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Abstract

In this article, we introduce the interval-valued intuitionistic fuzzy set (IVIFS), which are gener-
alized forms of intuitionistic fuzzy set (IFS) and fuzzy set, this is because in intuitionistic fuzzy
sets the non-membership function also applies to evaluations, and these sets are useful for modelling
ambiguous concepts that abound in real problems. Here we try to look for new methods for more
practical solutions in optimization problems for various sciences such as computer science, mathe-
matics, engineering, medicine, psychology, climate and etc. First, with the introduction of t-norm
Frank, an action we construct some Frank aggregation operators on interval-valued intuitionistic
fuzzy numbers (IVIFNs), including the Frank weighted averaging operator, Frank-ordered weighted
averaging operator, Frank hybrid weighted averaging operator, Frank geometric weighted averag-
ing operator, Frank geometric-ordered weighted averaging operator, and Frank geometric hybrid
weighted averaging operator. Also, examine some of the characteristics of these operators. In the
following, we introduce two multiple attribute group decision-making methods (MAGDM) based
on such operators. Finally, we provide illustrative examples of these methods.

Keywords: decision-making sciences, aggregation operators, nonlinear integrals, intuitionistic
fuzzy set, t-conorm and t-norm Frank.
2010 MSC: 47H10, 54H25.

1. Introduction

In decision-making sciences, aggregation operators can be used to investigate issues generated by
information sources during the decision-making process. Aggregation operators are special functions
defined on a subset of the generalized real number system. The simplest aggregation operators are
arithmetic and geometric averages, these operators are not only widely used in various sciences but are
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also widely used in our daily lives, as mentioned at the end of this article. Researchers have recently
introduced new aggregation operators in computer science and decision science using powerful tools in
fuzzy theory. Geometric mean is one of the basic operators of aggregation, because it has special and
wider characters than arithmetic mean, such as weighted geometric operators, continuous weighted
geometric operators, linguistic weighted geometric operators, etc. The fuzzy set was first proposed
and founded by Zadeh in 1965 [46], and others began to develop different types, such as Saadati
[13, 18, 21, 22, 28, 29, 34, 36, 32, 31, 35], and Allahviranloo [1, 2, 3, 4, 5, 6, 16, 19, 26, 37] ,that they
have done a lot of extensive activities in various fields of fuzzy and intuitive fuzzy, which can be very
useful resources for those interested in these fields.

There are several methods for defining aggregation functions, one of which is the efficient use
of integrals. Researchers have recently introduced new operators in decision science using powerful
tools in fuzzy theory. It should be noted that to provide this paper, nonlinear integrals can be used
in combination in the structure of these operators. Sugeno and choquet integrals are widely used
examples of this generalization, [20]. Such integrals combine information from multiple sources in
order to achieve a final fuzzy classification.

Based on fuzzy set theory, Atanassov [7], [8] proposed the concept of intuitionistic fuzzy set
(IFS), which is composed by a membership function and a nonmembership function. IFS overcomes
a disadvantage of the fuzzy set which can only have a membership. Later, Atanassov and Gargov [9]
and Atanassov [10] further proposed the interval-valued intuitionistic fuzzy set (IVIFS) in which the
membership function and nonmembership function are extended to interval numbers, and defined
some operations and relations of IVIFS. Liu et al, [25] proposed the interval-valued intuitionistic
fuzzy entropy. Zhang et al, Xu and Yager [45] developed a new similarity measure between IVIFSs
and utilized it to the group decision-making problems with interval-valued intuitionistic fuzzy num-
bers (IVIFNs). Wang et al, [39] defined a new score function for the IVIFNs based on the prospect
value function, and applied it to the interval-valued intuitionistic fuzzy multicriteria decision making
problems. Tan and Zhang [38] presented an extended technique for order of preference by similarity
to ideal solution(TOPSIS) method for multiple attribute decision-making (MADM) problems with
IVIFNs. Wang and Xu [42] presented a fractional programming method for interval-valued intuition-
istic fuzzy multiattribute decision making. Gomathi Nayagam et al,[17] proposed a new accuracy
function for IVIFNs.

All above aggregation operators are based on the algebraic operational rules of intuitionistic fuzzy
numbers (IFNs) or IVIFNs, and the key of the algebraic operations is algebraic product and algebraic
sum, which are one type of operations that can be chosen to model the intersection and union of IFNs
or IVIFNs. In general, a general t-norm and t-conorm can be used to model the intersection and
union of IFNs or IVIFNs [44]. Xia et al, [44] gave some operations of IFSs based on Archimedean
t-conorm and t-norm which are generalizations of a lot of other t-conorms and t-norms, such as
algebraic, Einstein, and Hamacher t-conorms and t-norms, and proposed the Archimedean t-conorm
and t-norm-based intuitionistic fuzzy weighted averaging operator, and the Archimedean t-cornorm
Hamacher t-conorm and t-norm, which are the generalization of algebraic and Einstein t-conorm and
t-norm [11], are more general and more flexible.

As we know, the advantage of choosing an intuitive fuzzy number set over fuzzy numbers is that,
in addition to the degree of membership, they also include the degree of non-membership, in other
words, the degree of skepticism is also included in the information. This in turn leads to better
and more desirable results in decision-making to solve problems, especially when there are more
ambiguities and complexities of the problem. Now selecting the set of interval-valued intuitionistic
fuzzy numbers, which is an extension of the set of intuitive fuzzy numbers, makes it possible for
us to choose more problems. Also, because the t-norm Frank is logarithmic, it has a nonlinear
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structure; therefore, it is preferable to be selected compared to some other t-norm, especially those
that have a linear shape. So the general conclusion is that building a aggregation operator based on
t-norm Frank on interval-valued intuitionistic fuzzy numbers in solving various problems and multi-
attribute decisions, especially those with more ambiguity and complexity, is a very useful tool. It
will be more efficient and reliable, especially issues related to profits and losses in stock exchanges
and transactions, issues related to artificial intelligence, etc.

The first, due to the importance of interval- value intuitionistic fuzzy numbers, in multiple at-
tribute decision making sciences, in this paper, introducing t-conorm and t-norm Frank . We con-
stract the various aggregation operators on such a set of numbers. In section second, we briefly review
some basic concepts of IVIFSs and Frank t-conorm and t-norm. In Section third, we establish Frank
operations of IVIFNs and their characteristics and, furthermore, develop some Frank arithmetic ag-
gregation operators and Frank geometric aggregation operators based on IVIFNs, such as IVIFFWA
operator, IVIFFOWA operator, IVIFFHWA operator, IVIFFGWA operator, IVIFFGOWA operator,
and IVIFFGHWA operator. We also study some desirable properties of these operators, such as com-
mutativity, idempotency, monotonicity, and boundedness, and some special cases in these operators.
In Section fourth, based on those operators introduced in Section third, we propose two methods
for MAGDM problems in which attribute values take the form of IVIFNs. In Section fifth, we give
examples to illustrate the application of these methods and compare the developed methods with
the existing methods.

