ := (J + λF )−1 ◦ (J − λf) : E1 → domF for λ > 0

and RG
µ ◦ Bg

µ := (J + µ)G−1 ◦ (J − µg) : E − 2 → domG for µ > 0, respectively. Assume that
Γ := {x∗ ∈ Fix(T )∩ (F + f)−1(0) and Ax∗ ∈ Fix(S)∩ (G+ g)−1(0)} 6= ∅, then {xn}∞n=0 is generated
iteratively by x1 ∈ E1 and C1 = E1 with

wn = J−1
1 (J1xn − γnA∗J2(I − (S(RG

µ ◦Bg
µ)))Axn);

un = J−1
1 [(1− βn)J1wn + βnJ1(T (RF

λ ◦B
f
λ))wn];

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn)};
xn+1 = ΠCn+1x1; n ≥ 1;

(3.2)

where ΠCn+1 is the generalized projection of E1 onto Cn+1. Suppose {βn}∞n=1 is a sequence in
(0,1) such that lim infn→∞ βn(1 − βn) > 0, and the step size γn is chosen in such a way that

γn =
ρn||(I−(S(RGµ ◦B

g
µ)))Axn||2

||A∗J2(I−(S(RGµ ◦B
g
µ)))Axn||2 , for Axn 6= (S(RG

µ ◦ Bg
µ))Axn, where 0 < d ≤ ρn ≤ e < 1 for d, e ∈ R,

otherwise γn = γ (γ being any nonnegative real number). Then, the sequence {xn} converges strongly
to x ∈ Γ, where x = ΠΓx1.

We divide our proof into several steps:
Step 1: We prove using Theorem 3.3 that Cn is closed and convex for each n ≥ 1.



834 Akutsah, Narain, Abass, Mebawondu

Proof . We obtain from Theorem 3.3 that C1 = E1, therefore C1 is closed and convex. Now assume
that Cn is closed and convex, then

φ(v, un) ≤ φ(v, xn)

⇔ ||v||2 − 2〈v, J1un〉+ ||un||2

≤ ||v||2 − 2〈v, J1xn〉+ ||xn||2

⇔ 2〈v, J1xn − J1un〉 ≤ ||xn||2 − ||un||2. (3.3)

We have from (3.3) that Cn+1 is closed and convex subset of E1. Therefore, ΠCn+1 is well defined. �
Step 2: We show that Γ ⊆ Cn for all n ≥ 1.
Proof . Let x∗ ∈ Γ ⊆ Cn, for n ≥ 1 then we have from (3.2) and Lemma 2.8 that

φ(x∗, un)

= φ(x∗, J−1
1 ((1− βn)J1wn + βnJ1(T (RF

λ ◦B
f
λ))wn))

= ||x∗||2 − 2〈x∗, (1− βn)J1wn + βnJ1(T (RF
λ ◦B

f
λ))wn〉

+ ||(1− βn)J1wn + βnJ1(T (RF
λ ◦B

f
λ))wn||2

≤ ||x∗||2 − 2(1− βn)〈x∗, J1wn〉 − 2βn〈x∗, J1(T (RF
λ ◦B

f
λ))wn〉

+ (1− βn)||wn||2 + βn||(T (RF
λ ◦B

f
λ))wn||2 − βn(1− βn)g(||J1wn − J1(T (RF

λ ◦B
f
λ))wn||)

= (1− βn)φ(x∗, wn) + βnφ(x∗, (T (RF
λ ◦B

f
λ))wn)− βn(1− βn)g(||J1wn − J1(T (RF

λ ◦B
f
λ))wn||)

≤ (1− βn)φ(x∗, wn) + βnφ(x∗, wn)− βn(1− βn)g(||J1wn − J1(T (RF
λ ◦B

f
λ))wn||)

= φ(x∗, wn)− βn(1− βn)g(||J1wn − J1(T (RF
λ ◦B

f
λ))wn||) (3.4)

