
 

 

1. Introduction 

 Over the last few years, the flow and heat transfer of 

non-Newtonian fluids have received considerable 

interest because of the wide applications of these 

concepts in engineering. Many practical applications 

in food engineering, petroleum production, power 

engineering, and plastic processing require fluids, 

such as food materials, molten plastics, polymeric 

liquids, and slurries that are non-Newtonian in nature 

[1, 2]. To study non-Newtonian fluid flow, 

Schowalter [3] applied boundary layer assumptions 

to a power-law fluid. The empirical model put 

reflects the behaviors of many of the non-Newtonian 

fluids applicable in chemical engineering processes. 

 The boundary layer flow of a quiescent fluid 

flowing over continuously moving surfaces is 

significant in a number of industrial engineering 

processes. Well-known examples of this process 

include the rolling of a sheet drawn from a die, the 

aerodynamic extrusion of a plastic sheet, the 

annealing and tinning of copper wires, the cooling of 

an infinite metallic plate and metallic plate in a bath, 

paper drying, polymeric sheet production, rolling, 

and wire and fiber coating [4–6]. 

 The examination of the effects caused by heat 

generation/absorption is important in view of several 

physical problems, such as the occurrence of 

exothermic or endothermic chemical reactions. Heat 

generation/absorption is assumed to be constant or 

dependent on space or temperature [4]. Abel et al. [7] 

analytically examined the heat transfer characteristics 

of a non-Newtonian fluid flowing on a stretching 

sheet through a porous medium under the influence 

of an external magnetic field and partial slip 

conditions. Cortell et al. [8] investigated flow and 

heat transfer on a stretching sheet in a porous 
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medium. The authors considered internal heat 

generation/absorption and suction/blowing in two 

types of thermal boundary conditions on the surface 

of the material: constant surface temperature (CST) 

and prescribed surface temperature. 

 In the current work, we used a computational 

procedure in which a universal function for 

calculating boundary layer transfer is adopted. This 

universal function was proposed by Merk and later 

corrected by Chao and Fagbenle [15]. The Merk 

series was expanded around the local similarity 

solution, but independent researchers found an error 

in the series form presented by the author, thus 

prompting Chao and Fagbenle to put forward a 

corrected form. These two researchers then used the 

emended version to perform a universal, laminar 

boundary-layer analysis. The Merk-Chao series 

solution method which is originally devised for the 

Newtonian fluid flow is adopted for the analysis of 

power-low fluids in different conditions for many 

years. Lin and Chern [9] and Kim et al. [10] adopted 

the Merk-Chao series to find a solution for the two-

dimensional and axisymmetric laminar boundary-

layer momentum equation of power-law non-

Newtonian fluids. The natural convection in power-

law fluids which flow over arbitrarily shaped of two-

dimensional or axisymmetric bodies, were examined 

by Chang et al. [11]. The authors used the Merk 

series expansion technique in their analysis. Sahu et 

al. [12] applied the Merk–Chao series in a 

momentum equation. They investigated the 

momentum and heat transfer of power-low fluids 

flowing on a continuously moving surface with an 

arbitrary surface velocity distribution and uniform 

surface temperature. Rao et al. [13] incorporated an 

injection/suction term in the boundary conditions of 

the governing equations for a power-low fluid 

flowing over a moving surface. They used the Merk–

Chao series to obtain the universal velocity and 

temperature functions that are independent of the 

distribution profile of fluid injection/suction. 

Recently, Shokouhmand and Soleimani [14] 

investigated the effects of viscous dissipation on the 

temperature profile of power-law fluid flow over a 

moving surface with an arbitrary injection/suction 

profile. The authors applied the same technique that 

Rao et al. [13] employed to solve momentum and 

energy equations. 

 In the present study, the Merk–Chao series was 

used to perform a universal analysis of the 

temperature profile of a non-Newtonian power-law 

fluid flowing over a moving wall with arbitrary 

injection/suction and internal heat 

generation/absorption. In contrast to previous studies, 

the current work used the series used to solve the 

energy equation, in which the term for heat 

generation/absorption was incorporated. The energy 

equation was solved for a shear-thinning power-low 

fluid (n<1) and a shear-thickening power-low fluid 

(n>1). The effects of a heat source (Λ2>0) or sink 

(Λ2<0) and fluid suction (Λ<0) or injection (Λ>0) on 

temperature profile were also investigated.  

