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Abstract

In this paper, by using the notion of locally segment-dense subsets and sequentially sign property
for bifunctions, we establish existence results for a common solution of a finite family of equilibrium
problems in the setting of Hausdorff locally convex topological vector spaces. Also similar results
obtain for vector equilibrium problems.
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1. Introduction

Let X be a real Hausdorff, locally convex topological vector space and K be a nonempty subset of
X. An equilibrium problem associated to f and K, or briefly EP (f,K) in the sense of Blum and
Oettli [7], is stated as follows:

find x∗ ∈ K such that f(x∗, x) > 0 ∀ x ∈ K,

that f : K × K → R is a bifunction. We denote the set of solutions EP (f,K), by S(f,K). This
problem is also called Ky Fan inequality due to his contribution to this field [11]. It is well known
that some important problems such as convex programs, variational inequalities, fixed point, Nash
equilibrium models and minimax problems can be formulated as an equilibrium problem (see e.g.
[7, 10, 22] and the references therein).
In 2015 Laszla and Viorel [19] introduced a notion of a self-segment-dense set in order to establish
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some existence results for set-valued equilibrium problems, where the conditions are imposed on a
self-segment-dense subset of the domain of the involved bifunction. Jafari et al. in [14], presented a
new concept ”locally segment-dense set” and study existence results for equilibrium problems where
the conditions are imposed only on a locally segment-dense subset in the domain of the involved
bifunction. Indeed, the locally segment-dense sets need not necessarily be dense in the whole convex
subset under consideration. Using the mentioned approach [3, 5, 9, 12, 13, 14, 16, 17, 18], we study
existence results for common solution of equilibrium problems where the conditions are imposed only
on a locally segment-dense subset in the domain of the involved bifunction. For this purpose, we
recall that notions of finding a common solution of a finite family of equilibrium problems, locally
segment-dense, Minty solutions, sequentially sign property, and also present notions the common
S-property of the considered bifunction.

2. Preliminaries

Let X be a real Hausdorff locally convex topological vector space, X∗ its dual and 〈·, ·〉 the duality
pairing between X and X∗. Given a set A ⊆ X, convA is the convex hull of A and cl(A) is the
closure of A. Suppose that [x, y] := {(1− t)x + ty : t ∈ [0, 1]} is the closed segment joining x and y.
Similarly, we can define semiopen segments [x, y[, ]x, y] and the open segment ]x, y[.
In this paper, we consider the problem of finding a solution of a system of equilibrium problems in
[14]. This problem, so-called the common solutions to equilibrium problems (CSEP ), is stated as
follows:
Let K be a nonempty subset of X and let for all 1 6 i 6 N , fi : K ×K → R be bifunctions. The
common solutions to equilibrium problems (CSEP ) is a problem of finding x̄ ∈ K such that for
every 1 6 i 6 N ,

fi(x̄, y) > 0, ∀ y ∈ K, (CSEP )

The set of solutions of (CSEP ) is denoted by S(f1, f2, · · · , fN ;K). Obviously, S(f1, f2, · · · , fN ;K) =
N⋂
i=1

S(fi;K).

Also, an element x̄ ∈ K is a local Minty common solution (introduced in [5] by Bianchi and Pini),
if there exists a neighbourhood U of x̄ such that for every 1 6 i 6 N ,

fi(y, x̄) 6 0, ∀ y ∈ K ∩ U.

The set of all local Minty common solutions is denoted by

ML(f1, f2, · · · , fN ;K).

Obviously, ML(f1, f2, · · · , fN ;K) =
N⋂
i=1

ML(fi;K). For example, if X = K := R and f1, f2 :

K ×K → R are defined by f1(x, y) = y2 − x2 and f2(x, y) = 2y2 − x2, then x̄ = 0 ∈ML(f1, f2;K).
In 2016, Alleche and Radulescu, provide the following necessary and sufficient condition for the lower
semi-continuity of functions. This property is useful for the main results of this paper.