≤ φ(x∗, wn). (3.5)

Also, we obtain from (3.2) that

φ(x∗, wn)

= φ(x∗, J−1
1 (J1xn − γnA∗J2(I − (S(RG

µ ◦Bg
µ))Axn)))

= ||x∗||2 − 2〈x∗, J1xn − γnA∗J2(I − (S(RG
µ ◦Bg

µ))Axn〉
+ ||J1xn − γnA∗J2(I − (S(RG

µ ◦Bg
µ))Axn||2

= ||x∗||2 − 2〈x∗, J1xn − γnA∗J2(I − (S(RG
µ ◦Bg

µ))Axn〉
+ ||xn − J−1

1 γnA
∗J2(I − (S(RG

µ ◦Bg
µ))Axn||2

≤ ||x∗||2 − 2〈x∗, J1xn〉+ 2γn〈x∗, A∗J2(I − (S(RG
µ ◦Bg

µ)))Axn〉
+ 2||kxn||2 − 2〈xn, γnA∗J2(I − (S(RG

µ ◦Bg
µ)))Axn〉+ γ2

n||A∗J2(I − (S(RG
µ ◦Bg

µ)))Axn||2

≤ ||x∗||2 − 2〈x∗, J1xn〉+ 2γn〈x∗, A∗J2(I − (S(RG
µ ◦Bg

µ)))Axn〉
+ ||xn||2 − 2〈xn, γnA∗J2(I − (S(RG

µ ◦Bg
µ)))Axn〉+ γ2

n||A∗J2(I − (S(RG
µ ◦Bg

µ)))Axn||2

= φ(x∗, xn)− 2γn〈xn − x∗, A∗J2(I − (S(RG
µ ◦Bg

µ)))Axn〉+ γ2
n||A∗J2(I − (S(RG

µ ◦Bg
µ)))Axn||2

= φ(x∗, xn)− 2γn〈Axn − Ax∗, J2(I − (S(RG
µ ◦Bg

µ)))Axn〉+ γ2
n||A∗J2(I − (S(RG

µ ◦Bg
µ)))Axn||2.

(3.6)
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Applying Lemma 2.7, we get

〈Axn − Ax∗, J2(I − (S(RG
µ ◦Bg

µ)))Axn〉
= 〈Axn − (S(RG

µ ◦Bg
µ))Axn + (S(RG

µ ◦Bg
µ))Axn − Ax∗, J2(I − (S(RG

µ ◦Bg
µ)))Axn〉

= ||(I − (S(RG
µ ◦Bg

µ)))Axn||2 + 〈S(RG
µ ◦Bg

µ)Axn − Ax∗, J2(I − (S(RG
µ ◦Bg

µ)))Axn〉

≥ ||(I − (S(RG
µ ◦Bg

µ)))Axn||2 +
1

2

(
||Axn − Ax∗||2 − ||(I − (S(RG

µ ◦Bg
µ)))||2

− ||(S(RG
µ ◦Bg

µ))Axn − Ax∗||2
)

≥ 1

2
||(I − (S(RG

µ ◦Bg
µ)))Axn||2. (3.7)

On substituting (3.7) into (3.6), we obtain

φ(x∗, wn) ≤ φ(x∗, xn)− γn
(
||(I − (S(RG

µ ◦Bg
µ)))Axn||2 + γn||A∗J2(I − (S(RG

µ ◦Bg
µ)))Axn||2

)
(3.8)

≤ φ(x∗, xn). (3.9)

Hence, we conclude from (3.4) and (3.8) that

φ(x∗, un) ≤ φ(x∗, wn)

≤ φ(x∗, xn). (3.10)

Therefore, we conclude that x∗ ∈ Cn+1. This implies that Γ ⊆ Cn for all n ≥ 1.
Hence, (3.2) is well-defined. � Step 3: We show that {xn} is a Cauchy sequence.
Proof . Let x∗ ∈ Γ, by using the definition of Cn, we have that xn = ΠCnx1 for all n ≥ 1. It follows
from Lemma 2.9, we have that

φ(xn, x1) = φ(ΠCnx1, x1) ≤ φ(x∗, x1)− φ(x∗,ΠCnx1)

≤ φ(x∗, x1), ∀ n ≥ 1.