2. Governing Equations 

 Let us suppose the existence of an 

incompressible power-law fluid with internal heat 

generation/absorption and all its physical properties 

assumed constant. The fluid flows over a porous 

plate with a sufficiently small injection/suction 

velocity that does not disturb the boundary layer 

assumption. The coordinate system is shown in Fig. 

1. 

 Under these assumptions, the continuity and 

momentum equations are as follows: 

 

Continuity: 0
u v

x y

 
 

 
 

(1) 

   

Momentum: 
 

1
yx

u u
u v

x x y




  
 

  

 

(2) 

 

The boundary conditions for velocity are expressed 

as 

 

wu U   
 wv V x 

 
at 0y   

(3) 

u U   as y   

 

where Uw denotes the plate velocity in the negative x-

direction, and U∞ represents the velocity of the 

uniform main stream. 

 

 
Fig. 1. Sketch of the physical model. 
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For a power-law fluid, shear stress is given by 

 
1

0

n

yx

u u

y y
 



 

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 (4) 

 

The energy equation with a heat 

generation/absorption term is 

 
2

2

p w

T T T Q T T
u v

x y y C T T







   
  

   

 
(5) 

 

The fluid was analyzed only in the case wherein the 

temperature of the surface is kept constant (i.e., CST 

case). Accordingly, the thermal boundary conditions 

are 

 

wT T  at 0y   
(6) 

T T  as y   

 

where Tw is the temperature at the plate surface, and 

T∞ is the temperature outside the dynamic region. 

3. Solutions of the Equations 

 A stream function is introduced to satisfy the 

continuity equation and to make the right hand side 

of the boundary condition (3) a constant value. 

 

1
u

L y






 , 
1

( )wv V x
L x


  


 (7) 

 

The new variables are defined as: 

 

Re

n x

L
 

 
 
 

,  
   1 1

1
n y

n
L

 
   

     
 

 (8) 

 

where 

 
2

0

Re
n nU L





  
(9) 

 

Re is the generalized Reynolds number. The stream 

function is also nondimensionalized through 

 

 
 

 
1 1 21 ,

n

n U L f   


   
 

(10) 

The momentum equation is eventually converted into 

[13, 14] 

 

   
 

 
( 1) ,

1
,

n f f
f f f f n 

 




      


 
(11) 

 

where the primes indicate partial differentiation with 

respect to η and 

 

 

 

,

,

f f f f
f f

   

  
  
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(12) 

 

is the Jacobian. Parameter Λ in Eq. (11) contains the 

injection velocity and is given by 

 

 
( 1)Re ( )

1
n nV

n
n U







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(13) 

 

V() is defined as follows: 

 

Re
( ) w

L
V V

n
 

 
  

 

 
(14) 

 

 Note that if V(ξ) is negative, Λ will serve as the 

suction parameter.  

The boundary conditions are converted into 

 

wU
f

U




    

 

0f   at 0   
(15) 

1f    As     

 

 For the energy equation, the same method 

applied to momentum analysis is used. The 

dimensionless temperature is defined as 

 

 , w

w

T T

T T
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






 
(16) 

 

The energy equation is then converted into 

 

   
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(17) 

where the Jacobian is defined as, 
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(18) 

and 
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Here, Pr is the generalized Prandtl number, defined 

as 

2 ( 1)1
Pr Re nU L





  (20) 

and 

 

 
2 2

1
2 1 n

p

Q L
n

C


 
    

 
(21) 

 

where Λ2 is the heat source/sink parameter. 

 The mathematical procedure of converting Eq. 

(5) into Eq. (17) is presented in Appendix 1. 

Dimensionless parameters Λ, Λ1, and Λ2 and variable 

ξ are only the functions of x. These suggest the use of 

the Merk–Chao series to expand the solution in terms 

of these parameters.  