Proposition 2.1. [1] Let X be Hausdorff topological space, g : X → R be a function and A be a
subset of X. Then, the following conditions are equivalent:

1. g is lower semi-continuous on A;

2. for every a ∈ R, cl({x ∈ X : g(x) 6 a}) ∩ A = {x ∈ A : g(x) 6 a}.
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In particular, if g is lower semi-continuous on A, then the intersection A with any lower level set of
g is closed in A.

Let X be a real Hausdorff locally convex topological vector space and x, y ∈ X. The well-known
segment-dense sets have been introduced by Luc [20]. Let K ⊆ X be a convex set. We say that
U ⊆ K is segment-dense in K iff for each x ∈ K, there exists y ∈ U such that x is a cluster point
of the set [x, y] ∩ U . In 2015, Laszlo and Viorel [19] introduced a notion of a self-segment-dense set,
which is slightly different from the notion of the segment-dense set introduced by Luc [20]. Let K
be a convex subset of X and U ⊆ K ⊆ X. The set U is called self-segment-dense in K iff U is dense
in K and for every x, y ∈ U , cl([x; y] ∩ U) = [x, y].
Laszlo and Viorel [19] presented some examples and explained the difference between dense, segment-
dense and self-segment-dense sets. Jafari et al. in [14], presented a concept of locally segment-dense
sets. Let K be a convex subset of X and D ⊆ K ⊆ X. The set D is called locally segment dense in
K, iff for every x, y ∈ D, cl([x, y] ∩D) = [x, y]; and for every x ∈ D and y ∈ K, the set ]x, y] ∩D
is nonempty. Notice that it can be concluded, cl([x, z] ∩D) = [x, z] for every z ∈]x, y] ∩D. As the
next example shows, we can find locally segment-dense sets in K, which is neither segment-dense in
K nor self-segment-dense in it.

Example 2.2. Let X = K := R2, and let D := {(x, y) : x ∈ Q∩] − 1, 1[, y ∈] − 1, 1[}, where Q
denotes the set of all rational numbers. It is clear that D is locally segment-dense in K, but not
dense in K.

Jafari et al. in [14] noted that even in one dimension, the concept of a locally segment-dense is
different the concept of a segment-dense set and a self-segment-dense set. Also, they provided an
example for their claim.

Remark 2.3. [14] It is worth mentioning that if U is a convex open neighbourhood of an element
x ∈ X, then U is locally segment-dense in X. Indeed, every convex algebraically open subset U ⊆ X
is locally segment-dense in X. We recall that U is algebraically open (due to [15]) if U = core(U),
where

core(U) := {x̄ ∈ U : ∀ x ∈ X ∃ t̄ > 0 such that x̄ + tx ∈ U, ∀ t ∈ [0, t̄]}.

Remark 2.4. Suppose D be a locally segment-dense set in K. If x ∈ D and y ∈ K, then there can
be found {zn} ⊂]x, y] ∩ D such that zn → x as n → +∞. This is due to the definition of locally
segment-dense set D in K, which allows us to find z ∈]x, y] ∩D such that cl([x, z] ∩D) = [x, z].

We need the following useful lemma for the main results of this paper.

Lemma 2.5. Let X be a real Hausdorff locally convex topological vector space, K be a convex subset
of X, and let U ⊆ K be such that for every x, y ∈ U , it holds that cl([x, y] ∩ U) = [x, y]. Then for
all finite subsets {u1, u2, · · · , un} ⊆ U , one has

cl(conv{u1, u2, · · · , un} ∩ U) = conv{u1, u2, · · · , un}.

Throughout this paper, if not otherwise specified, X stands for a real Hausdorff locally convex
topological vector space and K denotes a convex subset of X.
For our purpose, we need the following notions of convexity of functions.