This implies that {φ(xn, x1)} is bounded.
More so, since xn = ΠCnx1 and xn+1 = ΠCn+1x1 ∈ Cn+1 ⊆ Cn, we have that

φ(xn, x1) ≤ φ(xn+1, x1), ∀ n ≥ 1. (3.11)

Therefore, {φ(xn, x1)} is non-decreasing and hence bounded. So, the limit also exists.
From Lemma 2.9, we obtain that

φ(xn+1, xn) = φ(xn+1,ΠCnx1) ≤ φ(xn+1, x1)− φ(ΠCnx1, x1)

= φ(xn+1, x1)− φ(xn, x1), (3.12)

thus, we have that

lim
n→∞

φ(xn+1, xn) = 0. (3.13)

Applying Lemma 2.10, we obtain that

lim
n→∞

||xn+1 − xn|| = 0. (3.14)



836 Akutsah, Narain, Abass, Mebawondu

Suppose xn = ΠCnx1 ⊆ Cm, for some positive integers m,n with m ≤ n, then applying Lemma 2.9
and using the same approach as in (3.12), we obtain that

φ(xm, xn) = φ(xm,ΠCnx1)

≤ φ(xm, x1)− φ(ΠCnx1, x1)

= φ(xm, x1)− φ(xn, x1). (3.15)

Since limn→∞ φ(xn, x1) exists, it follows from (3.15) and Lemma 2.10 that limn→∞ ||xn − xm|| = 0.
Hence, we conclude that {xn} is a Cauchy sequence. �
Step 4: Let {xn} be a sequence generated by (3.2), then (i) limn→∞ ||T (RF

λ ◦B
f
λ)wn − wn|| = 0.

(ii) limn→∞ ||(I − S(RG
µ ◦Bg

µ))Axn|| = 0.
(iii) limn→∞ ||A∗J2(I − S(RG

µ ◦Bg
µ))Axn|| = 0.

Proof . Since xn+1 = ΠCn+1 ∈ Cn+1 ⊆ Cn, by the definition of Cn+1, (3.11) and (3.13), we have that

φ(xn+1, un) ≤ φ(xn+1, xn)→ 0, (n→∞). (3.16)

We have from Lemma 2.10 that

lim
n→∞

||xn+1 − un|| = 0. (3.17)

Also, from (3.14) and (3.17), we have that

lim
n→∞

||un − xn|| = 0. (3.18)

From (3.4), (3.5) and (3.8), we have that

φ(x∗, un) ≤ φ(x∗, xn)− βn(1− βn)g(||J1wn − J1(T (RF
λ ◦B

f
λ))wn||)

− γn
(
||(I − (S(RG

µ ◦Bg
µ)))Axn||2 + γn||A∗J2(S(RG

µ ◦Bg
µ))Axn||2

)
. (3.19)

It then follows that

βn(1− βn)g(||J1wn − J1(T (RF
λ ◦B

f
λ))wn||)

≤ φ(x∗, xn)− φ(x∗, un)

= ||x∗||2 − 2〈x∗, J1xn〉+ ||xn||2 − ||x∗||2 + 2〈x∗, J1un〉 − ||un||2

= 2〈x∗, J1un − J1xn〉+ ||xn||2 − ||un||2

≤ 2||x∗|| ||J1un − J1xn||+ ||xn − un|| (||xn||+ ||un||). (3.20)

