% IN
A
) 1

Approximation of Fourier series in terms of functions
in Ly Spaces for 0 < p <1

Sahab Mohsen Aboud?, Eman Samir Bhaya®*

aMathematics Department, College of Education for pure Sciences, University of Babylon, Babylon, Iraq.
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Abstract

Many results introduced for the absolutely convergence of Fourier series in terms of absolutely con-
tinuous functions. Here we study the convergence of Fourier series in terms of p-integrable functions
series.
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1. Introduction
A famous problem in trigonometric series is the following Theorem

Theorem 1.1. A necessary and sufficient condition for the absolute convergence of the Fourier
trigonometric series of any function f(t) € H* of bounded variation is that

n
E < o0
n

n=1

B

Where H be the class of continuous 2m— periodic functions whose modulus of continuity w(f,J)

satisfies the condition w(f,d) = Ow(J).

The sufficient condition of the above Theorem was studied in [§] and [3]. The necessary condition
of the above theorem was established in [3] ,[4], [6], [2] and [5]. In our work we strength the result
in [5]. We use arbitrarly bounded complete orthonormal system instead of trigonometric systed in
L,(0,1) spaces for 0 < p < 1. We prove the following Theorem.
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Theorem 1.2. Suppose that {f.(t)} be an orthonormal system complete in L,(0,1) and such that
fa@®)| < M,tel0,1], n=1,2,...
Where M s positive constant.
Then, for any modulus of continuity w(0) satisfying the condition
o0 w %
> = oo
n

n=1

B

There exists an absolutely continuous function ®(t), ®(0) = ®(1), such that

w(3,) = 0w}, 3 la(®)] = oo,

1
where a;(P) :/ O (). fi(t)dt.
0
Definition 1.3. The function w(9) is called the modulus of continuity of f where
w(d) =w(d, f)y= sup || f(z+h)—f(z)],-

0<|h|<d1
and f(z) be defined in a closed interval.

Definition 1.4. Let Q be the set of (n, k) such that 1 <k <2" n=0,1,...,Q, Q=Q,U(0,0),
denoted by
Ay = (0,1), Ay" = 10,1],

k—1 k k—1 k
AF = — ATk = — k) € Q
n < on ’271)’ n ( on ’271,)’(”’ )6 1
Such that the intervals are called dyadic intervals. Clearly, if two dyadic intervals intersection, then

one of them contains the other. The inclusion AF D A is equivalent to conditions

p>n2P"k—1) < q<2P7"F.

Put xg = 1.if (n,k) € Q, then

0, teA*
XE = 1, te Ai’i‘ll
—-1, teAX,

The value of x*(¢) in a discontinuity point ¢ is defined as

x5 (t) = lim % (XE(t—e)+ ALt +e)).

e—0

If k=1 or k=2", then the value x*(¢) in 0 and 1 is defined so that x*(#) is continuous in 0 and 1.

The set of function x%(t), (nmk) € Q; is called the Haar system and denoted by (H.s).

Definition 1.5. (Rademacher system) [1] Is an incomplete orthogonal system of functions on the
unite interval of the following form

{t = ra(t) = sgn(sin2"'xt), t€[0,1], ne N}

The Rademacher system is stochastically, and is closely related to the Walsh system.
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2. The Auxiliary Results
In this section we give some auxiliary lemma that we need in our research

Lemma 2.1. ( Yano’s Inequality) [7] The Yano’s inequality given of the form

meas {:p eA: (f(a:))% > 2} < é/A(f(a:))zl’ dx.