Definition 2.6. Let D be a locally segment-dense set in K, and let g : K → R be a function. We
say that g is
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(i) quasiconvex on D, iff for all x, y ∈ D and t ∈ [0, 1] such that (1 − t)x + ty ∈ D, then
g((1− t)x + ty) 6 max{g(x), g(y)};

(ii) semistrictly quasiconvex iff for all x, y ∈ K such that g(x) 6= g(y) it holds that g((1−t)x+ty) <
max{g(x), g(y)}, for all t ∈]0, 1[.

Definition 2.7. Let D be a locally segment-dense set in K, and let f : K×K → R be a bifunction.
We say that f is quasimonotone on D, iff for x, y ∈ D

f(x, y) > 0⇒ f(y, x) 6 0.

Definition 2.8. Let D be a locally segment-dense set in K, and let f : K×K → R be a bifunction.
We say that f is properly quasimonotone on D, iff for every subset of finite elements x1, x2, · · · , xn ⊆
D and every x̄ ∈ convx1, x2, · · · , xn ∩D, there exists j ∈ 1, 2, · · · , n such that f(xj, x̄) 6 0.

Motivated by the notion of the strong upper sign property introduced in [13], we define a useful
notion of sequentially sign property for bifunctions in this subsection.

Definition 2.9. [14] Let D be a locally segment-dense set in K, and let f : K × K → R be a
bifunction. We say that f has the sequentially sign property with respect to the first variable at
x ∈ K, iff for every y ∈ K the following implication holds:

if {zn} ⊂]x, y] ∩D : zn → x and f(zn, x) 6 0,∀ n ∈ N then f(x, y) > 0.

We say that f has the sequentially sign property on D, iff f has this property at every x ∈ D.

Also, Jafari et al. [14], provided a proposition and introduced a large class of bifunctions, that have
the sequentially sign property.
In the following, we give a notion of locally segment-dense Minty common solution, that is needed
to obtain existence result for (CSEP ).

Definition 2.10. Let D be a locally segment-dense set in K, and let for every 1 6 i 6 N , fi :
K ×K → R be bifunctions.We say that x̄ ∈ D is a locally segment-dense Minty common solution,
iff there exists a neighborhood U of x̄ such that for every 1 6 i 6 N ,

fi(y, x̄) 6 0, ∀ y ∈ D ∩ U.

MD
L (f1, f2, · · · , fN ;K) denotes the set of all locally segment-dense Minty common solutions. Obvi-

ously, MD
L (f1, f2, · · · , fN ;K) =

N⋂
i=1

MD
L (fi;K).

It is notice that ML(f1, f2, · · · , fN ;K) ⊆ MD
L (f1, f2, · · · , fN ;K) and the inclusion may be strict.

Hence ML(f1, f2, · · · , fN ;K) may be empty and MD
L (f1, f2, · · · , fN ;K) may be nonempty.( See the

following example)

Example 2.11. Let X = K := R and D :=]−1, 1[∩Q. Consider two bifunctions f1, f2 : R×R→ R
defined by

f1(x, y) :=


−1, if x, y ∈ D,

1, otherwise,
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and

f2(x, y) :=


y2 − x2, if x, y ∈ D,

x2 + y2, otherwise.

Obviously, ML(f1, f2;K) = ∅ and x̄ = 0 ∈MD
L (f1, f2;K) and hence MD

L (f1, f2;K) 6= ∅.

We have underlined that under a mild assumption of convexity, the sequentially sign property is
a weak form of continuity, weaker than the upper hemicontinuity of f on D. In the following
lemma, we show that for every 1 6 i 6 N , the rather large set MD

L (f1, f2, · · · , fN ;K) is a subset
of S(f1, f2, · · · , fN ;K) under the weak condition of the sequentially sign property of the involved
bifunctions.

Lemma 2.12. Let D be a locally segment-dense set in K, and let for every 1 6 i 6 N , fi :
K × K → R be a bifunction with the sequentially sign property. Then MD

L (f1, f2, · · · , fN ;K) ⊆
S(f1, f2, · · · , fN ;K).

