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Abstract

Considering prolongation of a Lie algebroid equipped with a spray, defining some classical tensors,
we show that a Lie symmetry of a spray is a curvature collineation for these tensors.
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1. Introduction

The notion of a Lie algebroid structure as generalization of the notion of Lie algebra of a Lie group,
introduced by Pradines in 1967. The method of extracting a Lie algebroid from a differentiable
groupoid, is completely analogous of extracting a Lie algebra from a Lie group[10]. A Lie algebroid
is a vector bundle that each of its sections is mapped to a vector field by a linear bundle map together
with a bracket on the sections of the vector bundle that is R-bilinear, alternating and satisfies the
Jacobi identity. This map must be a homomorphism of Lie algebras and is called the anchor map of
the vector bundle. More attributes on the anchor map, may induce special properties on the vector
bundle. For example, if the anchor map is a submersion, then all of its right inverses are connections
in the vector bundle (see [6]). When anchor map is the identity, the Lie algebroid reduces to the
tangent bundle. Thus Lie algebroids are extensions of the tangent bundle that make possible to study
more generic geometric objects. There are many studies on Lie algebroid structures (e.g., [2], [3, 4. €]
and their relation to physics and mechanics (e.g. [7, 13, 14 [15]).

Curvature collineations as symmetries of space-time, are powerful tools in general relativity [, 5].
It has been shown in [I1] that if the complete lift of a vector field is a Lie symmetry of a spray, then
it is a curvature collineation for some classical tensors. The aim of this paper is to obtain the similar
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results on the prolongation of a Lie algebroid. In section 2 we recall the definition of prolongation
of a Lie algebroid and review some basic concepts such as the vertical and complete lifts on the
prolongation of a Lie algebroid. In section 3 we introduce a kind of derivation along projectable
sections and in the last section we show that in a prolongation of a Lie algebroid the complete lift of
a Lie symmetry of a spray, is a curvature collineation for some classical tensor fields.

2. Preliminaries

Let m: E — M be a vector bundle of rank m over an n-dimensional base manifold M. Denote by
['(E) the C*(M)-module of smooth sections of 7. A Lie algebroid structure ([-,-]g,p) on E is a Lie
bracket |-, -] on the module I'(E) together with a bundle map p : E — T'M, called the anchor map,
such that we also denote by p : I'(E) — x(M) the homomorphism of C°°(M)-modules induced by
the anchor map and for being algebroid, the following role must be hold.

&, fnle = fI& nle + p(E)(f)n,

for all £, n € T'(E), f € C*(M). Here we regard the anchor map as a homomorphism I'(E) — x(M)
of C*(M)-modules, denoted by the same symbol. Then we also have

[p(€), p(n)] = pl&, ],

so the anchor map p : T'(E) — x(M) is a Lie algebra homomorphism at the same time [7].
On Lie algebroids (E, [, ]k, p) the differential of E, d¥ : T(A*E*) — T'(A*1E*), is defined by

k

dE6(£07 cee 7516) = Z(_l)zp(fl)(lu’(goa cee 7[/57;7 e Jé-k))
=0
+ Y (D)0 &l Xo -1t )

i<j

for € T(A*E*) and &, ...,& € I'(E), where the ¢ side an argument means the absence of that
argument. In particular, if f € T(A°E*) = C>®°(M) we have d¥ f(£) = p(¢)f. By using the above
equation one can deduce (d¥)? = 0. Moreover, for £ € T'(E), the contraction i¢ : [(APE*) — T'(APE*)
is defined in the standard way and the Lie differential operator £f : T(APE*) — T'(APE*) is defined
by £§ =i¢od” +d¥ oi¢ [3].

