
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,840 |
تعداد دریافت فایل اصل مقاله | 7,656,343 |
On generalisation of Brown's conjecture | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 1151-1155 اصل مقاله (300.1 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.22265.2343 | ||
نویسندگان | ||
Ishfaq Nazir* ؛ Mohammad Ibrahim Mir؛ Irfan Ahmad Wani | ||
Department of Mathematics, University of Kashmir, South Campus, Anantnag-192101, Jammu and Kashmir, India | ||
تاریخ دریافت: 14 آذر 1399، تاریخ بازنگری: 10 دی 1399، تاریخ پذیرش: 19 دی 1399 | ||
چکیده | ||
Let $P$ be the complex polynomial of the form $P(z) = z \prod_{j=1}^{n-1}(z-z_{j})$, with $|z_{j}|\geq 1$, $1 \leq j \leq n-1.$ Then according to famous Brown's Conjecture $p'(z) \neq 0$, for $|z| < \frac{1}{n}.$ This conjecture was proved by Aziz and Zarger [1]. In this paper, we present some interesting generalisations of this conjecture and the results of several authors related to this conjecture. | ||
کلیدواژهها | ||
polynomial؛ disk؛ zeros؛ derivative؛ conjecture | ||
مراجع | ||
[1] A. Aziz and B.A. Zarger, On the critical points of a polynomial, Aust. Math. Soc. 57 (1998) 173–174. [2] B. A. Zarger and M. Ahmad, On some generalisation of Brown’s conjecture, Int. J. Nonlinear Anal. Appl. 7(2) (2016) 345–349. [3] J.E. Brown, On the Ilief-Sendov conjecture, Pacific J. Math. 135 (1988) 223–232. [4] M. Ibrahim, N. Ishfaq and I.A. Wani On zero free regions for derivatives of a polynomial, Krajugevac J. Math. 47(3) (2020) 403–407. [5] Q.I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, 2002. [6] N.A. Rather and F. Ahmad, On the critical points of a polynomial, BIBECHANA, 9 (2013) 28–32. [7] B. Sendov, Generalization of a conjecture in the geometry of polynomials, Serdica Math. J. 28 (2002) 283–304. [8] B.A Zarger and A.W. Manzoor, On zero free regions for the derivative of a polynomial, BIBECHANA, 14 (2017) 48–5 | ||
آمار تعداد مشاهده مقاله: 15,593 تعداد دریافت فایل اصل مقاله: 382 |