Since E1 is 2-uniformly convex and uniformly smooth Banach space, J1 is uniformly continuous from
norm-to-norm. Then, we obtain from (3.18) that

lim
n→∞

||J1un − J1xn|| = 0. (3.21)

By applying the condition lim infn→∞ βn(1− βn) > 0 and (3.21) in (3.20), we obtain that

lim
n→∞

g(||J1wn − J1(T (RF
λ ◦B

f
λ))wn||) = 0. (3.22)
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Using the property of g in Lemma 2.8, we have that

lim
n→∞

||J1wn − J1(T (RF
λ ◦B

f
λ))wn|| = 0 (3.23)

Since J−1
1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

||wn − (T (RF
λ ◦B

f
λ))wn|| = 0. (3.24)

Also, from (3.19) and following the same approach in (3.20), we have that

γn
(
||(I − (S(RG

µ ◦Bg
µ)))Axn||2 − γn||A∗J2(I − S(RG

µ ◦Bg
µ))Axn||2

)
≤ φ(x∗, xn)− φ(x∗, un)

= ||x∗||2 − 2〈x∗, J1xn〉+ ||xn||2 − ||x∗||2 + 2〈x∗, J1un〉 − ||un||2

= 2〈x∗, J1un − J1xn〉+ ||xn||2 − ||un||2

≤ 2||x∗|| ||J1un − J1xn||+ ||xn − un|| (||xn||+ ||un||).

Using (3.18) and (3.21), we have that

lim
n→∞

γn
(
||(I − (S(RG

µ ◦Bg
µ)))Axn||2 − γn||A∗J2(I − S(RG

µ ◦Bg
µ))Axn||2

)
= 0. (3.25)

Applying the definition on γn and the fact that ρn is bounded from above and away from zero, (3.25)
gives

lim
n→∞

||(I − (S(RG
µ ◦Bg

µ)))Axn||4

||A∗J2(I − (S(RG
µ ◦B

g
µ)))Axn||2

= 0. (3.26)

Observe that

||A∗J2(I − (S(RG
µ ◦Bg

µ)))Axn|| ≤ ||A∗|| ||J2(I − (S(RG
µ ◦Bg

µ)))Axn||
= ||A|| ||(I − (S(RG

µ ◦Bg
µ)))Axn||. (3.27)

Therefore, from (3.26), we get

lim
n→∞

||(I − (S(RG
µ ◦Bg

µ)))Axn|| ≤ ||A|| lim
n→∞

||(I − (S(RG
µ ◦Bg

µ)))Axn||4

||A∗J2(I − (S(RG
µ ◦B

g
µ)))Axn||2

= 0. (3.28)

It follows from (3.27) and (3.28) that

lim
n→∞

||A∗J2(I − (S(RG
µ ◦Bg

µ)))Axn|| = 0. (3.29)

From (3.2) and (3.26), we have that

||J1wn − J1xn|| = γn||A∗J2(I − S(RG
µ ◦Bg

µ))Axn||

≤
ρn||(I − (S(RG

µ ◦Bg
µ)))Axn||2

||A∗J2(I − (S(RG
µ ◦B

g
µ)))Axn||

. (3.30)
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From (3.2), (3.30) and by uniform continuity of J1 and J−1
1 on bounded subset, we obtain that

lim
n→∞

||wn − xn|| = 0. (3.31)

Also, from (3.2) and (3.23), we get

||J1un − J1wn|| ≤ βn||J1(T (RF
λ ◦B

f
λ))wn − J1wn|| → 0, as n→∞. (3.32)

More so, from (3.32) and by uniform continuity of J1 and J∗1 on bounded subset, we obtain that

lim
n→∞

||un − wn|| = 0. (3.33)

From (3.31) and (3.33), we get that

lim
n→∞

||un − xn|| = 0. (3.34)

�
Step 4: We show that x ∈ Γ.