If we take a local coordinate system (z%)"_; on M and a local basis (e,)™_; of sections of F, then
we have the corresponding local coordinate (x*,y®) on E, where x' := x' o m and y*(u) is the a-th
coordinate of u € E in the given basis. Such coordinates determine local functions p’,, Lzéﬁ on M
which contain the local information of the Lie algebroid structure, and accordingly they are called
the structure functions of the Lie algebroid [7]. These functions are given by

pleq) = pl, o and  [eq, eslp = L] ze,.
An easy calculation leads to the structure equations
N 0P y ; OLG v
0) s~ Py = Plase () D Iy 2+ Loy L] =0, (21)
(CHERD
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The vertical lift of a function f € C*°(M) is f¥ := foxw € C™(FE). The vertical lift £ of a section
¢ e T(F) is given by
we B €'(u) = &(n(w))! € TF,

where  : Erq) — Tu(Eru) is the canonical isomorphism between the vector spaces Er(, and

TuExw(see, e.g., [12], 2.4.(5)). Then &" is a vertical vector field on E. Thus it follows that if

¢ = &%, € T(E), then the vertical lift £V has the locally expression £¥ = (£ o w)ayia. If & n are

sections of £ and f € C°°(M), then using the local expressions of them, we obtain [9]
E+n)'=&"+n", (O =r¢, 'f'=0.
The complete lift of a smooth function f € C*°(M) into C*°(E) is the smooth function
[ E—R, ur— f(u) = p(u) f.

Then
(fg)e=feg" + 9"

because for every u € F,

(f9)°(w)

(u)(fg) = (p(u) f)(g o) (u) + (f o m)(u)(p(u)g)

p
fu)g” (u) + ¥ (u)g"(w).

Locally we have

Fo() = Fo(u%ea) = pluea)(F) = uplea) () = uph o = (3 ((ph o) o 7)) u),

ie, flew) = y*((ph55) o).
Lemma 2.1. [9] If ¢ is a section of E and f,g € C*°(M), then
(f+o=f+g" (fo)=rf9" + 19 &f =0

We refer that every smooth section w of the dual bundle of 7 : £ — M determines a smooth
function o — M given by

~

WO(u) = Wrgw)(u).
Now let £ be a smooth section of E. There exist a unique vector field £¢, called the complete lift of
&, such that
i) s m-projectable on p(&),
i) £°(0) = £20,
where 6 € I'(E*).
It is known that £¢ has the following coordinate expression([3], [4]):
e VS ML) o) (22)

& ={(p;) o}
Lemma 2.2. [9] If ¢ and 7 are sections of E and f € C°°(M), then
(i) &fe=(p(&)f)e, forall feC®(M),
(if) &Y = (p(&)f)",
(i) [€n] =[EnlE  [€5nY] =& nlE  [€.n"]=0.
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2.1. The prolongation of a Lie algebroid

In this section we recall the notion of prolongation of a Lie algebroid and we consider a Lie algebroid
structure on it. We also study the vertical and complete lifts on the prolongation of a Lie algebroid.

Let £7E be the subset of F x TE defined by £F = {(u,z) € E X TE|p(u) = m.(z)} and let
e : £TE — E be the mapping given by mg(u,z) = 7g(z), where 7z : TE — FE is the natural
projection. Then (£7E,7g, F) is a vector bundle over E of rank 2n. If we define an anchor map
pe: £TE — TFE on £L™E, then this vector bundle becomes a Lie algebroid with structure ([ -, -], pz),
where the Lie bracket [-, -] is given by formula (17) in [9].

We introduce the vertical subbundle

v£TE = kerrs = {(u,2) € £7Blrs(u,z) = 0},

of £7FE where 7, : £7E — FE is the projection onto the first factor, i.e., 7¢(u,z) = u. Then the
elements of v.£7E are of the form (0,2) € E x TE such that m.(z) = 0, these elements are called
vertical. Since m,(z) =0 and ker 7, = vE (7. : TE — T M), then we deduce that if (0, z) is vertical
then z is a vertical vector on E [9].

If we consider a local base {e,} of sections of E and coordinates (x*, y*) on E, then we have local
coordinates (x',y*, k%, z%) on £™E given as follows. If (u,z) is an element of £7F, then by using
p(u) = m(2), z has the form

; 0 0
z = ((pau®) 077)@‘1; + Zaa—ya|v, zeT,E.

The local base {X,,, V,} of sections of £7E associated to the coordinate system is given by

Xalo) = (calm(@) (0 Mg ol.). Valo) = (0.5 10)

If 7 is a section of £7F by coordinate expression
n(a,y) = (2',y% Z2%(2,y), V(z,y)),
then the expression of 77 in terms of base {X,, V,} is
nN=2%%, +VV,.
Lemma 2.3. [9] The followings are hold.