Lemma 2.2. ( Parseval identity) [7] f(z) = an sin(?), o<x < L. Then
n=1

2 [ ) = 5
7| e =3 1

3. The Proof of the Main Result

Here we shall prove our main result:
Theorem [I.2]
Suppose that f,(t) be an orthonormal system complete in L,(0,1) and such that

fa)| <M, tel0,1], n=1,2,..., (3.1)

where M is positive constant.
Then, for any modulus of continuity w(d) satisfying the condition

B

w(L
n

> —— =0 (3.2)

such that

w8, @) =0{w@)}, Y lu(®)| = oo, (3.3)

where a;(®) = [} ®(t). fi(t)dt.
Proof . For each m = 1,2,... suppose that N,, be the largest n such that w(f, 2%)1, > L
Assume that Ny = 0, since w(f, 2N++1>p > 2w(f,2N), > e

we haveN,, + 1+ N, + 1, and the sequence {N,,} increasing, such that

1 1 1
gt =@ < 5 (3.4)

where N,, <n < N,,v1, m=0,1,... Let d,, be the largest positive integer such that
N—dpir + dms1 = Ny, (3.5)
Let {L,} and {R,} be two sequences of indices such that Ly =1, L,.1 > R,, n=1,2,...

R, —Lyi1 =2 for N, <n<Nn, m=01,... 3.6
+ + )
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We will define the family of function F,(¢) by formula

N1

Ey(t) = et +22m+1 Z Z Z'us )ps(t (3.7)

n=Nm+1 k=L, s€Gp

where {;(t)}22, is the Schauder system.
The set G, and the functions us(x) satisfy the conditions

e Go,=0, for ne{N,},

Y Gu={2"+1,....2"""}, n¢gN, (3.8)

k=Lnp

e G NGy =0, for k#1, and for s € Gy,

Z Xp(z (3.9)

2
per

Where x, ()., is the Haar system.
Qs C{2"+1,....2"} and Q,NQ, =0 for s#r, if s,r € G

For there more, one has the identity

S pale) = rh(z) (3.10)

s€EG K

Where ry(z),-, is the Rademacher system. It follows from (3.9) that the function of the y,(z) can
take only three values, namely, 0 and +1. The function p,(x) are defined by induction.
We may assume that N; < 1. For 2! < s < 22, the set

ps(@) =ri(x),  pa(z) =ra(z) (3.11)

The functions yus(z), pa(x) satisfy relation (3.8)—(3.10) for

m=0n=1,R =2,L; =1,G11 =3,G12=4,Q3 = 3,4,Q4 = 5,6,7,8. We shall limit ourselves
to determining those functions ps(z) for which the functions Q(t) have support in [0,1/2]. Fore
functions Q4(t) with support in [1/2,1].

Assume that +1 < n < N,,41 and p,(x) are defined for 2”71 < s < 2", so that relation f
satisfied.

Suppose that s € Gy, where L,y < k < R,_;. There exists two Schauder function 0,(¢), and
0,41(t),2™ < p < 2" with support contained in the support (s(t). Set

po(x) = pf (x)ro(2), ppia (1) = g ()70 (@) (3.12)

where v = Lyy — Lp—1,  pf () = max{0, us(2)},  pg (2) = max{0, —ps(2)}

Assume that

n = N, +1,n ¢ N,, and the functions p,(z) are defined and don’t vanish for 2"~9m~1 < 5 < 2n=dm,
Let s € Gpa,,—1x where L,,_4,, 1 < k < R,_4, 1. There are 29! Schauder function ¢,,(t) where
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1<g<2? 2" <p<2mtt—2¢ . with support in the support of the function 04(t).
Set

tpig(x) = p(z)ro(x), and
pprq(x) = pig (x).ro(2),
If 2%m g < 2dmtt where v = L, +2"(k— L, —dp —1) +q—2" — 1 (3.13)
Now, ([1.3)—(1.5) determine completely the system ps(z). We mention some properties of the functions

F,(t) which follow from (3.7)—(1.5). For every x € [0, 1] the series (3.7)) converges uniformly in t to
a continuous singular function which is monotone on [0,1/2] and [1/2, 1].