2. Preliminaries

Definition 2.1. [8, 10] Let X = {x1, x2, · · · , xn} be a universe of discourse; an IV IFS Ã in X is
given by

Ã = {< x, ũÃ(x), ṽÃ(x) > x ∈ X} (2.1)

where ũÃ(x) ⊆ [0, 1] and ṽÃ(x) ⊆ [0, 1] are interval numbers, under the condition 0 ≤ sup(ũÃ(x)) +
sup(ṽÃ(x)) ≤ 1, for all x ∈ X. The numbers ũÃ(x) and ṽÃ(x) represent the membership degree and

nonmembership degree of the element x to the set Ã, respectively. For convenience, let ũÃ(xi) = [a, b],
ṽÃ(xi) = [c, d], then ã = ([a, b], [c, d]) is called an IV IFN .

Definition 2.2. [24] Let ã = ([a, b], [c, d]) be an IV IFN ; a score function S of IV IFN ã can be
represented as follows:

S(ã) =
a+ b− c− d

2
. (2.2)

Obviously, S(ã) ∈ [−1, 1].

Definition 2.3. [24] Let ã = ([a, b], [c, d]) be an IV IFN ; an accuracy function H of the IV IFN
ã can be represented as follows:

H(ã) =
a+ b+ c+ d

2
. (2.3)

Gomathi Nayagam et al. [17] further analyzed the deficiencies of the above accuracy function H
and proposed a new accuracy function L shown as follows:

L(ã) =
a+ b− d(1− b)− c(1− a)

2
. (2.4)

Based on the score function S and the accuracy function L, we can give an order relation between
two IV IFNs, which is defined as follows.
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Definition 2.4. [24] If ã1 = ([a1, b1], [c1, d1]) and ã2 = ([a2, b2], [c2, d2]) are any two IV IFNs, then

1. If S(ã1) > S(ã2), then ã1 > ã2.

2. If S(ã1) = S(ã2), then ã1 = ã2.

3. If L(ã1) > L(ã2), then ã1 > ã2.

4. If L(ã1) = L(ã2), then ã1 = ã2.

The notions of t-norm and t-conorm are important notions in fuzzy set theory, which are used
to define a generalized union and intersection of fuzzy sets [15]. Based on t-norm (T ) and t-conorm
(T ∗), a generalized union and a generalized intersection of IFSs were introduced by Deschrijver and
Kerre [14].

Definition 2.5. [14] Let A and B be any two IFSs; then, the generalized intersection and union
of A and B are defined as follows:

A ∩T,T ∗ B

=< x, T (uA(x), uB(x)), T ∗(vA(x), vB(x)) > x ∈ X
A ∪T,T ∗ B

=< x, T ∗(uA(x), uB(x)), T (vA(x), vB(x)) > x ∈ X

where T denotes a t-norm and T ∗ a t-conorm.

Definition 2.6. Let ã1 = ([a1, b1], [c1, d1]) and ã2 = ([a2, b2], [c2, d2]) be any two IV IFNs; then the
generalized intersection and union of ã1 and ã2 are defined as follows:

ã1⊗T,T ∗ ã2

=([T (a1, a2), T (b1, b2)], [T
∗(c1, c2), T

∗(d1, d2)])

ã1⊕T,T ∗ ã2

=([T ∗(a1, a2), T
∗(b1, b2)], [T (c1, c2), T (d1, d2)]).

For instance, the algebraic products ã1⊗ ã2 and the algebraic sum ã1⊕ ã2 on two IV IFNs ã1 and ã2
can be obttained by defining t-norm and t-conorm. When T (x, y) = x · y and T ∗(x, y) = x+ y− xy,
we can get

ã1 ⊕ ã2 =([a1 + a2 − a1a2, b1 + b2 − b1b2], [c1c2, d1d2]) (2.5)

ã1 ⊗ ã2 =([a1a2, b1b2], [c1 + c2 − c1c2, d1 + d2 − d1d2]) (2.6)

nã1 =([1− (1− a1)n, 1− (1− b1)n], [cn1 , d
n
1 ]) n > 0 (2.7)

ãn1 =([an1 , b
n
1 ], [1− (1− c1)n, 1− (1− d1)n]) n > 0. (2.8)

Obviously, the above operational laws are the same as those given by Atanassov [10].

Definition 2.7. [23] The Frank t-norms (TF ) and t-conorm (T ∗F ) are defined for all λ > 1, by

TF (x, y) = log
(1+

(λx−1)(λy−1)
λ−1

)

λ , (2.9)

T ∗F (x, y) =1− log
(1+

(λ1−x−1)(λ1−y−1)
λ−1

)

λ (2.10)
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3. Frank operations of interval-valued intuitionistic fuzzy numbers

Frank t−norm and t−conorm, we can establish the Frank product and Frank sum of two IVIFNs,
respectively. Let ã1 = ([a1, b1], [c1, d1]) and ã2 = ([a2, b2], [c2, d2]) be any two IVIFNs, and λ > 1;
then, the operationd rules based on Frank t−norm and t−conorm are defined as follows:

ã1 ⊕F ã2 = ([1− log
(1+

(λ1−a1−1)(λ1−a2−1)
λ−1

)

λ , 1− log
(1+

(λ1−b1−1)(λ1−b2−1)
λ−1

)

λ ],

[ log
(1+

(λc1−1)(λc2−1)
λ−1

)

λ , log
(1+

(λd1−1)(λd2−1)
λ−1

)

λ ]) (3.1)

ã1 ⊗F ã2 = ([ log
(1+

(λa1−1)(λa2−1)
λ−1

)

λ , log
(1+

(λb1−1)(λb2−1)
λ−1

)

λ ],

[1− log
(1+

(λ1−c1−1)(λ1−c2−1)
λ−1

)

λ , 1− log
(1+

(λ1−d1−1)(λ1−d2−1)
λ−1

)

λ ]) (3.2)

ãn1 = ([ log
(1+

(λa1−1)n

(λ−1)n−1 )

λ , log
(1+

(λb1−1)n

(λ−1)n−1 )

λ ],

[1− log
(1+

(λ1−c1−1)n

(λ−1)n−1 )

λ , 1− log
(1+

(λ1−d1−1)n

(λ−1)n−1 )

λ ]) (3.3)

nã1 = ([1− log
(1+

(λ1−a1−1)n

(λ−1)n−1 )

λ , 1− log
(1+

(λ1−b1−1)n

(λ−1)n−1 )

λ ],

[ log
(1+

(λc1−1)n

(λ−1)n−1 )

λ , log
(1+

(λd1−1)n

(λ−1)n−1 )

λ ]). (3.4)

It is easy to prove the formulas in the following Theorem, therefore, they are omitted here.

Theorem 3.1. Let ã1 = ([a1, b1], [c1, d1]) and ã2 = ([a2, b2], [c2, d2]) be any two IV IFNs, and λ > 1;
then

ã1 ⊕F ã2 =ã2 ⊕F ã1 (3.5)

ã1 ⊗F ã2 =ã2 ⊗F ã1 (3.6)

η(ã1 ⊕F ã2) =ηã1 ⊕F ηã2, η ≥ 0 (3.7)

η1ã1 ⊕F η2ã1 =(η1 + η2)ã1, η1, η2 ≥ 0 (3.8)

ãη11 ⊗F ã
η2
1 =(ã1)

η1+η2 , η1, η2 ≥ 0 (3.9)

ãη1 ⊗F ã
η
2 =(ã1 ⊗F ã2)η, η ≥ 0 (3.10)

We can give the definition of the interval-valued intuitionistic fuzzy Frank averaging operations.