IIXOHX/B]] = (L’aygﬂ OW)X% [[vaﬁ]] =0, [[VOMV/J’]] = 0.

2.1.1. Vertical and complete lifts on £7FE

The vertical lift " and the complete lift n° of a section n € I'(E) as the sections of £7E — E are
defined by

" (w) = (0,7"(w), 0°(uw) = (n(r(u),n(v)), u€E.
It is shown that vertical and complete lifts has the coordinate expression

0
" =" omVa, 1°=On"omX,+ yﬁ[(ﬂé% —17LS) o |V, (2.3)
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where n = n%, € I'(E) [9]. Note that the first components of " and ¢ are free of indeterminacy.
Setting n = e,, we have
n“ =X, — yﬂ(Lgﬁ om)V,. (2.4)

Here we consider the pullback bundle (7*E, pri, E) of the vector bundle (E, 7, M), where
mE:=FE xy E={(u,v) € Ex Elr(u) =7(v)},
and pry is the projection map onto the first component. We also consider the sequence
0—ExyE-5LELExyE—0, (2.5)

with j(u,2) = (7g(2), Id(uv)) = (v,u), z € T,E, and i(u,v) = (0,v,) where v,/ : C*°(F) — R is
defined by v) (F) = 4|,_oF(u+tv). Indeed we have v} = 4|,_o(u+ tv). Function J =ioj: £7E —
£7E is called the vertical endomorphism (almost tangent structure) of £7E. For any section n on F,
the map

n:E—n1E,

defined by 7(u) = (u,nom(u)) is a section of 7*7, called the lift of n into I'(7*7). ) may be identified
with the map now : E — E. It is easy to see that {n]n € ['(E)} generates locally the C*°(FE)-module
[(7*7). It is obvious that i(7) = 1", j(n") = 0 and j(n°) = 7. Moreover, i is injective and j is
surjective. Therefore the sequence given by is an exact sequence. Moreover, if {X*, V*} be the
corresponding dual basis of {X,,V,}, then J =V, @ X* (see [9]). One can derive from the above
exact sequence that

ImJ =Imi =v£L™E, kerJ=kerj=vL"E, JolJ=N0.

The section C' : E — £™F given by C := i 04, is called Liouville or Fuler section, where § : u €
E — 6(u) = (u,u) € E xy E. The Liouville section C' has the coordinate expression C' = y*V,,
with respect to {X,, Va}. Section 7 of vector bundle (£7E, 7, E) is said to be homogenous of degree
r, where 7 is an integer, if [C,n] = (r — 1)n. A function h : £7E — £7E is called a horizontal
endomorphism if hoh = h and kerh = v£™E. Also, v := Id— h is called vertical projector associated
to h. Setting h£™E := Imh and using the fact that £7F = ker h +Imh =v£™E & h£L™E, it will be
deduced that

£"E=vL"E S hLTE. (2.6)

Thus one can check the following equations.
(1) hJ=hv=Jv=0, (it) vov=nw, (ii)vh=0, (iv) Jh=J=nuvl (2.7)

Moreover, h has the locally expression h = (X5 + BgV,) ® X7 (see [9]). Let 1 be a section on E.
The horizontal lift of by h is a section of £7E defined by n" = h(n®). If we set d, = e", then we
have 0, = X, + B?Vs = h(X,). It is easy to see that hé, = ., vd, = 0 and

0

0
. = 2.
ox T Bagy (2.8)

p£(52) = (ph, o )

Moreover, {d,} generate a basis of h£™E and the frame {d,, V,} is a local basis of £7E adapted to
splitting (2.6) which is called adapted basis. The dual adapted basis is {X“, §V*}, where

SV =V — By’
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Lemma 2.4. [9] The Lie brackets of the adapted basis {d,, V,} are
oBy

[[5047(5ﬂ]] = (LZ[BOW)(S,Y—i—RlﬂVV, [[(5&>V5]] - _8_}/5 R [[VOMVB]] =0, (2'9)
where 0B 95 0B 0B
() B i o A8 2085, A
Rlﬂ - (pa o 7T) ox’ - (pﬁ ° 7T) Ixi + Ba ayA - B,B ay)\ + (Lﬂa © ﬂ-)B;\Y (210)

Thus, one can immediately check that h has the following coordinate expression with respect to
the adapted basis
h=0,® X“. (2.11)

Lemma 2.5. [9] The followings are hold.