Proof . The proof follows immediately from intersection property and Lemma 2.2 in [14]. �

3. Existence results for common solution of equilibrium problems

By using the locally segment-dense set, we obtain some existence results for common solution
equilibrium problems on non compact domains.
For real bifunctions f1, f2, · · · , fN on K ×K, let F1 : K ⇒ K be a set-valued mapping by

F1(y) :=
{
x ∈ K : fi(y, x) 6 0, ∀ 1 6 i 6 N

}
,

for all y ∈ K.

Definition 3.1. Let D be a locally segment-dense set in K and let f1, f2, · · · , fN : K × K → R
be bifunctions. We say that the bifunctions f1, f2, · · · , fN have the common S-property on D, if the
following condition holds:
For every nonempty subset A1, A2, · · · , AN of D if for all 1 6 i 6 N ,

∃ x̄i ∈ convAi ∩D s.t. fi(x, x̄i) > 0 ∀ x ∈ Ai,

then there exists some x̄ ∈ conv(A1 ∪ A2 ∪ · · · ∪ AN) ∩D such that for all 1 6 i 6 N ,

fi(z, x̄) > 0, ∀ z ∈ (A1 ∪ A2 ∪ · · · ∪ AN) ∩D.

The following theorem is one of the main results of this paper.

Theorem 3.2. Let D be a locally segment-dense set in K, and let for every 1 6 i 6 N , fi : K×K →
R be bifunctions satisfying the following conditions:

(i) for every 1 6 i 6 N , fi is quasimonotone on D, which is not properly quasimonotone on D;

(ii) f1, f2, · · · , fN have the common s-property on D;

(iii) for every y ∈ D, F1(y) is closed in K \D, i.e.,

cl(F1(y)) ∩ (K \D) = F1(y) ∩ (K \D) = {x ∈ K \D : fi(y, x) 6 0 1 6 i 6 N};
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(iv) for every x1, x2 ∈ F1(y) ∩D and t ∈ [0, 1] such that x̄ = (1− t)x1 + tx2 ∈ D, then x̄ ∈ F1(y).

Then MD
L (f1, f2, · · · , fN ;K) 6= ∅.

Proof . Since for every 1 6 i 6 N , fi is not properly quasimonotone on D, there exist xi1, xi2, · · · , xini
∈

D and x̄i ∈ conv{xi1, xi2, · · · , xini
} ∩D such that for every j ∈ {1, 2, · · · , ni}

fi(xij, x̄i) > 0.

Thus, x̄i /∈ F1(xij) ∩ (K \D). Hence for every 1 6 i 6 N and every j ∈ {1, 2, · · · , ni},

x̄i /∈ cl
(
F1(xij)

)
∩ (K \D).

For every 1 6 i 6 N , set Ai = {xi1, xi2, · · · , xini
}. Since f1, f2, · · · , fN have the common s-property

on D, there exists x̄ ∈ conv(A) ∩D (A = A1 ∪ A2 ∪ · · · ∪ AN) such that for every z ∈ A ∩D,

fi(z, x̄) > 0, (1 6 i 6 N).

Thus for each z ∈ A ∩D that A ∩D is finite there exists a neighborhood Uz of x̄ such that

Uz ∩D ⊆
(
X \

(
F1(z) ∩D

))
.

We set U =
⋂

z∈A∩D Uz. So for every y ∈ U ∩D and z ∈ A ∩D, we get

fi(z, y) > 0, (1 6 i 6 N).

Now, the quasimonotonicity of each fi on D implies that for every y ∈ U ∩D and z ∈ A ∩D:

fi(y, z) 6 0, (1 6 i 6 N).

Furthermore, for arbitrary and fixed y ∈ U ∩D, we have z ∈ F1(y). Using the convexity of F1(y) on
D, we deduce that for all y ∈ U ∩D,

fi(y, x̄) 6 0, (1 6 i 6 N).

Hence, x̄ ∈MD
L (f1, f2, · · · , fN ;K) and this completes the proof. �

Example 3.3. Let X = K := R and D :=]0, 1[∩Q. Consider two bifunctions f1, f2 : R × R → R
defined by f1(x, y) := y2(y − x) and

f2(x, y) :=


x2(y − x)3, if x, y ∈ D,

1, otherwise.