Definition 3.2. Let ãj = ([aj, bj], [cj, dj])(j = 1, 2, · · · , n) be a collection of the IVIFNs, and
IVIFFWA:Ωn → Ω, if

IV IFFWA(ã1, ã2, · · · , ãn) = ⊕F nj=1(wj ãj) (3.11)

where Ω is the set of all IV IFNs, and w = (w1, w2, · · · , wn)T is weight vector of (ã1, ã2, · · · , ãn),
such that wj > 0 and

∑n
j=1wj = 1. Then, IV IFFWA is called the interval-valuead intutionistic

fuzzy Frank weighted averaging operator.

Theorem 3.3. Let ãj = ([aj, bj], [cj, dj])(j = 1, 2, · · · , n) be a collection of the IV IFNs; then the
results aggregated from Definition 3.2 is still an IV IFNs, and even,
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IV IFFWA(ã1, ã2, · · · , ãn) =

([1− log
(1+

∏n
j=1(λ

1−aj−1)
wj∏n

j=1
(λ−1)

wj−1 )

λ , 1− log
(1+

∏n
j=1(λ

1−bj−1)
wj∏n

j=1
(λ−1)

wj−1 )

λ ], [log
(1+

∏n
j=1(λ

cj−1)
wj∏n

j=1
(λ−1)

wj−1 )

λ , log
(1+

∏n
j=1(λ

dj−1)
wj∏n

j=1
(λ−1)

wj−1 )

λ ])
(3.12)

=([1− log
(1+

∏n
j=1(λ

1−aj−1)
wj

(λ−1)1−n
)

λ , 1− log
(1+

∏n
j=1(λ

1−bj−1)
wj

(λ−1)1−n
)

λ ], [log
(1+

∏n
j=1(λ

cj−1)
wj∏n

j=1
(λ−1)1−n

)

λ , log
(1+

∏n
j=1(λ

dj−1)
wj∏n

j=1
(λ−1)1−n

)

λ ]).
(3.13)

Proof . This Theorem can be proved by mathematical induction shown as follows:

1) When n = 1 , w1 = 1, for the left side of the (3.13), IV IFFWA(ã1, ã2, · · · , ãn) = ã1 =
([a1, b1], [c1, d1]) and for the right side of the (3.13), we have

([1− log
(1+λ1−a1−1)
λ , 1− log1+λ1−b1−1

λ ], [log
(1+λc1−1)
λ , log1+λd1−1

λ ]) = ([a1, b1], [c1, d1])

Therfore, (3.13) holds for n = 1.
2) Assume that (3.13) holds for n = k, we have IV IFFWA(ã1, ã2, · · · , ãk) =

([1− log
(1+

∏k
j=1(λ

1−aj−1)
wj∏k

j=1
(λ−1)

wj−1 )

λ , 1− log
(1+

∏k
j=1(λ

1−bj−1)
wj∏k

j=1
(λ−1)

wj−1 )

λ ], [log
(1+

∏k
j=1(λ

cj−1)
wj∏k

j=1
(λ−1)

wj−1 )

λ , log
(1+

∏k
j=1(λ

dj−1)
wj∏k

j=1
(λ−1)

wj−1 )

λ ]).

When n = k + 1,

IV IFFWA(ã1, ã2, · · · , ãk+1) = IV IFFWA(ã1, ã2, · · · , ãk)⊕F (wk+1ãk+1)

= ([1− log
(1+

∏k
j=1(λ

1−aj−1)
wj∏k

j=1
(λ−1)

wj−1 )

λ , 1− log
(1+

∏n
j=1(λ

1−bj−1)
wj∏k

j=1
(λ−1)

wj−1 )

λ ], [log
(1+

∏k
j=1(λ

cj−1)
ωj∏k

j=1
(λ−1)

wj−1 )

λ , log
(1+

∏k
j=1(λ

dj−1)
wj∏k

j=1
(λ−1)

wj−1 )

λ ])

⊕F ([1− log
(1+

(λ
1−ak+1−1)

wk+1

(λ−1)
wk+1−1 )

λ , 1− log
(1+

(λ
1−bk+1−1)

wk+1

(λ−1)
wk+1−1 )

λ ], [log
(1+

(λ
ck+1−1)

wk+1

(λ−1)
wk+1−1 )

λ , log
(1+

(λ
dk+1−1)

wk+1

(λ−1)
wk+1−1 )

λ ])

= ([1− log
(1+

∏k+1
j=1

(λ
1−aj−1)

wj∏k+1
j=1

(λ−1)
wj−1 )

λ , 1− log
(1+

∏k+1
j=1

(λ
1−bj−1)

wj∏k+1
j=1

(λ−1)
wj−1 )

λ ], [log
(1+

∏k+1
j=1

(λ
cj−1)

ωj∏k+1
j=1

(λ−1)
wj−1 )

λ , log
(1+

∏k+1
j=1

(λ
dj−1)

wj∏k+1
j=1

(λ−1)
wj−1 )

λ ]).

Therefore, when n = k + 1, (3.13) holds.
3) According to steps 1 and 2, we can get (3.13) holds for any n. It is easy to prove that the
IV IFFWA operator has the following properties. �

Theorem 3.4. (Monotonicity) Let (ã′1, ã
′
2, · · · , ã′n), (ã1, ã2, · · · , ãn) be two collections of IV IFNs, if

ã′j ≤ ãj for all j = 1, 2, · · · , n; then IV IFFWA(ã′1, ã
′
2, · · · , ã′n) ≤ IV IFFWA(ã1, ã2, · · · , ãn).

Theorem 3.5. (Idempotency) Let ã′j = ã, j = 1, 2, · · · , n; then, IV IFFWA(ã1, ã2, · · · , ãn) = ã.
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Proof .

IV IFFWA(ã1, ã2, · · · , ãn) =⊕F nj=1wj ãj

=w1ã1 ⊕ w2ã2 ⊕ · · · ⊕ wnãn
=w1ã⊕ w2ã⊕ · · · ⊕ wnã
=(w1 ⊕ w2 ⊕ · · · ⊕ wn)ã = ã.

�

Theorem 3.6. (Boundedness)

min(ã1, ã2, · · · , ãn) ≤ IV IFFWA(ã1, ã2, · · · , ãn) ≤ max(ã1, ã2, · · · , ãn).