Wa =Va, vXy =BV

[0}

3. Derivative along projectable sections

In this section considering projectable sections, a derivative along them is introduced.
A section S of the vector bundle (£7E, 7wz, E) is said to be a semispray if it satisfies the condition
J(S) = C. It is easy to see that local form of a semispray S is

S =y X, + SV,. (3.1)

Moreover if S is homogeneous of degree 2, i.e., [C,S] = S, then we call it spray. It is also easy to
0S”

Oy

We can deduce the following exact sequence from the exact sequence ([2.5))

see that S is spray if and only if 25° =y

0 — I(x*n) - T(£L7E) 5 T(r* 1) — 0. (3.2)

A right splitting of the exact sequence , is an Ehresmann connection. In other words any smooth
C*(E)-linear mapping H such that j o H = lp¢=g)), is an Ehresmann connection.

The vertical mapping V associated to H is a left splitting of that satisfies in ker(V) = Im(H).
Moreover, we have V(V,) = &, and V(X,) = —BZép.

It is easy to see that h = H oj and v = 10V = lp(grp) — h are the horizontal endomorphism
and the vertival projection on £7E, respectively. Moreover, we have H (%) = h(n“) = n". The
Ehresmann connection H is said to be homogeneous if [C,n"] = 0 for all n € T'(E).

We can derive a homogeneous Ehresmann connection H in F from a spray S on E such that for
any n € I'(E)

1
0" =Hn = §(nc+ [7".S]).

This Ehresmann connection is called the Berwald connection. In this manner, it will bee seen the
following (see [9])

Lgom). (3.3)
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We define the wertical differential of a function F' € C*°(E) and a section 7 € E X E as the
I-form VYF and (1, 1)-tensor V"7 as follows

VUFE = pe(if)F, E€ExyE,

and
VUi(€) = Ve =jli€,c];  fe€eExyE, ¢e€fLTE, jo=1i. (3.4)
It is easy to see that
oF
V'Fe, = )
é ya

For an € I'(E), we define a (1, 1)-tensor field by

[T e =1JEn] =T [&n],  §€T(E). (3.5)
In particular with acting on ¢ and 1" we have the following
L) = [ =0 (3.6)
In terms of Ehresmann connection, we can rewrite
v =5 [, Hal. (3.7)

Setting & = £%¢,, and 7] = 77°¢3, one can see that

V= 704677/8 . - *aaﬁﬂ/\
Ven=¢ ayaj(éﬁ) =¢ Dy ? (3.8)

Using this equation, one can deduce the following
V”n = 0. (3.9)

For any Ehresmann connection H, similar to the vertical defferential we can define the h-Berwald
defferential V" as follows

V() = pe(HEF, (3.10)

and

V(€)= Ve = V[ HE, ] . (3.11)
Using expression of p(d,), we can compute

~ - OF oF
V'E(&,) = p’a@ + Bz“a_yv' (3.12)

Moreover setting &€ = £%¢€,, and 71 = %€, we have
Ven =V H(E ), i) ] = V[E0a17Vs]
= V{1 [0a, Va1 +€(p(0a)77)Vs — 77 (p(V5)€)da}

. 6
e gBav —|—§(plao7r)g o 01y,

Ola ¥
B, .. on’
— (G S om g + E BTV, (3.13)
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An R-linear mapping D : T(7*1) — T(7*71) preserving type and commutes with contraction and
satisfied the
D(A® B)=(DA)® B+ A® (DB); A, B e X(ng),

where T(7*m) denotes the family of all tensor fields of the bundle 7*r, is called a derivation along
m¢. If we have enough data on C*°(F) and I'(E), then we can build a tensor derivation[g].

Lemma 3.1. Any derivation of T(7*7) is completely determined by its action on C*°(E) under the
anchor map and its action on I'(7*m). Converesly, given a section 7 € I'(£7E) and an R-linear
mapping Dy : I'(7*m) — I'(7*r) such that

Dy(F&) = (pe(M)(F))E+ FDog,  el(n'm),  FeC¥(E),

there exist a unique derivation D along 7, such that D 1 C®(E) = p,(n) and D 1 I'(n*1) = D,.