Obviousely, all the conditions of Theorem 3.2 are satisfied, and hence MD
L (f1, f2;K) 6= ∅.

In the following corollary, we provide some conditions on the bifunctions f1, f2, · · · , fN to guarantee
that the set-valued mapping F1 satisfies the conditions (iii) and (iv) of Theorem 3.2.

Corollary 3.4. Let D be a locally segment-dense set in K, and let for every 1 6 i 6 N , fi : K×K →
R be a bifunction satisfying the following conditions:
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(i) for every 1 6 i 6 N , fi is quasimonotone on D, which is not properly quasimonotone on D;

(ii) f1, f2, · · · , fN have the common S-property on D;

(iii) for every 1 6 i 6 N and x ∈ D, fi(., x) is lower semicontinuous on K \D;

(iv) for every 1 6 i 6 N and x ∈ D, fi(., x) is quasiconvex on D.

Then MD
L (f1, f2, · · · , fN ;K) 6= ∅.

Proof . Suppose that y ∈ D. Since for every 1 6 i 6 N , fi(., x) is lower semicontinuous on K \D,
by using Proposition 2.1, for every a ∈ R, we get

cl
(
{y ∈ K : fi(y, x) 6 a}

)
∩ (K \D) = {y ∈ K \D : fi(y, x) 6 a}.

Hence

N⋂
i=1

cl
(
{y ∈ K : fi(y, x) 6 a}

)
∩ (K \D) =

N⋂
i=1

{y ∈ K \D : fi(y, x) 6 a}

⊆
N⋂
i=1

{y ∈ K : fi(y, x) 6 a} ∩ (K \D)

⊆ cl
( N⋂
i=1

{y ∈ K : fi(y, x) 6 a}
)
∩ (K \D)

⊆
N⋂
i=1

cl
(
{y ∈ K : fi(y, x) 6 a}

)
∩ (K \D),

The above inequality shows that

cl
( N⋂
i=1

{y ∈ K : fi(y, x) 6 a}
)
∩ (K \D) =

N⋂
i=1

{y ∈ K \D : fi(y, x) 6 a}.

Hence

cl{y ∈ K : fi(y, x) 6 a 1 6 i 6 N} ∩ (K \D) = {y ∈ K \D : fi(y, x) 6 a 1 6 i 6 N}.

This shows that F1(y) is closed in K \D. The convexity of F1(y) is obtained by the quasiconvexity of
f1, f2, · · · , fN on D. Therefore, by Theorem 3.2, we conclude that MD

L (f1, f2, · · · , fN ;K) 6= ∅ and
this completes the proof. �

Now, the existence of solutions for (CSEP ) can be obtained.

Corollary 3.5. Let D be a locally segment-dense set in K, and let for every 1 6 i 6 N , fi :
K ×K → R be a bifunction satisfying all conditions of Theorem 3.2. If for each 1 6 i 6 N , fi has
the sequentially sign property on D, then S(f1, f2, · · · , fN ;K) 6= ∅.

Proof . The proof follows immediately from Theorem 3.2 and then Lemma 2.12. �
Jafari et al. [14] by an example shown that the requirement that f should not be properly

quasimonotone is essential. Alike of [14], we show the nonemptiness of S(f1, f2, · · · , fN ;K), where
f1, f2, · · · , fN are quasimonotone on D and for every i, fi is nonproperly quasimonotone on D.
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Example 3.6. Let X := R, K := [0,+∞[ and D :=]0, 1[. Consider two bifunctions f1, f2 : K×K →
R defined by

f1(x, y) :=


x− y, if x, y ∈ [0, 1],

1, otherwise,

and f2(x, y) := x2 − y. It is easy to check that all the other conditions of Corollary 3.5 are satisfied,
while S(f1, f2;K) = ∅.