Proof . This theorem prove able by Theorem 3.4. �

Example 3.7. Let

ã1 = ([0.22, 0.31], [0.23, 0.54]), ã2 = ([0.04, 0.21], [0.35, 0.46]), ã3 = ([0.25, 0.27], [0.23, 0.40])

be three IV IFNs, and w = (0.314, 0.355, 0.331)T be the weight vector of ãj j = (1, 2, 3), i.e, a1 = 0.22,
a2 = 0.04, a3 = 0.25, b1 = 0.31, b2 = 0.21, b3 = 0.27, c1 = 0.23, c2 = 0.35, c3 = 0.23, d1 = 0.54,
d2 = 0.46, d3 = 0.40. Suppose that λ = 2; then

IV IFFWA(ã1, ã2, ã3)

=([1− log
(1+(21−0.22−1)0.314(21−0.04−1)0.355(21−0.25−1)0.331)
2 ,

1− log
(1+(21−0.31−1)0.314(21−0.21−1)0.355(21−0.27−1)0.331)
2 ],

[log
(1+(20.23−1)0.314(20.35−1)0.355(20.23−1)0.331)
2 ,

log
(1+(20.54−1)0.314(20.46−1)0.355(20.40−1)0.331)
2 ]) = ([0.170, 0.261], [0.268, 0.462]).

Definition 3.8. Let ãj = ([aj, bj], [cj, dj]) (j = 1, 2, · · · , n) be a collection of the IV IFNs, and
IV IFFOWA : Ωn → Ω, if

IV IFFOWA(ã1, ã2, · · · , ãn) = ⊕F nj=1(ωj ãσ(j)) (3.14)

where Ω is the set of all IV IFNs and ω = (ω1, ω2, · · · , ωn)T is the weighted vector associated
with IV IFFOWA such that ωj > 0 and

∑n
j=1 ωj = 1. (σ(1), σ(2), · · · , σ(n)) is a permutation

of (1, 2, · · · , n), such that ãσ(j−1) ≥ ãσ(j) for any j. Then IV IFFOWA is called the interval-valued
intuitionistic fuzzy Frank-ordered weighted averaging operator.

Theorem 3.9. Let ãj = ([aj, bj], [cj, dj]) (j = 1, 2, · · · , n) be a collection of the IV IFNs; then, the
result aggregated from Definition 3.8 is still an IV IFN , and even

IV IFFOWA(ã1, ã2, · · · , ãn)

=([1− log
(1+

∏n
j=1(λ

1−aσ(j)−1)
ωj∏n

j=1
(λ−1)

ωj
)

λ , 1− log
(1+

∏n
j=1(λ

1−bσ(j)−1)
ωj∏n

j=1
(λ−1)

ωj
)

λ ],

[log
(1+

∏n
j=1(λ

cσ(j)−1)
ωj∏n

j=1
(λ−1)

ωj
)

λ , log
(1+

∏n
j=1(λ

dσ(j)−1)
ωj∏n

j=1
(λ−1)

ωj
)

λ ]). (3.15)
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Proof . Can be proved by mathematical induction, and it is omitted here. �

Remark 3.10. Similar to the IV IFFWA operator, the IV IFFOWA operator also has the prop-
erties of monotonicity, idempotency and boundedness. In addition, it is easy to prove that the
IV IFFOWA operator has the commutativity.

Theorem 3.11. (Commutativity) Let (ã′1, ã
′
2, · · · , ã′n), (ã1, ã2, · · · , ãn) be two collections of IV IFNs,

and (ã′1, ã
′
2, · · · , ã′n) is any permutation of (ã1, ã2, · · · , ãn), then,

IV IFFOWA(ã′1, ã
′
2, · · · , ã′n) = IV IFFOWA(ã1, ã2, · · · , ãn).

Example 3.12. Let

ã1 = ([0.22, 0.31], [0.23, 0.54]), ã2 = ([0.04, 0.21], [0.35, 0.46]), ã3 = ([0.25, 0.27], [0.23, 0.40])

be three IV IFNs, and ω = (0.314, 0.355, 0.331)T be the position weighted vector. Similar to
Example 3.7, we suppose λ = 2. The simple steps are shown as follows
1) Calculating score functions of ã1, ã2, and ã3 by (2.2), we can get

S(ã1) =
(0.22 + 0.31− 0.23− 0.54)

2
= −0.12

S(ã2) =
(0.04 + 0.21− 0.35− 0.46)

2
= −0.26

S(ã3) =
(0.25 + 0.27− 0.23− 0.40)

2
= −0.055

2) Rank the IV IFNs, ã1, ã2, and ã3 by Definition 2.4, we get ã3 > ã1 > ã2.
3) Get σ(j)(j = 1, 2, 3) by the ranking of ã1, ã2 and ã3, we have σ(1) = 3, σ(2) = 1, σ(3) = 2.
4) Calulate for λ = 2

1− log
(1+

∏3
j=1(λ

1−aσ(j)−1)
ωj

(λ−1)1−3 )

λ =1− log
(1+(21−0.25−1)0.314(21−0.22−1)0.355(21−0.04−1)0.331)
2 = 0.173

1− log
(1+

∏3
j=1(λ

1−bσ(j)−1)
ωj

(λ−1)1−3 )

λ =1− log
(1+(21−0.27−1)0.314(21−0.31−1)0.355(21−0.21−1)0.331)
2 = 0.265

log
(1+

∏3
j=1(λ

cσ(j)−1)
ωj

(λ−1)1−3 )

λ = log
(1+(20.23−1)0.314(20.23−1)0.355(20.35−1)0.331)
2 = 0.265

log
(1+

∏3
j=1(λ

dσ(j)−1)
ωj

(λ−1)1−3 )

λ = log
(1+(20.40−1)0.314(20.54−1)0.355(20.46−1)0.331)
2 = 0.466

5) Calculating IV IFFOWA(ã1, ã2, ã3),

IV IFFOWA(ã1, ã2, ã3) = ([0.173, 0.265], [0.265, 0.466]).

In order to improve the shortcomings of these operators, we introduce the Frank hybrid weighted
averaging operator as follows.
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Definition 3.13. Let ãj = ([aj, bj], [cj, dj])(j = 1, 2, · · · , n) be a collection of the IV IFNs, and
IV IFFHWA : Ωn → Ω, if

IV IFFHWA(ã1, ã2, · · · , ãn) = ⊕F nj=1(ωj b̃σ(j)) (3.16)

Where Ω is the set of all IV IFNs, and ω = (ω1, ω2, · · · , ωn)T is the weighted vector associated
with IV IFFHWA, such that ωj > 0 and

∑n
j=1 ωj = 1. W = (w1, w2, · · · , wn) is the weight vector

of ãj(j = 1, 2, · · · , n), and wj ∈ [0, 1],
∑n

j=1wj = 1. Let b̃j = nwj ãj = ([ȧj, ḃj], [ċj, ḋj]); n is the
adjustment factor. Suppose (σ(1), σ(2), · · · , σ(n)) is a permutation of (1, 2, · · · , n), and then, func-
tion IV IFFHWA is called the interval-valued intuitionistic fuzzy Frank hybrid weighted averaging
operator.