A section € : E —» £7(E) is said to be projectable if there is a section X : M — E such that
Tp0o& = X or. It is easy to see that both £ and £¢ are projectable when & € T'(E).

Lemma 3.2. [fg: £TE — FE be projectable, then there exist a unique derivation Eg along wp such
that
EgF = pe(§)F, F e C™(E), (3.14)

Laj=i'[& ],  fqel(a'n). (3.15)

Proof . Since 5 is projectable and 7 is vertical, then [[{,m]] is vertical too. Therefore 1) is a
well defined equivalency. Now if F' € C*°(FE), then

LeFn=i ' [&i(Fn)] =i [§ Finl =i '(F & in] +pe(&)(F)(in))
= FLa1+ pe(€)(F)n.
Now using lemma , we prove the assertion. [

We call the Zg as Lie derivation along m with respect to E Note that if gbe projectable, then

[€,i7] =v[E 7] =io0V[E,i7]. Thus we can write (3.15) as

Lai=VI[Ein]. (3.16)
Setting & = €93, + 7%V, and & = G°¢,, We can express and as follow
LeF =&(pl, 0 W)S}Z + (€8 +1 )gj (3.17)
Leo = V[0 +7"Va, 5%i(5) ] (3.18)
= {&%(pl, 0 W)ggl — & Bgl;;
AR

For future computations, we need the following lemma.
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Lemma 3.3. Ifn be a section of E, then

chg: m = Z\nf; (3.19)
LyvE= VL. (3.20)

Moreover, if H is an Fhresmann connection on £™E, then
h£ Vi 5 (3.21)

Proof . Let n = n%, and & = &%e;z. Then using the second equation of (2.3)) and ([3.18)), we obtain

~ o~ a e —_—
Ecf = {0~ & O e L) 0w = [ €]

To proof (3.20)), we let £ = £%€,. Then using the first equation of (2.3) and (3.18) yield

o

~ = 0.
En‘/g (77 oﬂ)afﬁ _VU§

Now, we prove (3.21)). (3.13]) and (3.18]) imply that

i o -39B7 dE™ 3
Ln€ = {((U’BP,B) o) i (n? o W)fﬁ (9y; +(n" o 7T>B'€8_yﬁ}ea = V%f

Thus we can write B B
Ly =Vz, Lon = V%.
Corollary 3.4. Ifn be a section of E, Then
Looj=joLle, (3.22)

Lye o VE—=VioLye = Lygv, (3.23)
Further if H be an FEhresmann connection, then

ch o V? — V? o Enc = Z[[nc7€hﬂ, (3.24)
where £27) =l denotes the [[f n].

Proof . For any n € £7(E) we have
T 0] =14 Jn]. (3.25)
Thus B
Lyoojii=V [0, Jql =VJ[n° 0] =3iln". 7] =iLen,
proving (3.22). For any F € C*°(E) and ¢ € ['(£™E),
(Lye 0 VE= Vo Lye)F = Lye(pe(€)F) = Vipe(n®)F)
= pe()(p£(€)F) = pe(€)(pe(n®)F)
= pe([1,€" DF = pe((n, ) F = Liygv F.
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Using local coordinates and straightforward computations, yield the following

[nY,ig] = J[n", HET. (3.26)
Also from (3.4)), (3.22)), (3.25),(3.26) and Jacobi identity, we conclude

i0(Lye 0 VE=VioLye)(@) =ilLyej[€", Ho]) —i(Ve [n°,io])
= J[n“ 16", Hal] T [ , Hoi [, io]]
=[n°.[€",io]]1 - [¢". [n° io]]
=[n°.[€".io] 1+ [¢" Lio,n°]]
=~ [z, [n°,¢" 11 =n.¢]", 7]

Hence _ - ~
(ﬁnc © Vz o Véio Enc)(5) =i! [[n, g]v’w]] = Lo g0,

proving (13.23)). To proving (3.24]), first take a F' € C°°(F). Then we have Eunc,ghﬂF =pe([n%, " F
and

(Lye o VE=VEo Le)F = Lyc(pe(€)F) = VEpe(n)F)

= pe()pe(€")F — pe(€)pe(n)F
= [pe(n), pe(€")]F
= pe([n°, € DE.