4. Existence results for common solution of vector equilibrium problems

In this section by the same method used in Section 2, we obtain a similar results for vector
equilibrium problems.
Let X be a real Hausdorff, locally convex topological vector space. We say that P ⊆ D is dense in D
iff D ⊆ clP . Recall that a set C ⊆ X is a cone iff tc ∈ C for all c ∈ C and t > 0. The cone C is called
a convex cone iff C + C = C. The cone C is called a pointed cone iff C ∩ (−C) = {0}. Note that a
closed, convex and pointed cone C induces a partial ordering on X, that is, z1 6 z2 ⇔ z2 − z1 ∈ C
and z1 < z2 ⇔ z2 − z1 ∈ intC. It is obvious that C + C \ {0} = C \ {0} and intC + C = intC.
Let Z be a locally convex Hausdorff topological vector spaces, K ⊆ X be a nonempty subset and
C ⊆ Z be a convex and pointed cone with nonempty interior. For all 1 6 i 6 N , fi : K ×K → Z,
the common solution of vector equilibrium problem (CSV EP ), consists in finding x̄ ∈ K, such that

fi(x̄, y) /∈ −intC, ∀ y ∈ K, 1 ≤ i ≤ N.

The set of common solutions of vector equilibrium problems (CSV EP ) is denoted by

S(f1, f2, · · · , fN ;K;C).

Obviously, S(f1, f2, · · · , fN ;K;C) =
N⋂
i=1

S(fi;K;C). We say that an element x̄ ∈ K is a local

Minty common solution for f1, f2, ..., fN , if there exists a neighbourhood U of x̄ such that

fi(y, x̄) /∈ intC, ∀ y ∈ K ∩ U.

The set of all local Minty common solution of vector equilibrium problems is denoted by

ML(f1, f2, · · · , fN ;K;C).

Obviously, ML(f1, f2, · · · , fN ;K;C) =
N⋂
i=1

ML(fi;K;C).

Definition 4.1. [23] A map f : K −→ Z is said to be C-lower semi-continuous (C-upper semi-
continuous) at x ∈ K, iff for any neighbourhood V of f(x) there exists a neighbourhood U of x such
that f(u) ∈ V + C (f(u) ∈ V − C) for all u ∈ U ∩K.

Obviously, if f is continuous at x ∈ K, then it is also C-lower semi-continuous at x ∈ K. Assume
that C has nonempty interior. According to [25], f is C-lower semi-continuous at x ∈ K iff for any
k ∈ intC, there exists a neighbourhood U of x, such that f(u) ∈ f(x) + k + intC for all u ∈ U ∩K.
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Remark 4.2. The map f : K −→ Z is C-upper semi-continuous at x ∈ K iff the map −f is
C-lower semi-continuous at x ∈ K.

We say that f is C-lower semi-continuous, (C-upper semi-continuous) on K, if f is C-lower semi-
continuous, (C-upper semi-continuous) at every x ∈ K. Obviously, if f is C-lower (resp. upper)
semi-continuous on a subset A of X, then the restriction f |A : A −→ Z of f on A is C-lower (resp.
upper) semi-continuous on A. The function f is said to be C-continuous on D, if it is C-lower
semi-continuous and C-upper semi-continuous on D.
In the sequal, we suppose X and Z are real Hausdorff locally convex topological vector spaces, D is
a locally segment-dense set in K (a nonempty subset of X) and f : X −→ Z is a function. Assume
also that C ⊆ Z is a convex and pointed cone with intC 6= ∅ that C induces a partial ordering on
Z.

Definition 4.3. [21] The function f is C-convex on D, iff for all x, y ∈ D and t ∈ [0, 1] such that
tx + (1− t)y ∈ D, then

tf(x) + (1− t)f(y)− f(tx + (1− t)y) ∈ C, ∀ t ∈ [0; 1].

f is said to be C-concave iff −f is C-convex.

Definition 4.4. [2, 12] The function f is C-quasimonotone on D, iff for x, y ∈ D,

f(x, y) ∈ intC ⇒ f(y, x) /∈ intC.