If svr <0 < 58, then w(0, ) < gar < 4w <2Ni+1) , forall x €[0,1]
w(0, F) < 4w(9) (3.14)
Denote .
Ca = /0 ps(t) filt)dt (3.15)
We have

m+1

w(F) = / (1) ft)dt = 02l+22m+1 33 (3.16)

n=Nm+1 k=L, s€G,x

Since by (3.9) the supports of the functions u,(z) for s € G, are disjoint, ZSEGnk ps(x).Cy can be
viewed as a single function. In the view of this not we set

m+1 2m+1

Z Z Z /'Ls st = Z 5nkl(x> (317)
Cop + Z 22m/2 Z Z Ont|d

n=Npm+1 k=L, s€G
1
n=Nm+1 k=1 )

= B. || a(F) [l (3.18)

We shall prove that for every [ = 1,2, ..., the following inequality holds:

/ZQWQ f o Cé(sgk,(m)dw>p < B (/O

n=Np,+1

m+1 2m+1

where B is some positive constant. The uniform boundedness of the system { fi(¢)}.
For 2" < s < 2"! the inequality

1 1
M
| Cst |= ‘/ gps(t).fl(t)dt‘ < M/ ps(t)dt < o where 1 =1,2,....
0 0

By (3.9) and (3.17)), the latter estimate implies

M
| nrt 1< 5 (3.19)

Forall z € [0,1],k=1,2,...,2" " and | = 1,2, ....
For the sake of brevity, in the proof of (3.18]), we shall write d,,, instead of d,4;. Let A, be a dyadic

intervals of length 2%»
qg q+1
Ay = (2Tn, S ) (3.20)
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Suppose that

1

F, = (Za ) >y (3.21)

Applying Yano’s inequality to the function ZZ:I dnk(z) on the interval A,,,, we obtain

aml 5 2ml
meas { © € Ay (Z (5ka(:E)> >z < / Z Onk(x)| dx (3.22)
k=1 Ank
where A is a positive constant. So, by and ,
A XD 1
meas F, < ﬁ kz:; (|0pk (z)|P)? (3.23)
According to (3.19) B
22 &, (x) &:H (3.24)

From the relations (3.21)), (3.23]) and (|3.24|), we have the estimate

M22m+1—2n

2m+l L 0o
/ (Z or ) dr = / meas F, dy = / meas F, dy
nk 0 0

2m+1

M22'm+172n
1 d
A. E (|6nk (2 ”/ \/_yy

A.M A/ 2mt1 1
- BT Z (|60 (z)|P) 7 (3.25)

k=

IA

Let m,,, be the family of all sets £, € A,, such that each F,,, is the union of disjoint dyadic intervals
I,,4; of length satisfying the inequalities

1 1
2R —’ QJ’—QL

The ZZ? dnki(x) as a polynomial in Haar system. Then let

Pg,, { Z (5nkl($));} (3.26)

k=1

be the sum of those summands in this polynomial whose supports are contained in the set E,,.
Similarly, the symbol

Pp,, { Z (5§kl($));} (3.27)

k=1



Approximation of Fourier series in terms of ... 12 (2021) No. 2, 897-911 903

Means that from each ftﬁlction 6P (x) we take Tlﬂy the summands with support in E,,. Inequality
2m 2m

(3.25)) still holds if >y, (& k(w))% and Y i, (5zk(x))% are replaced by their projections

2m+1 2m+1
Pg,, { Z (5nk(93))’1’} and Pg,, {Z (5§k(x))11’} ,on the set E,, € m,,

k=1 k=1
namely, we have the following inequality

/A P, {Z «%(@)i} o AAMVEE [ ANV {Z <5nk<x>>} b (328)

2n—1 2n—1
k=1 Ank k=1

bS]

For any set E,, € m,, there exists a unique positive integer S = s(E,,) such that

AM A2 T gm1 ) » ™ z
e ( [ PE{Z <6nk<x>>}| dx) < ( [ PE{Z <6nk<x>>} |dx)
A M. 2m 2 1