Proof . Since {xn} is bounded, there exists a subsequence {xnk} of {xn} and x ∈ E1 such that
xnk ⇀ x. Now using (3.31) and (3.34), there exist subsequence {wnk} of {wn} and {unk} of {un} such
that {wn} and {un} converges weakly to x. From (3.24), the fact that T is relatively nonexpansive
mapping and Lemma 3.1, we obtain that x ∈ Fix(T (RF

λ ◦ B
f
λ)) = Fix(T ) ∩ (F + f)−1(0). Also,

since A is a bounded linear operator, we have that Axnk ⇀ Ax. Thus from (3.28), the fact that
S is a relatively nonexpansive mapping, the demiclosedness principle and Lemma 3.1, we have that
Ax ∈ Fix(S(RG

λ ◦B
g
λ)) = Fix(S) ∩ (G+ g)−1(0). Hence, we therefore conclude that x ∈ Γ. �

Step 5: We prove that {xn} → x
Proof . Let x = ΠΓx1, x ∈ Γ, from xn = ΠCnx1 and x ∈ Γ ⊆ Cn, we have

φ(xn, x1) ≤ φ(x, x1), (3.35)

which implies that

φ(x, x1) ≤ lim inf
n→∞

φ(xn, x1) ≤ φ(x, x1). (3.36)

From the definition of x = ΠΓx1, we have that x∗ = x. Hence lim infn→∞ xn = x = ΠCx1. We
therefore conclude that {xn} converges strongly to x ∈ Γ, where x = ΠΓx1. � In the following result,
we considered only the SMVIP without the fixed point problems.

Corollary 3.4. Let E1, E2 be 2-uniformly convex and uniformly smooth real Banach spaces with
smoothness constant k satisfying 0 < k ≤ 1√

2
and duals E∗1 , E

∗
2 , respectively. Let Q be a nonempty,

closed and convex subset of E2. Suppose that A : E1 → E2 is a bounded linear operator with adjoint
A∗, F : E1 → 2E

∗
1 and G : E2 → 2E

∗
2 are maximal monotone operators. Let f : E1 → E∗1 and

g : E2 → E∗2 be single-valued λ, µ-ism operators with RF
λ ◦B

f
λ := (J +λF )−1 ◦ (J −λf) : E1 → domF

for λ > 0 and RG
µ ◦ Bg

µ := (J + µ)G−1 ◦ (J − µg) : E − 2 → domG for µ > 0, respectively. Assume
that Γ := {x∗ ∈ (F + f)−1(0) and Ax∗ ∈ (G+ g)−1(0)} 6= ∅, then {xn}∞n=0 is generated iteratively by
x1 ∈ E1 and C1 = E1 with

wn = J−1
1 (J1xn − γnA∗J2(I − (RG

µ ◦Bg
µ))Axn);

un = J−1
1 [(1− βn)J1wn + βnJ1(RF

λ ◦B
f
λ)wn];

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn)};
xn+1 = ΠCn+1x1; n ≥ 1;

(3.37)
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where ΠCn+1 is the generalized projection of E1 onto Cn+1. Suppose {βn}∞n=1 is a sequence in
(0,1) such that lim infn→∞ βn(1 − βn) > 0, and the step size γn is chosen in such a way that

γn =
ρn||(I−(RGµ ◦B

g
µ))Axn||2

||A∗J2(I−(RGµ ◦B
g
µ))Axn||2 , for Axn 6= (RG

µ ◦ Bg
µ)Axn, where 0 < d ≤ ρn ≤ e < 1 for d, e ∈ R,

otherwise γn = γ (γ being any nonnegative real number). Then, the sequence {xn} converges strongly
to x ∈ Γ, where x = ΠΓx1.

Also, in the result discussed below, we considered the split common fixed point problem.