Definition 4.5. [2] The function f is properly C-quasimonotone on D, iff for every subset of finite
elements {x1, x2, · · · , xn} ⊆ D and every x̄ ∈ conv{x1, x2, · · · , xn}∩D, there exists j ∈ {1, 2, · · · , n}
such that f(xj, x̄) /∈ intC.

Definition 4.6. [24] Let K a convex subset of X and D be a locally segment-dense set in K. We
say that f has the C-sequentially sign property with respect to the first variable at x ∈ K ⊆ X, iff
for every y ∈ K the following implication holds:

if {zn} ⊂]x, y] ∩D : zn → x and f(zn, x) /∈ intC, ∀ n ∈ N then f(x, y) /∈ −intC.

Also, Shokouhnia et al. [24], provided a proposition and introduced a large class of bifunctions, that
have the C-sequentially sign property.
In the following, we give a notion of locally segment-dense Minty common solution to the vector
case, that is needed to obtain existence result for (CSV EP ).

Definition 4.7. Let K be a convex subset of X and D be a locally segment-dense set in K, and let
for every 1 6 i 6 N , fi : K ×K → R be bifunctions. We say that x̄ ∈ D is a locally segment-dense
Minty common solution vector equilibrium problems, iff there exists a neighbourhood U of x̄ such that
for every 1 6 i 6 N ,

fi(y, x̄) /∈ intC, ∀ y ∈ D ∩ U.

The set of all locally segment-dense Minty common solutions vector equilibrium problems is denoted

by MD
L (f1, f2, · · · , fN ;K;C). Obviously, MD

L (f1, f2, · · · , fN ;K;C) =
N⋂
i=1

MD
L (fi;K;C).
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It is notice that if K be a subset of X, then ML(f1, f2, · · · , fN ;K;C)∩D ⊆MD
L (f1, f2, · · · , fN ;K;C)

and the inclusion may be strict. Hence ML(f1, f2, · · · , fN ;K;C) may be empty and
MD

L (f1, f2, · · · , fN ;K;C) may be nonempty.
See the following example.

Example 4.8. Let X = K := R and D :=]− 1, 1[∩Q. Consider two bifunctions f1, f2 : R×R→ R
defined by

f1(x, y) :=


−2, if x, y ∈ D,

2, otherwise,

and

f2(x, y) :=


y2 − x2, if x, y ∈ D,

x2 + y2, otherwise.

Obviously, ML(f1, f2;K;C) = ∅ while MD
L (f1, f2;K;C) 6= ∅.

In the following lemma, we show that for every 1 6 i 6 N , the rather large set MD
L (f1, f2, · · · , fN ;K;C)

is a subset of S(f1, f2, · · · , fN ;K;C) under the weak condition of the C-sequentially sign property
of the involved bifunctions.

Lemma 4.9. Let K a convex subset of X and D be a locally segment-dense set in K, and let
for 1 6 i 6 N , fi : K × K → R be bifunctions with the C-sequentially sign property. Then
MD

L (f1, f2, · · · , fN ;K;C) ⊆ S(f1, f2, · · · , fN ;K;C).

Proof . The proof follows immediately from intersection property and Lemma 2.16 in [24]. �
By using the locally segment-dense set, we obtain some existence results for common solution

vector equilibrium problems with unnecessarily compact domains.
For real bifunctions f1, f2, · · · , fN on K ×K, let F1 : K ⇒ K be a set-valued mapping by

F2(y) :=
{
x ∈ K : fi(y, x) /∈ intC ∀ 1 6 i 6 N

}
,

for all y ∈ K.

Definition 4.10. Let D be a locally segment-dense set in K and let f1, f2, · · · , fN : K × K → R
be bifunctions. we say that the bifunctions f1, f2, · · · , fN have the common s∗-property on D, if the
following condition holds:
For every nonempty subset A1, A2, · · · , AN of D if for all 1 6 i 6 N ,

∃ x̄i ∈ convAi ∩D s.t. fi(x, x̄i) ∈ intC ∀ x ∈ Ai.