- on—1
A= min $(Eng), Eng € My, (3.30)

Let us call the set E,, maximal if there is E,, ¢ m,, for which E,, C F,, and s(E,,) = s(F,,). Let
E(A1,n,q) be a maximal set for which

=

dm) p (3.29)

Let

s (E(A,n,q)) =M (3.31)

Assume that s (E(Ai,n,q)) = A\ # A,,. Consider the functions

(A1) gm+1 % gm+1

> bul(x) = (Z 5nk($)> — Pp(ang) (Z 5nk(:v)> (3.32)
k=1 k=1

(M) gmt1 v gmt1 v

Y o (x) = (Z (%(m)) ~ Pe(ring) (Z 5&(%)) (3.33)
k=1 k=1

3=

1

2m+1

1
We can apply the same argument as we applied to (ZZ:{I 5nk(x)> " and ( 1 5£k(x)> " From

(3-29), (3.32) and (3.33) for any set E,, € m,, there exists a unique integers v = (£E,,) for which,

A.J\/fz.n—\{?”T </Anq Ps,, {i(5”k<x))} 'pdx>; < /Anq
([ fo]

Let E(A2,n,q) be the maximal sub set for which

(M)

P, &> (00(x)) ¢ |da

nq

pdx) ” (3.34)

Ay =miny(E,,) = v(E(A2,n,q)), E(X,n,q) € my, (3.35)
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From the definition of this set we have
E(Ahn?q) - E<)‘27nJQ>' (336)

We prove the inequality A\; < Ao. (3.37)
Suppose that A\; < Ag. By definition of E(\{,n,q) and E()\2, n,q) we have

( /. PE@z,n,q){Z(azk(x))}dx) - ( /. PE<A1,n,q>{Z<6zk<x>>}dx)
- ( [ Prvana {Z <5zk<x>>} dx>

AMA/2mH 2

T on1 /A . E(M\,2,n,q) Z Ok (T
A.M .~/ 2m+1 2

R v < /A Pr(xzn0) {Z 5nkl($)}

V

1
p p
x)
N
dx)

(3.38)

yet contrasts the maximality of E(\1,n, ), and this proves (3.37)). If E(As,n,q) # A, then
we define the number A3 and the set E()A3,n,¢q) in an analogous fashion. We continue this process
until for some v we obtain E(\,, n, q) = A,,. As a result we have the family of positive integers {\;},
the set E(\;,n,q) and the functions 32 6,4 (x) and 3% 67, (z) the following properties

0 M<AMN <D< n<.N<, (3.39)
0 = EO,n,q) C E()\l,n q) C E(M\g,n,q) C--- C E(A\yyn,q) = Ay, (3.40)
1

Zldnk(fﬂ) = (Z (Snk > — PE()\i,n,q) {Z 5nk($)} (3'41)
Zidﬁk(x) = (22 Ok (2 )p — Pe(ang) {22 o }p (3.42)

where 1 =0,1,...,0v

3 =
B =

v (Ni—1) om+1
Z PE(Ai,n,q) Z 5nk<x) = (Z 5nk(33>) (3.43)
i=1 k=1

S
Sl

v ()\1 — 1) 2m+1
S Proand 3 ) (z azkm) (3.44)
=1 k=1

In addition, we have
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(Ai—1)

PE(/\i,n,q) Z 5nk

2n+)\i Jf

A.M A/2m+1 /
Ang

(Ai—1)
<\ [ Peona§ X ule) o
Ang

v/ (A1) p
A.M A2+
= on+x;—1 /A Pr(xina) Z Onk () dx (3.45)

And, for an arbitrary set F,,; € m,,

(Ai—1) >
A.M A/ 2m+1
/APFM > o (x) pda S o /A

Where i = 1,2,...,v. According to (3.39)), to each interval A,, there corresponds a certain in finite
system of pairwise distinct positive integers \; = \;(n,q), where i = 1,...,v(n,q). Let Cyp, p =
0,1,..., be the set of those indices ¢, 1 < ¢ < 25~ for which \;(n, ¢) = p for some i.