Theorem 3.14. Let ãj = ([aj, bj], [cj, dj])(j = 1, 2, · · · , n) be a collection of the IV IFNs; then, the
result is aggregated from Definition 3.13 is still an IV IFN , and even

IV IFFHWA(ã1, ã2, · · · , ãn)

=([1− log
(1+

∏n
j=1(λ

1−ȧσ(j)−1)
ωj

(λ−1)1−n
)

λ , 1− log
(1+

∏n
j=1(λ

1−ḃσ(j)−1)
ωj

(λ−1)1−n
)

λ ],

[log
(1+

∏n
j=1(λ

ċσ(j)−1)
ωj

(λ−1)1−n
)

λ , log
(1+

∏n
j=1(λ

ḋσ(j)−1)
ωj

(λ−1)1−n
)

λ ]). (3.17)

Theorem 3.15. The IV IFFWA operator and IV IFFOWA operator are the special case of the
IV IFFHWA operator. It is easy to prove that when W = ( 1

n
, 1
n
, · · · , 1

n
), the IV IFFHWA oper-

ator will reduce to IV IFFOWA operator, and when ω = ( 1
n
, 1
n
, · · · , 1

n
) will reduce to IV IFFWA

operator.

Example 3.16. Let

ã1 = ([0.22, 0.31], [0.23, 0.54]), ã2 = ([0.04, 0.21], [0.35, 0.46]), ã3 = ([0.25, 0.27], [0.23, 0.40])

be three IV IFNs, W = (0.314, 0.355, 0.331)T be the weight vector of ãj(j = 1, 2, 3),
and ω = (1

3
, 1
3
, 1
3
)T be the position weighted vector. Supposing λ = 2, the calculation steps of the

IV IFFHWA operator are shown as follows.
1) Calculating b̃j = 3wj ãj = ([ȧj, ḃj], [ċj, ḋj]) by (3.4), we can get

b̃1 = (3w1)ã1 = ([ȧ1, ḃ1], [ċ1, ḋ1])

= ([1− log1.731
2 , 1− log1.630

2 ], [log1.191
2 , log1.475

2 ]) = ([0.208, 0.293], [0.253, 0.561]).

b̃2 = (3w2)ã2 = ([ȧ2, ḃ2], [ċ2, ḋ2])

= ([0.043, 0.222], [0.325, 0.435]).

b̃3 = (3w3)ã3 = ([ȧ3, ḃ3], [ċ3, ḋ3])

= ([0.248, 0.268], [0.233, 0.403]).

2) Calculating score functions of b̃1, b̃2, and b̃3 by (2.2), we can get

S(b̃1) =
(0.208 + 0.293− 0.253− 0.561)

2
= −0.156,

S(b̃2) = −0.247, S(b̃3) = −0.060.
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3) Rank b̃1, b̃2, and b̃3 by Definition 2.4, we can get b̃3 > b̃1 > b̃2.
4) Get σ(j)(j = 1, 2, 3) by the ranking of b̃1, b̃2 and b̃3, we have σ(1) = 3, σ(2) = 1, σ(3) = 2.
5) Calculate by Theorem 3.14,

1− log
(1+

∏3
j=1(2

1−ȧσ(j)−1)ωj )
2 = 1− log

(1+(21−0.248−1)
1
3 (21−0.208−1)

1
3 (21−0.043−1)

1
3 )

2 = 0.170

1− log
(1+

∏3
j=1(2

1−ḃσ(j)−1)ωj )
2 = 1− log

(1+(21−0.268−1)
1
3 (21−0.293−1)

1
3 (21−0.222−1)

1
3 )

2 = 0.261

log
(1+

∏3
j=1(2

ċσ(j)−1)ωj )
2 = log

(1+(20.233−1)
1
3 (20.253−1)

1
3 (20.325−1)

1
3 )

2 = 0.268

log
(1+

∏3
j=1(2

ḋσ(j)−1)ωj )
2 = log

(1+(20.0.403−1)
1
3 (20.561−1)

1
3 (20.435−1)

1
3 )

2 = 0.462.

As a result
IV IFFHWA(ã1, ã2, ã3) = ([0.170, 0.261], [0.268, 0.462]).

Obviously, the result of IVIFFHWA(ã1, ã2, ã3) is the same as one of IVIFFWA(ã1, ã2, ã3) in Ex-
ample 3.7; this is because the position weighted vector ω = (1/3, 1/3, 1/3)T . Therefore, we also with
this example showed that the IVIFFWA operator is a special case of the IVIFFHWA operator.

3.1. Interval-valued intuitionistic fuzzy hybrid geometric operator

Definition 3.17. Let ãj = ([aj, bj], [cj, dj])(j = 1, 2, · · · , n) be a collection of the IV IFNs, and
IV IFFGWA : Ωn → Ω, if

IV IFFGWA(ã1, ã2, · · · , ãn) = ⊗F nj=1(ã
ωj
j ) (3.18)

W = (w1, w2, · · · , wn)T is weight vector of (ã1, ã2, · · · , ãn), such that wj > 0 and
∑n

j=1wj = 1. Then,
IV IFFGWA is called the interval-valued intuitionistic fuzzy Frank geometric weighted averaging
operator.

Theorem 3.18. Let ãj = ([aj, bj], [cj, dj])(j = 1, 2, · · · , n) be a collection of the IV IFNs, then, the
result aggregated from Definition 3.17 is still an IV IFN , and even

IV IFFGWA(ã1, ã2, · · · , ãn)

= ([ log
(1+

∏n
j=1(λ

aj−1)
ωj

(λ−1)1−n
)

λ , log
(1+

∏n
j=1(λ

bj−1)
ωj

(λ−1)1−n
)

λ ],

[1− log
(1+

∏n
j=1(λ

1−cj−1)
ωj

(λ−1)1−n
)

λ , 1− log
(1+

∏n
j=1(λ

dj−1)
ωj

(λ−1)1−n
)

λ ]). (3.19)

Similar to the IV IFFWA operator, the IV IFFGWA operator also has the propecties of mono-
tonicity, idempotency, and boundedness.

Definition 3.19. Let ãj = ([aj, bj], [cj, dj]) (j = 1, 2, · · · , n) be a collection of the IV IFNs, and
IV IFFGOWA : Ωn → Ω, if

IV IFFGOWA(ã1, ã2, · · · , ãn) = ⊗F nj=1(ã
ωj
σ(j)) (3.20)

where Ω is the set of all IV IFNs and ω = (ω1, ω2, · · · , ωn)T is the weighted vector associated with
IV IFFGOWA such that ωj > 0 and

∑n
j=1 ωj = 1. (σ(1), σ(2), · · · , σ(n)) is a permutation of

(1, 2, · · · , n), such that ãσ(j−1) ≥ ãσ(j) for any j. Then IV IFFGOWA is called the interval-valued
intuitionistic fuzzy Frank geometric-orderd weighted averaging operator.
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Theorem 3.20. Let ãj = ([aj, bj], [cj, dj]) (j = 1, 2, · · · , n) be a collection of the IV IFNs; then, the
result aggregated from Definition 3.19 is still an IV IFN , and even

IV IFFGOWA(ã1, ã2, · · · , ãn)

= ([ log
(1+

∏n
j=1(λ

aσ(j)−1)
ωj

(λ−1)1−n
)

λ , log
(1+

∏n
j=1(λ

bσ(j)−1)
ωj

(λ−1)1−n
)

λ ],

[1− log
(1+

∏n
j=1(λ

1−cσ(j)−1)
ωj

(λ−1)1−n
)

λ , 1− log
(1+

∏n
j=1(λ

dσ(j)−1)
ωj

(λ−1)1−n
)

λ ]).