 Merk derived the momentum and energy 

boundary layer equations in transformed coordinates 

(ξ, η). He refined the “wedge method” by treating 

wedge parameter Λ, as an independent variable rather 

than stream wise coordinate ξ. Thus, the Merk series 

was expanded around the local similarity solution. As 

previously stated, Chao and Fagbenle put forward a 

corrected form of Merk’s series and used it to make a 

universal, laminar boundary layer analysis. Using the 

first term of the series can provide accurate results. 

The first term represents the local similarity solution, 

and the remaining terms enable a rigorous correction 

for departure from local similarity. Using the Merk–

Chao series allows rapid calculations of boundary 

layer quantities with the aid of a limited number of 

universal functions [9, 15]. 

 The dimensionless stream function is written as 
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(22) 

 

Subsequently, the dimensionless temperature is 

expanded as follows:        

  

Incorporating Eqs. (22) and (23) into Eqs. (11) 

and (17) and collecting the terms containing similar 

perturbation quantities yield a set of sequential 

differential equations. The momentum equation is the 

same as that presented in [13].  

 The energy-related equations are 

 

 0 1 0 0 2 0 2 0f          (24) 
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1
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f n f

f
n f f
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
 

         
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  

 

(25) 
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2 6 1 0 3

2 1

0

f n f

f

  

 

       

  

 
(30) 

 

The boundary conditions are 

0(0) 0   
0( ) 1    

(31) (0) 0i   ( ) 0i    for i = 

1,2,…,6 

 These equations, along with those for the 

momentum equation, generate a set of coupled first-

order boundary value differential equations. To solve 

these equations, we adopted the fourth-order Runge–

Kutta method, in which unknown initial values are 

obtained by applying the shooting method. 

 The shooting method is used to solve boundary 

value problems (BVP), with the approach involving 

the solution of initial value problems. A BVP is 

written in vector form, and the solution is carried out 

     

   
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0 1

1 2
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(23) 

56 
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at one end of the BVP, after which this solution 

“shoots” to the other end with an initial value solver 

until the boundary condition at the other end 

converges to its correct value. An example is our 

solution for Eq. (24) with boundary conditions 

subject to θ0(0) = 0 and θ0(∞) = 1 (Eq. (31)). With 

the shooting method, θ0(0) = 0 is applied, along with 

a guess for θ0' (e.g., θ0' = a0). This method provides 

two initial conditions, thus enabling the application 

of the fourth-order Runge–Kutta method in solving 

this ordinary differential equation (ODE). The 

calculation proceeds until a value for θ0(∞) is 

obtained. If this does not satisfy θ0(∞) = 1 to an 

acceptable tolerance, the guess for θ0' is revised to a 

value a1, and the aforementioned method is repeated 

to obtain a new value for θ0(∞). This process 

continues until θ0(∞) = 1. Details regarding the 

application of the Runge–Kutta method in solving 

Eq. (24) are provided in Appendix 2. 

 The equations were solved with two different 

values of n: 0.52 for pseudoplastic (shear-thinning) 

fluids and 1.2 for dilatant (shear-thickening) fluids. 

The effects of a sink/source parameter (Λ2) on 

temperature profile were investigated on the basis of 

the values –0.5, 0, and 0.5. The surface velocity (λ) 

and Pr number were set at 0.1 and 7, respectively, 

where injection/suction velocity (Λ) varies between –

1.5 and 0.3. 

 The unknown initial conditions for the momentum 

equation are the same as those indicated in previous 

work [14]. Therefore, the numerical results of that 

work were applied in the current research (Table 1). 

The results with respect to the unknown initial 

conditions for the energy equations are presented in 

Tables 2 and 3. 

 

The simplest case for this problem is when the 

injection parameter is a constant, where 
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2
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d
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d
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2

2 2 2
22

1 2 1
d

n n n
d





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 Applying the same procedure as explained by 

Rao et al. [13], we obtained nondimensionalized 

temperature profiles under different conditions. 