Hence both sides of (3.24)), act on the functions in the same way. On the other hand

i0(Lye o Ve = Vo Lye)(o) =i(LyeV[€hin]) —ivei [nio]

=[n“.v[e" ig]] -V [¢", [0 ia]]
= [0 vl ia]] —v " 1, ia]].

But [¢"ic] and [&", [n©,i5]] are vertical. Thus

io(LyeoVE=VEoLye)o)=[n° [€"ia]] - [€" [ io]]
=[[n°.¢"],ia].
The assertion will be proved with acting i~! on both sides of the above equality. [J

Acting the equality (3.23)) on &, yields the following.

Corollary 3.5. Let n,£,0 € I'(E), then Vzio Enc (¢) =0.

4. Curvature collineation

In this section, we introduce some tensors that are important in studying the configurations of the
bundle maps and yield some results on them in view of collineation.

The Jacobi endomorphism X : Ti(n*m) — T}(7*m) whrere for example 7; denoted the (1,0)
tensors of bundle 7*7; is defined as

K(n) = VS, H@m)]. (4.1)
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Corollary 4.1. The Jacobi endomorphism K has the following locally expression.

OB
ot

x(6,) = {~y* (LY, o m)By + BB + yf”(pg o)
. as° oB°
(A B8 2
(p7 o) Do +S 8y5 7 8yﬁ }ea

Proof . In [9], it is shown that
H) = 1" Xa +7°BVs, 0 =16 (4.2)

Therefore, choosing & = 7€, yields

_ o als da7 o 0(7BP)
[5,1(2)] = 45" (L% 0 ™) + 1°[(p}, 0 7)o, + 4 {(gh 0 1) 2k 2]
do” 05«

TR a o
JBX—}-SayX J[(pVOW)axl]Va
d(07BY) 05«
@ _5'R8
+S s Vg —a'B, " oy 7V

Now, setting & = ¢, and using H(é,) = J,, arise

oB¢

[S,H(E)] = [8.6,1 = {1(Lg, 0 7) — B} + {y°(p 0 m) 5 L

Acting V on the above equality, yields the assertion. [J

Using the Jacobi endomorphism K, the fundamental affine curvature ® : T (7w*m) — T, (7*m) is
defined by

1 _ B
R(1,€) = (VK& 1) = VK@, ). (4.3)

The affine curvature H : T (m*7) — T3 (7*7) is defined by
H (77, )5 = V'R(7,7,€). (4.4)

For a A € T}, (m), its trace denoted by tr(A) is defined as follows
tr(A) (X, ..., X;) == tr(P), O(2):=AZ,X1,..., X)),

where 7 is a bundle projection.
The projective deviation tensor W° is defined by

2
(tr?{) ®0 +—

1
WO = K — n_ l(trK)[dF(fyrE) —+ (Vvtrﬂc) (5 (45)

n

Note that we can quickly rewrite this tensor as follows

o 1 o
= K— K Idr(¢~p) + n—H(V“ K —trV'K) ® 0, (4.6)
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where 170( = tr?(

The fundamental projective curvature is defined by

W,E) = (VW (E) — VW (3. 8)), (4.7

and the projective curvature W* as

W' (0,)(0) = V' W(7,7, ). (4.8)
The Berwald curvature B and Douglas curvature D are defined by
(7.6)(@) = (V'V"5)(1, ), (4.9)
and 1
D:=B— n—ﬂ{(tr@)@]dp(,gwE)—i—V”trQS@ﬂ, (4.10)

where ® shows the numerical factor is omitted from symmetric product.
A Lie symmetry of the semispray S is a section n of E such that [S,n¢] = 0. We have the
following.

Proposition 4.2. A section n = n%e, of E is a Lie symmetry of S if and only if

V¥ (ko ma(@ﬂ—;ﬂ () om) o + S 0 m) — O oM S =0, (A1)
where 1! 1= p%ai —n7LS,
Proof . Using and we obtain
[5,7°] = [y*Xa + SV, (1 o m) X + y* (i, o m)W2 ]
— A 22Ty (L) o) — ¥ 0 W)
P o T () o m 2 4 3 o)

05“
A
— 47 (nf) o W)a—yA}Va-

Using direct calculation we deduce that the coefficient of X,, vanishes. Therefore [S,n¢] = 0 if and
only if the coefficient of V, is zero. [

Lemma 4.3. Let S be a spray on the prolongation of a Lie algebroid with the structure ([-,-], pe)
and n € I'(E). Then the following statements are equivalent.