Similar to the IV IFFOWA operator, the IV IFFGOWA operator also has the properties of mono-
tonicity, idempotency, boundedness and commutativity.

Definition 3.21. Let ãj = ([aj, bj], [cj, dj])(j = 1, 2, · · · , n) be a collection of the IV IFNs, and
IV IFFGHWA : Ωn → Ω, if

IV IFFGHWA(ã1, ã2, · · · , ãn) = ⊗F nj=1(b̃
ωj
σ(j)) (3.21)

where Ω is the set of all IV IFNs, and ω = (ω1, ω2, · · · , ωn)T is the weighted vector associated with
IV IFFGWA, such that ωj > 0 and

∑n
j=1 ωj = 1. W = (w1, w2, · · · , wn) is the weight vector of

ãj(j = 1, 2, · · · , n), and wj ∈ [0, 1],
∑n

j=1wj = 1. Let b̃j = ã
nwj
j = ([ȧj, ḃj], [ċj, ḋj]); n is the adjust-

ment factor. Suppose (σ(1), σ(2), · · · , σ(n)) is a permutation of (1, 2, · · · , n), such that b̃σ(j−1) ≥ b̃σ(j)
for any j, and then, IV IFFGHWA is called the interval-valued intuitionistic fuzzy Frank geometric
hybrid weighted averaging operator.

Theorem 3.22. Let ãj = ([aj, bj], [cj, dj])(j = 1, 2, · · · , n) be a collection of the IV IFNs; then, the
result is aggregated from Definition 3.21 is still an IV IFN , and even

IV IFFGHWA(ã1, ã2, · · · , ãn)

=([log
(1+

∏n
j=1(λ

ȧj−1)
ωj

(λ−1)1−n
)

λ , log
(1+

∏n
j=1(λ

ḃj−1)
ωj

(λ−1)1−n
)

λ ],

[1− log
(1+

∏n
j=1(λ

1−ċj−1)
ωj

(λ−1)1−n
)

λ , 1− log
(1+

∏n
j=1(λ

1−ḋj−1)
ωj

(λ−1)1−n
)

λ ]).

Theorem 3.23. The IV IFFGWA operator and IV IFFGOWA operator are the special case of
the IV IFFGHWA operator. It is easy to prove that when W = ( 1

n
, 1
n
, · · · , 1

n
), the IV IFFGHWA

operator will reduce to IV IFFGOWA operator, and when ω = ( 1
n
, 1
n
, · · · , 1

n
) the IV IFFGHWA

will reduce to IV IFFGWA operator.

4. Multiple attribute group decision-making methods based on frank aggregation oper-
ators

In this section, we will use these Frank aggregation operators to the MAGDM problems in which
the attribute weights take the form of real numbers and attributes values take the form of IV IFNs,
and we suggest two tools to solve such problems as follows.
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4.1. Destiption the decision-making problems

For a MAGDM problem, let E = {e1, e2, · · · , eq} be the collection of decision makers, A =
{A1, A2, · · · , Am} be the collection of alternatives, and C = {C1, C2, · · · , Cn} be the collection of
attributes. Suppose that ãkij = ([akij, b

k
ij], [c

k
ij, d

k
ij]) is an attribute value given by the decision marker

ek, which is expressed by an IV IFN for the alternative Ai with respect to the attribute Cj, W =
(w1, w2, · · · , wn) is the wight vector of attribute set C = {C1, C2, · · · , Cn}, and wj ∈ [0, 1],

∑n
j=1wj =

1. Let λ = (λ1, λ2, · · · , λq) be the weight vector of decision-markers {e1, e2, · · · , eq}, and λk ∈ [0, 1],∑q
k=1 λk = 1. Then we use the attribute weights, the decision makers’weights, and the attribute

values to rank the order of the alternatives.

4.2. First method: The method based on the Frank hybrid weighted averaging operator

The decision-making steps of this method are shown as follows.

Step 1: Normalize the decision-making information:
In general, for attribute values, there are benefit attributes (I1) (the bigger the attribute values
the better) and cost attributes (I2) (the smaller the attribute values the better). In order
to eliminate the impact of different type attribute values, we need to normalize the decision-
making information. Of couurse, if all the attributes are of the same type, then they do not
need normalization.
We may transform the attribute values from cost type to benefit type; in such a case, decision
matrices Ak = [ãkij]m×n (k = 1, 2, · · · , q) can be transformed into matrices Rk = [r̃kij]m×n (k =
1, 2, · · · , q) where

r̃kij =
(

[tkij, t
k
ij], [f

k

ij
, f

k

ij]
)

(4.1)

=

{
([akij, b

k
ij], [c

k
ij, d

k
ij]) Cj ∈ I1

([ckij, d
k
ij], [a

k
ij, b

k
ij]) Cj ∈ I2

i = 1, 2, · · · ,m, j = 1, 2, · · · , n.

Step 2: Utilize the IV IFFHWA operator:

r̃ij =
(

[tij, tij], [f ij, f ij]
)

(4.2)

=IV IFFHWA(r̃1ij, r̃
2
ij, · · · , r̃

q
ij).

to aggregate all the individual interval-valued intuitionistic fuzzy decision matrixes
Rk = [r̃kij]m×n (k = 1, 2, · · · , q) into the collective interval-valued intuitionistic fuzzy decision
matrixes R = [r̃ij]m×n.

Step 3: Utilize the IV IFFHWA operator:

r̃i =
(

[ti, ti], [f i, f i]
)

(4.3)

=IV IFFHWA(r̃i1, r̃i2, · · · , r̃in)

to derive the collective overall preference values r̃i(i = 1, 2, · · · ,m).

Step 4: Calculate the score function S(r̃i)(i = 1, 2, · · · ,m) of the collective overal values r̃i(i =
1, 2, · · · ,m), and then, rank all the alternatives {A1, A2, · · · , Am}. When two score functions
S(r̃i) and S(r̃j) are equal, we need to calculate their accuracy functions L(r̃i) and L(r̃j), and
then, we can rank them by accuracy functions.
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Step 5: Rank the alternatives:
Rank all the alternatives {A1, A2, · · · , Am} and select the best one(s) by score function S(r̃i)
and accuracy function L(r̃i).

Step 6: End.

4.3. Second method: The method based on the Frank geometric hybrid weighted averaging operator

The decision-making steps of this method are shown as follows.

step 1: Normalize the decision-making information:
It is same as step 1 in the first method.

step 2: Utilize the IV IFFGHWA operator:

r̃ij =
(

[tij, tij], [f ij, f ij]
)

(4.4)

=IV IFFGHWA(r̃1ij, r̃
2
ij, · · · , r̃

q
ij)

to aggregate all the individual interval-valued intuitionistic fuzzy decision matrixes
Rk = [r̃kij]m×n (k = 1, 2, · · · , q) into the collective interval-valued intuitionistic fuzzy decision
matrixes R = [r̃ij]m×n.

Step 3: Utilize the IV IFFGHWA operator:

r̃i =
(

[ti, ti], [f i, f i]
)

(4.5)

=IV IFFGHWA(r̃i1, r̃i2, · · · , r̃in)

to derive the collective overall preference values r̃i(i = 1, 2, · · · ,m).