Set

Pr, 8 Y u(z) ¢ | dx (3.46)

N
Sha(@) = Pooma § D dulz (3.47)
1
(Mi—1) P
Th(@) = Poowng § D Tl (3.48)
where p = \;(n, q). We have
Npt1 om+1 % o0 0o 1 Npt1
U E SIS SEXETE I 9) SE- 0 SiED SN EA TN
n=Nm+1 p=0 m=0 n=Nm+1 q€Cnyp
By Lemma 2-1 the measure of the set
Gy = {17, (z) > y}, (3.50)
In the same fashion as in the proof of (3.23)), we obtain
A
meas Gy, = —— S(p A, 3.51
Y \/@ || HLP[ al ( )
M?.2m
Let H(p,n,q) = {TT(LZ)(SC) > W} (3.52)

The set H(p,n,q) belongs to m,,,. We shall show that

| P AT} o < 51T s, (3.5

nq
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Indeed, by using (3.51)) and the first inequality in (3.45]), we obtain

1 M2’2m 2(n+p)—3
/ Ph(pn,q) {Tr(LZ)} de > B I TT(LZ) ||Lp[Anq] _/0 meas G, dy

nq

o M2 gm—2(n+p)—3 dy
> 1T g —A 159 o - [ %
> (| T8 llyan, —%‘ ISE Nrpiang 2 % I %% |y, b This prove (3.53).
Inequality implies
1T Iy = 5 1T oy (3.54)

2
Hence

m+1 om+l N1
</ Z 25’””/2 o3 5de$> < clp Z Z 23m/2 > 2" > T e (3.55)
k=1

n= Nm—i-l p=0 m=0 n=Np,+1 q€Chnyp

Let use note that the length of intervals make up the set H(p,r,s) for r < n is a multiple of the
length of the interval A,,. For n > r, A, either belongs to the set H(p,r,s) or does not intersect
this set. Let D,,, be the set of those indices ¢ € C,,, any of them

Apg N Z Z (p,r,s) =10, (3.56)
r=1 qeCyyp
where for j = m(r)
Zz 0 ﬁ Zg:j\rfiﬁl 2" qucnp I Té{;) HLp[H(p,n,q)]
< Yoo 23m/2 anj\}jﬂ+1 4€Dy, Do, 27 Zsecrp | Y | Ly (H o1 5)N H (p0)]
< oo 7z Lonn i1 ety Loren 2 Ty, | Ty tomarirtona (3.57)

We benefit the second inequality in (3.45)), we can obtain the upper bound for the mean value of
the function T\ (2) on A,,. In fact,

AMNF AMNF

H TT%)) HLP[AT'S]S W H STS ||Lp[Ars} S 27“+p 1 |AT'S|p H ST'S ||Lp Ars
A M2
or+p—1 ’A%"p H Tr(f) HL;D[ATS] : (3'58)
These returns
AZ)M225+3
|AT8’ H rSs HLp[A'rs} — W (359)
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Now, we estimate the expression

>SS NTD Iseononar= 2" 1 T lemomar + 30 27 S I TE isncmma
r=n s€Chrp r=n-+1 s€Chrp
(3.60)
From (3.59), we obtain
=\ A2 M223 SN 1
Z 2 J Z H Tp) ”Lp[ArSﬂH(p,n,q)] S 22p Z ? Z |Ars ﬂH(p,n,q)|
r=n+1 sECrp r=n+1 Seo'rp
A2 M2 .23
< oy, Mmeas H(p,n,q). (3.61)
By definition of the set H(p,n,q) we get
" M?2m
2" || T(p L, g = nraprs 1Teas H(p,n,q). (3.62)
Thus
Z 2N N TP navnneng < A2 T8 |1 o) (3.63)
r=n+1 s7Cyp
By (3.60) and (3.63)
D227 3 TR niarcnoan) < A2 | T syt (3.64)
r=n s€Crp