(i) n is a Lie symmetry of S;
(ii) [n, )" = [n°,&"] for any £ € T(E);
(iii) [v, 7"~ =0.
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Proof . (i) = (ii): Setting

A, &) ==[n,€]" = [n°,€"], (4.12)
it arises the following
. 0Bg _on , B3
A(n, &) = %{n’p} Y Pl o 'Z +y” ”'70 S — B + 1585}V, (4.13)

where n = n%, and £ = ez, Putting (3.3)) in the above equation, yields

1., s oL O,

1, 0*8 N 1,08 4.\
+ §YWU|7(W —L3,) — 5%(8},—5 —y L)

—y L)} (4.14)

Differentiating from (4.11]) with respect to y and putting it into the (4.14)), we obtain

87) 8La
A(n,€) = —Sﬁ{y P S Ly Lo, — nehy” 657

— v\ LY ava_wﬂ 4.15

. On®
Putting Ny = p%% —nLg, into the above equation, simplification and suitable changing of indices,

the following will be yield.

1 on® iapj 8,0
An,€) = §§ﬁ{yA—j( Ao - — 5o

ALY zaL 0 aL o
—}’77(an +LﬁL)\9+p'ya +L Lo

+ P L))

8L

Applying with above equation, clearly A(n, £)=0.
(4i) = (ii1): Direct calculations give us [v, 7]~ (Vs) = 0 and [v,n°]" N (X3) = A(n,ds). Since
(#4) holds, thus from (4.12)), we have A(n,€) = 0 for any ¢ € T'(E). Thus A(n,d,) = 0 and conse-
quently (i4) is hold.
(14i) = (4): From (iii) we obtain
. OBj L ong, \ 0B§
U Y Pher o 7Y mw L= By + B = 0. (4.17)

Plugging (3.3)) into the (4.17)), relation (4.11]) will be yield. Thus (i) is hold. O

A projectable section 5 is said to be a curvature collineation of a curvature tensor C' € T;! that
k € {1,2,3} of a spray algebroid, if £:C' = 0.

Theorem 4.4. Let S be a spray on the prolongation of a Lie algebroid with the structure ([-,-], pe)
and n be a Lie symmetry of S. Then n° is a curvature collineation of K, R and H.
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Proof . Let £ be a section of E. Then

(Lo K)E = Lo (K(€)) — K(Lyo) = Le(V[S,E"]) = VS, H(L,cE)]
=i [ w8, ] -V[S, Hoi  [n°,€]]
=i ([, 0[S, €] —v[S. [n.€" D).

Using lemma , yields
(Lo )€ =i ([0 0[S, " T v [S, [, €" D).

According to the Jacobi identity and because of 7 is a Lie symmetry of S, we have [ S, [n%,&"]] =
[17¢,[5,€"]]. Therefore and using lemma (4.3)), the following will be yield.

(Lye K)E = =i ([0, 1) N[ S,6"]) = 0,
proving the first assertion. Also the vanishing of ch?( is equivalent to
Enc oKX=%Xo Enc. (4.18)

Using relation (3.23]), we deduce

~ ~

L,c(V'K(5,€)) = V& o Le K(E) + Liyv (K(E)). (4.19)

On proceeding to prove the second, we check it on the locally bases as follow

(LyeR)(E,8) = Lye(R(E,5)) = R(L,e,5) = R(E L,e). (4.20)
But
~ ~ 1 ~ A ~ ~
Enc (R(ga U)) = g(ﬁnc (VUK(U, 5)) - Enc (vvx(& U)))
1 ~ ~ o~ ~
= g(V§ o Ly K(§) + Liyopv (K(E))
— Vio LeK(3) — Liygv(K(3))),
and
~ 1 ~ o~ ~ ~
K(ﬁncf,a’) = g((V”K)(E, Encf) - (VUK)('CnC&a))
1 i ~
= S(VER(Eyed) — (V5 _0)G).
According to corollary and relations and 1) and noting that chg =i n%, V] =

[n,&], we can derive

R(E,eE,5) = 575 0 L,e(K() — Ty (K(3)))