Then there exists some x̄ ∈ conv(A1 ∪ A2 ∪ · · · ∪ AN) ∩D such that for all 1 6 i 6 N ,

fi(z, x̄) ∈ intC, ∀ z ∈ (A1 ∪ A2 ∪ · · · ∪ AN) ∩D.

The following theorem is the vector form of Theorem 3.2.
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Theorem 4.11. Let K be a convex subset of X and D be a locally segment-dense set in K, and let
for every 1 6 i 6 N , fi : K ×K → Z be bifunctions satisfying the following conditions:

(i) for every 1 6 i 6 N , fi is C-quasimonotone on D, which is not properly C-quasimonotone on
D;

(ii) f1, f2, · · · , fN have the common S∗-property on D;

(iii) for every y ∈ D, F2(y) is closed in K \D, i.e.,

cl(F2(y)) ∩ (K \D) = F2(y) ∩ (K \D) = {x ∈ K \D : fi(y, x) /∈ intC 1 6 i 6 N};

(iv) for every x1, x2 ∈ F2(y) ∩D and t ∈ [0, 1] such that x̄ = (1− t)x1 + tx2 ∈ D, then x̄ ∈ F2(y).

Then MD
L (f1, f2, · · · , fN ;K;C) 6= ∅.

Proof . Since for every 1 6 i 6 N , fi is not properly C-quasimonotone on D, there exist
xi1, xi2, · · · , xini

∈ D and x̄i ∈ conv{xi1, xi2, · · · , xini
} ∩D such that for every j ∈ {1, 2, · · · , ni}

fi(xij, x̄i) ∈ intC.

Thus, x̄i /∈ F2(xij) ∩ (K \D). Hence for every 1 6 i 6 N and every j ∈ {1, 2, · · · , ni}

x̄i /∈ cl
(
F2(xij)

)
∩ (K \D).

For every 1 6 i 6 N , set Ai = {xi1, xi2, · · · , xini
}. Since f1, f2, · · · , fN have the common S∗-property

on D, there exists x̄ ∈ conv(A) ∩D (A = A1 ∪ A2 ∪ · · · ∪ AN) such that for every z ∈ A ∩D,

fi(z, x̄) ∈ intC, (1 6 i 6 N).

Then for each z ∈ A ∩D that A ∩D is finite there exists a neighbourhood Uz of x̄ such that

Uz ∩D ⊆
(
X \

(
F2(z) ∩D

))
.

We set U =
⋂

z∈A∩D Uz. So for every y ∈ U ∩D and z ∈ A ∩D, we get

fi(z, y) ∈ intC, (1 6 i 6 N).

Now, the C-quasimonotonicity of fis on D implies that for every y ∈ U ∩D and z ∈ A∩D, we have

fi(y, z) /∈ intC, (1 6 i 6 N).

Furthermore, for arbitrary and fixed y ∈ U ∩D, we have z ∈ F2(y). Using the convexity of F2(y) on
D, we deduce that for all y ∈ U ∩D,

fi(y, x̄) /∈ intC, (1 6 i 6 N).

Hence, x̄ ∈MD
L (f1, f2, · · · , fN ;K;C) and this completes the proof. �

Corollary 4.12. Let X be a real Hausdorff locally convex topological vector space, K be a convex
subset of X and D be a locally segment-dense set in K, and let for every 1 6 i 6 N , fi be bifunctions
satisfying all conditions of Theorem 4.11. If for each 1 6 i 6 N , fi has the C-sequentially sign
property, then for every subset convex K of X, that D ⊆ K, S(f1, f2, · · · , fN ;K;C) 6= ∅.
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5. Conclusions

In this paper, by using notion of locally segment-dense subsets, existence results for common
solution of (vector) equilibrium problems are obtained, where the involved bifunction is quasimono-
tone just on a locally segment-dense subset of the domain. In fact, conditions are not imposed on
thewhole domain, but rather on a locally segment-dense subset of it.
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