Corollary 3.5. Let E1, E2 be 2-uniformly convex and uniformly smooth real Banach spaces with
smoothness constant k satisfying 0 < k ≤ 1√

2
and duals E∗1 , E

∗
2 , respectively. Let Q be a nonempty,

closed and convex subset of E2, T : E1 → E1 and S : E2 → E2 be relatively nonexpansive mappings
respectively. Suppose that A : E1 → E2 is a bounded linear operator with adjoint A∗. Assume that
Γ := {x∗ ∈ Fix(T ) and Ax∗ ∈ Fix(S)} 6= ∅, then {xn}∞n=0 is generated iteratively by x1 ∈ E1 and
C1 = E1 with 

wn = J−1
1 (J1xn − γnA∗J2(I − S)Axn);

un = J−1
1 [(1− βn)J1wn + βnJ1(T )wn];

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn)};
xn+1 = ΠCn+1x1; n ≥ 1;

(3.38)

where ΠCn+1 is the generalized projection of E1 onto Cn+1. Suppose {βn}∞n=1 is a sequence in
(0,1) such that lim infn→∞ βn(1 − βn) > 0, and the step size γn is chosen in such a way that

γn = ρn||(I−S)Axn||2
||A∗J2(I−S)Axn||2 , for Axn 6= (S)Axn, where 0 < d ≤ ρn ≤ e < 1 for d, e ∈ R, otherwise

γn = γ (γ being any nonnegative real number). Then, the sequence {xn} converges strongly to x ∈ Γ,
where x = ΠΓx1.

Remark 3.6. The result discussed in this article generalizes many related results, most especially,
results where SVIP and SMVIP were discussed in the framework of real Hilbert spaces. Our results
holds for the classes of nonexpansive and pseudocontractive mappings in the framework of real Hilbert
spaces.

4. Applications

1.Application to Split Convex Minimization Problem:

Definition 4.1. Let Q be a convex subset of a vector space X and f : Q → R ∪ {+∞} be a map.
Then,
(i) f is convex if for each λ ∈ [0, 1] and x, y ∈ Q, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y);

(ii) f is called proper if there exists at least one x ∈ Q such that

f(x) 6= +∞;

(iii) f is lower semi-continuous at x0 ∈ Q if

f(x0) ≤ lim inf
x→x0

f(x).
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Let E1 and E2 be real Banach spaces. Let M : E1 → R and N : E2 → R are convex and differentiable
functions and F : E1 → (−∞,+∞] and G : E2 → (−∞,+∞] are proper, convex and lower semi-
continuous functions. It is clear that if 5M and 5N is 1

α
and 1

θ
− Lipschitz continuous, then it is

α, θ-ism, where 5M and 5N are the gradient of M and N respectively. It is also known that the
subdifferential ∂F and ∂G are maximal monotone. (see [40]). Moreover,

M(x∗) + F (x∗) = min
x∈E1

[
M(x) + F (x)]⇔ 0 ∈M(x∗) + ∂F (x∗).

and

N(x∗) +G(x∗) = min
x∈E2

[
N(x) +G(x)]⇔ 0 ∈ N(x∗) + ∂G(x∗).

Our aim is to solve the following Split Convex Minimization and Fixed Point Problem, (in short,
SCMFPP): find x∗ ∈ E1 such that

x∗ ∈ Fix(T ) ∩ argminx∈E1M(x) + F (x) and y∗ = Ax∗ ∈ Fix(S) ∩ argimy∈E2N(y) +G(y). (4.1)

Suppose the solution set of (4.1) is denoted by Θ, then by setting F = ∂F,G = ∂G, f = 5M and
g = 5N, (3.2) becomes

wn = J−1
1 (J1xn − γnA∗J2(I − (S(R∂G

µ ◦B5Nµ )))Axn);

un = J−1
1 [(1− βn)J1wn + βnJ1(T (R∂F

λ ◦B
5M
λ ))wn];

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn)};
xn+1 = ΠCn+1x1; n ≥ 1.

(4.2)

Assume that the conditions in (3.2) holds, then {xn} converges strongly to an element in Θ.
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