Curvature collineations on Lie algebroid structure 8 (2017) No. 2, 47-63 61

Thus
{R(LcE,5) + R(E, L,c0)} = —R(LyoE,5) + R(L,c, )
1 I ~ v ~
= (V50 £yo(K(E) + Vig (X(3))
+Vgo Lye(K(@)) = Vi (%K(€)}
1 ~ A ~ ~
= (V20 £ye(K(E) + Eiy v (X())
+ V2o L,e(K(3)) = Lipo (K(9)}-
Therefore the right-hand side of is zero. Hence we proved the second assertion. Finally for #,
using and corollary possess to
(L,cH)(E,5,0) = Lyc(H(E,5)0) — H(L,cE,5)0
— H(E, L,c0)0 — H(E,5)L,c)

Since chK = 0, thus from 1} we obtain
L,e(R(E,5)) = RAL,eE F) + R(E L,c0). (4.21)
Arising from 1’ and relation 1} we deduce that ljnc}[ =0.0

~ ~

Lemma 4.5. Let F' € C®(E), then (L,cV"F)(&) = pe(&¥)(pe(n°)F).
Proof . For every ¢ € I'(E), we have
(LeVF)E) = pe(n)pe(e”)F) = VF(n.€)
= pe([n°, € DF + pe(€)(pe(?)F) = pe(ln. ) F
= pe(€)(pe(n°)F).
U

Theorem 4.6. Let S be a spray on the prolongation of a Lie algebroid with the structure ([-,-], pe)
and n be a Lie symmetry of S. Then n° is a curvature collineation of W°, W and W*.

Proof . Noting that chfdp(_fﬁE) =0, Enc(i =V(0) =0 and Enc otr=tro ch we have

- s 1 - 3 -
EnoW = Enoﬂc — mtr(ﬁnc K)]dp(£wE) + 1 (tr([,nc?{)) ® 0
2—n v
m(ﬁnc (V tI‘K)) & 5
2—n ,~ v
== (L,c(VHrK)) ® 9.

~

Now according to lemma 1} (ch (Vtrx))(§) = 0, that proves ch We° = 0. The similar result
for W and W* is analogous to theorem (4.4). OJ
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Theorem 4.7. Let S be a spray on the prolongation of a Lie algebroid with the structure ([-,-], pe)
and n be a Lie symmetry of S. Then n° is a curvature collineation of the Berwald curvature.

Proof . For any sections &, 0,9 € T'(F),

~ ~ ~ -~ ~ o~

(£,8)(€,3,9) = Lye(B(E,5)9) = B(L,e£,5)0

—93(5 L,c0)0 — B(E,7)L,c0
= Le(V'V"D)(E.3)) — (V'V"D)([n.€].7))
— (VV")(E [n.0] — (V'V"L,eD)(E,7)
:Ec(wv’w) Vi ﬂv’w vvvh 19 ViVLL, ¥
= VUL VED) + Lipev VED — Vig th?

- ViV 19 ViL,eVED + Vi ﬁ[[nc 0
v h
- —ngW;]ﬁ + vgﬁﬂnc,dhﬂﬁ = 0,

proving the assertion. [

Theorem 4.8. Let S be a spray on the prolongation of a Lie algebroid with the structure ([-,-], pe)
and n be a Lie symmetry of S. Then n° is a curvature collineation of the Douglas curvature.

Proof . It is enough to show that ch<vvtl’$) = 0. For any sections £, 0,9 € I'(E),

Lo (V'0rB)(€,5,9) = pe(°)(V'0rB)(E,5,9)) — (V'tr8)([n, &), 3, 0)

~

pPr

— (V°trB) (€, L,c0,0) — (VtrB)(€, 7, L,c0)
pe( >p£<5V><tr (,9)) — pe([n, €]V) (trB(7, D))
— pPg

~ o~

(€)W B(L,c5,0)) = pe(&”) (0BG, L,eD)).
Scince [,V ] = [n,€]V, then

~

L,c(V'trB)(£,5,9) = pe(€ ) {pe (1) trB(3, V)
— trB(L,cT, 1) — trB(3, L,cV)}
= pf(fv){Enctrﬂ(U, 19)}

= pe(€){(rL,e8)(5,0)}
=0.
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