Step 4-5: It is same as steps 4-5 in the first method.

Step 6: End.

5. Applications and examples

Now, we give an example and solve it with the first method.

Example 5.1. In order to demonstrate the application of proposed methods, we will cite an example
about the air quality evaluation that is used in, [24]. To evaluate the air quality of Guangzhou for
the 16th Asian Olympic Games which would be held during November 12-27, 2010, the air quality
in Guangzhou for the November of 2006, 2007, 2008 and 2009 were collected in order to find out
the trends and to forecast the situation in 2010. There are three air-quality monitoring stations
(e1, e2, e3) which can be regared as decision makers, and their weight is λ = (0.314, 0.355, 0.331)T .
There are three measured indexes, namely, SO2(C1), NO2(C2), and PM10(C3), and their weight is
W = (0.40, 0.20, 0.40). The measured values from air-quality monitoring stations under these indexes
are shown in Table 1-3 and they can be expressed by IV IFNs. Let {A1, A2, A3, A4} ={November of
2006, November of 2007, November of 2008, November of 2009} be the set of alternatives, please give
the rank of air quality from 2006 to 2009. We adopt two proposed methods to rank the alternatives.

To get the best alternative(s), the following steps are involved.

step 1: Normalize the decision-making information: Because all the measured values of the same type,
they do not need normalization.
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Table 1: AIR QUALITY DATA FROM STATION e1
C1 C2 C3

A1 ([0.22, 0.31], [0.23, 0.54]) ([0.13, 0.53], [0.20, 0.36]) ([0.12, 0.37], [0.40, 0.56])
A2 ([0.28, 0.41], [0.33, 0.49]) ([0.33, 0.53], [0.20, 0.36]) ([0.12, 0.37], [0.30, 0.46])
A3 ([0.32, 0.41], [0.23, 0.44]) ([0.43, 0.53], [0.16, 0.25]) ([0.23, 0.45], [0.21, 0.37])
A4 ([0.39, 0.47], [0.18, 0.36]) ([0.39, 0.53], [0.27, 0.32]) ([0.28, 0.34], [0.11, 0.23])

Table 2: AIR QUALITY DATA FROM STATION e2
C1 C2 C3

A1 ([0.40, 0.21], [0.35, 0.46]) ([0.10, 0.34], [0.27, 0.45]) ([0.32, 0.37], [0.13, 0.20])
A2 ([0.32, 0.39], [0.27, 0.39]) ([0.03, 0.57], [0.30, 0.36]) ([0.16, 0.25], [0.14, 0.19])
A3 ([0.26, 0.37], [0.21, 0.40]) ([0.23, 0.43], [0.06, 0.15]) ([0.21, 0.35], [0.11, 0.29])
A4 ([0.30, 0.43], [0.19, 0.35]) ([0.28, 0.43], [0.31, 0.34]) ([0.39, 0.46], [0.01, 0.17])

Table 3: AIR QUALITY DATA FROM STATION e3
C1 C2 C3

A1 ([0.25, 0.27], [0.23, 0.40]) ([0.17, 0.27], [0.26, 0.40]) ([0.21, 0.30], [0.17, 0.32])
A2 ([0.25, 0.29], [0.33, 0.39]) ([0.18, 0.46], [0.43, 0.50]) ([0.06, 0.21], [0.28, 0.30])
A3 ([0.22, 0.27], [0.27, 0.31]) ([0.13, 0.37], [0.16, 0.20]) ([0.11, 0.24], [0.14, 0.19])
A4 ([0.30, 0.48], [0.09, 0.45]) ([0.08, 0.53], [0.20, 0.24]) ([0.32, 0.61], [0.01, 0.09])

step 2: Utilize the IV IFFHWA operator expressed by (4.2) to agregate all the individual interval-

valued intuitionistic fuzzy decision matrixes Rk = [r̃kij]4×3(r̃
k
ij = ([tkij, t

k
ij], [f

k

ij
, f

k

ij]), k = 1, 2, 3)

into the collective interval-valued intuitionistic fuzzy decision matrixes R = [r̃ij]4×3; suppose
(γ = 2, ω = (1

3
, 1
3
, 1
3
)).

For example, r̃11 can be calculated in Example 3.16 ( r̃11 = IV IFFHWA(r̃111, r̃
2
11, r̃

3
11), r̃111, r̃

2
11, r̃

3
11

can be expressed by ã1, ã2 and ã3, and the weight vector λ is expressed by W in Example 3.16).
Therefor can we get
R=

([0.170, 0.261], [0.268, 0.462]) ([0.133, 0.385], [0.243, 0.44]) ([0.224, 0.347], [0.204, 0.326])
([0.285, 0.365], [0.307, 0.419]) ([0.181, 0.523], [0.299, 0.402]) ([0.115, 0.277], [0.225, 0.294])
([0.266, 0.351], [0.225, 0.379]) ([0.268, 0.402], [0.113, 0.194]) ([0.184, 0.349], [0.146, 0.273])
([0.329, 0.459], [0.146, 0.384]) ([0.256, 0.496], [0.257, 0.298]) ([0.333, 0.482], [0.021, 0.152])


step 3: Utilize the IV IFFHWA operator expressed by (4.3) to drive the collective overal prefernce

values (suppose λ = 2, ω = (1
3
, 1
3
, 1
3
)); they are

r̃1 = ([0.175, 0.335], [0.237, 0.393])

r̃2 = ([0.194, 0.401], [0.275, 0.368])

r̃3 = ([0.240, 0.369], [0155, 0.269])

r̃4 = ([0.305, 0.480], [0.095, 0.260]).

Step 4: Calculating the score function S(r̃i), (i = 1, 2, 3, 4) of the collective overal values r̃i, (i =
1, 2, 3, 4) we can get S(r̃1) = −0.06, S(r̃2) = −0.024, S(r̃3) = 0.0925, S(r̃4) = 0.215.



Frank aggregation operators based on the interval-valued intuitionistic fuzzy numbers
Volume 12, Special Issue, Winter and Spring 2021, 325-342 339

step 5: Rank the alternatives:
According to the score function S(r̃i)(i = 1, 2, 3, 4), we can get the ranking of alternatives
A1, A2, A3, A4 : A4 � A3 � A2 � A1.
Thererfore, the best alternative is A4, i.e., the best air quality in Guangzhou is November of
2009 among the Novembers of 2006, 2007, 2008, 2009.

It shoud be noted that, using the second method, we obtain the same result as the first method. That’s
why stopped writing it.

Here, we present another example that we solve with the second method.