Taking into consideration

B =

(Ai—1)
| TT(LZ) HLzo[H(zrm,q)}S 2'/ Ph(pnq) {qug)(x)} dr =2 /A PH(pn.q) Z 5£k;(x) dx (3.65)

nq q

Where \; = p,and using ([3.64)), we obtain

s
AL

(Ai—1)
Prpmay & Y Oui()

| T p) Ly (H (g < T dz (3.66)

4A.M A/ 2M+1 /

By definition of "% ¢ () we have

\i—
Py (p,n,q) {

It follows from ((3.19) that the series

B =

nk(

P % 2m+1 % 2m+1
.T) } = PH(p,n,q) { 5nk($)} PE()\ —1,n,q) r.hl—_[C(pnq { Z 5nk } 3 67)

k=1

Nm+1 2m+1

O2l+22m+1 Z Z(snkl

n=Nm+1 k=1
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For every set F,, fromM,,, N,, <n < Ny,41, one has the inequality

1

2m+1 P J+1 2m+1 D
1
om+1 /An Pan { Z 5”“ } dx <2 /F CQZ - Z 23—1—1 A ;+1 ; (5aﬁl
(3.68)
Relation (3.57), (3.64), (3.66), (3.67) and (3.68)) imply
m+1 m+1
Z 7m Z 2" Z || ql ||Lp[Hpnq < A2 27 Z Z 2" Z || Tnzg ||LP[H(p,n,q)]
? n=Npm+1 qecnp n=Npm+1 q?an
Nm+1 P

Pt (pn.q) Z Sua(@) p da|)¥

Z 2. 2 |

n=Npmy+1 q?Dnyp

213 o0 m+1

Z Z Z I G [l .0 (3.69)

m=0 n=Npm+1q?Dnp

Where

J+1 2’m+l

CZH_Z 9j+1 Z Zéaﬁl

a=N;+1 B=1

’S\H

By definition of the sets D,,, we get

ZH(p,n,q) N ZH(p,r,s) = (3.70)

q?Dnp SEDyp

For n # r. Thus, by (3.69)) and ((3.70)),
m+1 1
. A3 M2
SRS WD I LI

n=Npm+1 q?Chnp

m+1 2m+1

Ct Sk 33 o)

n=Nm+1 k=1

(3.71)
Adding inequalities (3.71)) over p, we obtain

1

(/ Z fl 2”2§5nkl ) < A M2 (/0

n=Npm+1

m+1 2m+1

C2l + Z 2m+1 Z Z 5nkl

1
P
dx
n=Npm+1 k=1

< ATM2 || 6,(@) HLp[o,l] (3.72)

By (3.72)) this proves ({3.18]).
Next by summing inequalities (3.18)) over [, we obtain

1

N1 gm+1
|Felr,00 > —Z (/ Z Z 2" Z (T )

n=Nm+1

_ OOQT? Nmi Q”Z ZZ (/0 Mg(x)dx)é

n=Npm+1 k= LnSEGnkl 1

oo

m+l

Z 2"2 Z Z l||M | 2,00,1] (3.73)

m=0 n=Nm+1 k=Ln s€Gpy =1

IA
1 i
”\s
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The system {F(¢)} being complete, by Lemma 2.2 implies that fors € G

» i = / O2(t)dt =
0 3.2n
=1
Thus, by , (3.10) and (3.74)), for N,, < n < N,,41 we have