Example 5.2. Let us consider a high-tech company, which aims to select a supplier of USB connec-
tors (adapted from [30]).There are four potential suppliers Ai (i = 1, 2, 3, 4) that have been designated
for further evaluation, and assume that there are four attributes to be considered in the evaluation
process: C1: financial; C2: performance; C3: technical capacity; and C4: organizational culture and
strategy, and ω = (0.35, 0.25, 0.25, 0.15)T is the weight vector of them. The decision committee con-
tains three decision makers e1, e2, e3 including engineering expert, financial expert, and quality control
expert, whose weight vector is W = (0.35, 0.35, 0.3)T . The decision makers ei(i = 1, 2, 3) express the
attribute values of the potential supplier Ai(i = 1, 2, 3, 4) with respect to Ci(i = 1, 2, 3, 4) by IVIFNs,

respectively, which are listed in Tables 3, 4, and 5. (suppose λ = 2, ω = (
1

4
,
1

4
,
1

4
,
1

4
)). With these

assumptions, and with the help Theorem 3.23, the IVIFFGWA operator can be used instead of the
IVIFFGHWA operator. Based on the IVIFFGWA operator, the decision-making steps are shown as
follows;

Table 4: ATTRIBUTE VALUES OF ENGINEERING EXPERT e1
C1 C2 C3 C4

A1 ([0.4, 0.5], [0.7, 0.8]) ([0.5, 0.6], [0.8, 0.9]) ([0.6, 0.7], [0.9, 1]) ([0.6, 0.7], [0.9, 1])
A2 ([0.5, 0.6], [0.8, 0.9]) ([0.5, 0.6], [0.8, 0.9]) ([0.4, 0.5], [0.7, 0.8]) ([0.6, 0.7], [0.9, 1])
A3 ([0.3, 0.4], [0.6, 0.7]) ([0.4, 0.5], [0.7, 0.8]) ([0.2, 0.3], [0.5, 0.6]) ([0.3, 0.4], [0.6, 0.7])
A4 ([0.2, 0.3], [0.5, 0.6]) ([0.6, 0.7], [0.9, 1]) ([0.3, 0.4], [0.6, 0.7]) ([0.4, 0.5], [0.7, 0.8])

Table 5: ATTRIBUTE VALUES OF FINANCIAL EXPERT e2
C1 C2 C3 C4

A1 ([0.5, 0.6], [0.8, 0.9]) ([0.4, 0.5], [0.7, 0.8]) ([0.5, 0.6], [0.8, 0.9]) ([0.4, 0.5], [0.7, 0.8])
A2 ([0.6, 0.7], [0.9, 1]) ([0.6, 0.7], [0.9, 1]) ([0.5, 0.6], [0.8, 0.9]) ([0.5, 0.6], [0.8, 0.9])
A3 ([0.2, 0.3], [0.5, 0.6]) ([0.5, 0.6], [0.8, 0.9]) ([0.1, 0.2], [0.4, 0.5]) ([0.2, 0.3], [0.5, 0.6])
A4 ([0.3, 0.4], [0.6, 0.7]) ([0.4, 0.5], [0.7, 0.8]) ([0.2, 0.3], [0.5, 0.6]) ([0.1, 0.2], [0.4, 0.5])

Table 6: ATTRIBUTE VALUES OF QUALITY EXPERT e3
C1 C2 C3 C4

A1 ([0.4, 0.5], [0.7, 0.8]) ([0.5, 0.6], [0.8, 0.9]) ([0.4, 0.5], [0.7, 0.8]) ([0.5, 0.6], [0.8, 0.9])
A2 ([0.3, 0.4], [0.6, 0.7]) ([0.6, 0.7], [0.9, 1]) ([0.4, 0.5], [0.7, 0.8]) ([0.6, 0.7], [0.9, 1])
A3 ([0.1, 0.2], [0.4, 0.5]) ([0.6, 0.7], [0.9, 1]) ([0.3, 0.4], [0.6, 0.7]) ([0.4, 0.5], [0.7, 0.8])
A4 ([0.2, 0.3], [0.5, 0.6]) ([0.2, 0.3], [0.5, 0.6]) ([0.1, 0.2], [0.4, 0.5]) ([0.3, 0.4], [0.6, 0.7])

To get the best alternative(s), the following steps are involved.
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step 1: Consider that all the attributes are benefit type; therefore, the decision matrices do not need
normalization.

step 2: Utilize the IV IFFGWA operator expressed by Definition 3.17 to agregate all the individual

interval-valued intuitionistic fuzzy decision matrixes Rk = [r̃kij]4×4(r̃
k
ij = ([tkij, t

k
ij], [f

k

ij
, f

k

ij]), k =

1, 2, 3, 4) into the collective interval-valued intuitionistic fuzzy decision matrixes R = [r̃ij]4×4 .

Therefor can we get,
R =


([0.4367, 0.5372], [0.7393, 0.8427]) ([0.4667, 0.5671], [0.7692, 0.8722]) ([0.5105, 0.6122], [0.8217, 1]) ([0.5059, 0.6078], [0.8180, 1])

([0.4862, 0.5893], [0.8047, 1]) ([0.5671, 0.6679], [0.8722, 1]) ([0.4367, 0.5372], [0.7393, 0.8427]) ([0.5671, 0.6679], [0.8722, 1])

([0.2081, 0.3086], [0.5105, 0.6122]) ([0.5005, 0.6022], [0.8116, 1]) ([0.1980, 0.2986], [0.5005, 0.6022]) ([0.2986, 0.3994], [0.6022, 0.7051])

([0.2362, 0.3364], [0.5372, 0.6379]) ([0.4283, 0.5333], [0.7577, 1]) ([0.2081, 0.3086], [0.5105, 0.6122]) ([0.2733, 0.3750], [0.5807, 0.6862])



step 3: Utilize the IV IFFGWA operator expressed by (4.5) to drive the collective overal prefernce
values (suppose λ = 2, ω = (1

4
, 1
4
, 1
4
, 1
4
)); they are

r̃1 = ([0.4655, 0.5663], [0.7674, 0.8677])

r̃2 = ([0.4918, 0.5938], [0.7961, 0.8969])

r̃3 = ([0.2531, 0.3645], [0.5741, 0.6766])

r̃4 = ([0.2488, 0.3571], [0.5644, 0.6663]).

Step 4: Calculating the score function S(r̃i), (i = 1, 2, 3, 4) of the collective overal values r̃i, (i =
1, 2, 3, 4) we can get S(r̃1) = 1.2027, S(r̃2) = 1.2719, S(r̃3) = 0.9022, S(r̃4) = 0.8821.

step 5: Rank the alternatives:
According to the score function S(r̃i)(i = 1, 2, 3, 4), we can get the ranking of alternatives
A1, A2, A3, A4 : A2 � A1 � A3 � A4.
Thererfore, the best alternative is A2.

Conclusion

The existing aggregation operators for IFS or IVIFNs are based on algebraic t-norm and t-
conorm or Einstein t-norm and t-conorm. In this paper, some new aggregation operators for IVIFNs
based on Frank t-norm and t-conorm, such as IVIFFWA, IVIFFOWA, IVIFFHWA, IVIFFGWA,
IVIFFGOWA, and IVIFFGHWA operators, have been proposed, and various properties of these
operators have been investigated. Then, they are applied to solve the MAGDM problems in which
attribute values take the form of IVIFNs.
A practical suggestion that can be used in this paper is to follow the construction of Frank aggregation
operators using nonlinear integrals such as Sugeno and choquet integral, which are introduced in [20].
Because, as mentioned earlier, nonlinear integrals are more practical in decision making science.
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