S x g ([aom) - d g (o)

k=L, s€Gpi =1 k=L, s€Gnk
Ry 1 m+1
1 ) poogmt
= 3o Z (/0 rk(:z:)d:z:> = 3o
k?:Ln
By the relations between (3.73)) and (3.74)) impels that
2 [ee] 1 Nm+1
F, > — 1
9 e8] 2
> — sup || flx +27") — f(x —
52 ( | fe+27) - f(z) ||p)
n 2
(SUP I fe+27") = f(x) ||p>
ne{Np } |hl<d
Since !
o) 2
> (sup | flx+27) — f(2) ||p> =0
n—1 \/PI<o
And )
n 2
> (s s 1) <o
’VLE{Nm} |h|§6
We obtain

|| F, ||L,,[0,1]= oo

909

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

The follows from (3.14]) and (3.79)), there exists a continuous function of bounded variation ®(¢)
satisfying conditions (3). In fact, consider the Banach space of all continuous functions of bounded

variation g(t) for which
g(0) = g(1) = 0 and w(d,9) = O{w(d)}, The norm in B is given by
I 9 llp= Vo +inf {k : w(d, g) < kw(d)}.

The functions H,(g) = >, lai(g)],
1

where a,(g) = / g(t) fi(t)dt, are convex, and, a according to (3.14]), the functions F,(t) satisfy

0
for all x € [0, 1], the inequality
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The existence of ®(t)
In order to construct the absolutely continuous function ®(¢) we proceed as follows.

Let use
Nm+1

F(t) = palt +22m+1 Z ZZ“S 2)ps(t (3.81)

n—= Nm+1k‘ Ln SEGn

By the same argument as in the proof -, we obtain

lim Z lay(FP)|dx = oo i.e hm | FP ||Lp01] (3.82)

p—0o0

Assume that for all z € [0,1] and p=1,2,.. .,

o0

> Ja(FP] < oo. (3.83)
I=1
If ([3.82)) is not satisfied for some xy and py, then we take for ®(¢) the function Fé{j‘))(t), because

the function F¥ )(t) are absolutely continuous and satisfy (3.14)).
Now, we shall define by induction three sequences of indices {s;},{k;}, and {p,}, the sequence of

numbers {¢;} and the sequence of points {z;}.
g1 = 1l and s; = 1. Using (3.81]) we find indices ki, p; and a point x; such that

k1

> laFP) > 1

=1

Suppose that the indices s; k; and p; and the numbers z; and &; have already been defined for
1 <i < j. According to (3.82)), there is an index s;1; > k; such that

Z Z |au(F, 2l (3.84)

1=1 l=sj41
The number ;4 is chosen so that €;4.k; < — 5 (3.85)
Finally, in view of , there exist indices k;;; and p;;; and a point x;1; such that
ki1 1
> la(FE > — (3.86)
=1 j+1

The set -
240} (3.87)
=1

Since the function F” (t),p = 1,2,...,2 € [0,1], are absolutely continuous in ¢ and satisfy the
—FP) (t)|dt = VIFE® =2 the lebesgue theorem yields

) / W d
relation
o |dt
> de”z() /t = dFP) (u)
E € ——~du = E gi————= sdu
i=1 /0 0 Li=1 du
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This shows that ®(t) is absolutely continuous. Moreover, in view of (3.14]) and (3.84]) one has

w(9, @) <Z€w5F(pl ) < 4dw(d Zez<8w (3.88)
=1
Furthermore
o) 0 k]’
dla@) = YO (@
1=1 j=1 zzsj
i—1 00
ZZ {&Iaz PN = eila(FP) = > €i|al(Fg§f’”)|} (3.89)
i=1 l=s, i=1 i=j+1

Taking into a account the inequalities

lad(EL] <|| EP <]l F) Jle= 1,

We obtain
kj oo kj o 1
Z Z 5i|al(F$i))| < Z Z g < 2gj41.k; < 51 (3.90)
I=s; i=j+1 I=s; l=j+1

Inequalities (3.83)), (3.85),(3.88]),(3.89) imply

> la(@)] = oo. (3.91)

In view of (3.87) and (3.90]), the absolutely continuous function ®(t) satisfies the relations (3.3)).
This establishes the theorem. UJ
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