 

Table 1. Numerical results of fi
"(0) for n = 0.52 and 1.2 [13]. 

   n = 0.52 n = 1.2 

 
 

 
0f
  

1f
  

2f
  

0f
  

1f
  

2f
  

0.1 

 -1.5 1.209760 0.079552 -0.011380 1.375745 0.082688 -0.01192 

 -0.75 0.645513 0.068450 -0.010755 0.702922 0.068498 -0.01091 

 0 0.286023 0.050589 -0.008666 0.279605 0.045026 -0.00795 

 0.3 0.191973 0.042005 -0.007423 0.171299 0.032493 -0.00608 

 

Table 2. Numerical results of θ0
'(0) for n = 0.52, Λ1 = 1.633 (corresponding to Pr = 7 and x/L = 0.1), and λ = 0.1. 

2  
0(0)  

1(0)  
2(0)  

3(0)  
4(0)  

5(0)  
6(0)  

-0.5 

-1.5 2.6637 0.22536 -0.04986 0.06901 -0.0156 0.00483 -0.0068 

-0.75 1.615 0.26165 -0.0472 0.06259 -0.0193 0.00559 -0.0072 

0 0.75058 0.22909 -0.0219 0.04272 -0.01719 0.00322 -0.0058 

0.3 0.51839 0.16398 -0.03044 0.0468 -0.02548 0.00587 -0.00909 

0 

-1.5 2.5032 0.0458 -0.0776 0.0558 -0.0012 0.0113 0.0038 

-0.75 1.3762 0.0851 -0.0685 0.0621 -0.0071 0.0136 -0.0069 

0 0.39263 0.13299 -0.0211 0.0431 -0.02156 0.00843 -0.0055 

0.3 0.14095 0.09714 -0.00123 0.02318 -0.0171 0.00378 -0.00159 

0.5 

-1.5 2.325 0.3579 0.0306 0.09206 -0.0265 0.00803 -0.00558 

-0.75 1.0764 0.393645 -0.0452 0.08551 -0.03039 0.00879 -0.00599 

0 -0.2596 0.36103 -0.00912 0.06572 0.02819 0.00642 -0.0045 

0.3 -0.7278 
0.29591 -0.01764 0.06918 -0.03648 0.00907 -0.00779 

57 
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Table 3. Numerical results of θ0
'(0) for n = 1.2, Λ1 = 1.633 (corresponding to Pr = 7 and x/L = 0.1), and λ = 0.1. 

2  
0(0)  

1(0)  
2(0)  

3(0)  
4(0)  

5(0)  
6(0)  

-0.5 

-1.5 2.677 
0.0385 -0.0765 0.0594 -0.0021 0.0098 -0.0037 

-0.75 1.61445 0.06148 -0.0652 0.06903 -0.0078 0.01126 -0.00725 

0 0.74826 0.05218 -0.01704 0.03448 -0.02381 0.00487 0.00435 

0.3 0.521574 0.017268 -0.006195 0.03645 -0.01829 -0.00108 -0.00436 

0 

-1.5 2.5187 
0.0394 -0.0757 0.0355 -0.0031 0.00752 -0.00771 

-0.75 1.3732 0.0709 -0.0664 0.0313 -0.0094 0.01725 -0.00997 

0 0.38644 0.12018 -0.01413 0.02147 -0.0354 0.00453 -0.00746 

0.3 0.15433 0.07237 -0.00136 0.01748 -0.0301 0.00078 -0.00549 

0.5 

-1.5 2.344 
0.2433 0.0506 0.0736 -0.01685 0.00553 -0.0054 

-0.75 1.067 0.27645 -0.0812 0.0691 -0.02059 0.006299 0.0095 

0 -0.2952 0.24039 -0.02269 0.047402 0.01839 0.003922 -0.00546 

0.3 -0.5912 0.18918 -0.0324 0.05088 -0.02668 0.00687 -0.0085 

 

4. Results and Discussion 

 The effects of power n on a 

nondimensionalized temperature profile are 

illustrated in Fig. 2. Note that in all figures, 

1

w

T T

T T
 




 



 is plotted against η. The results 

revealed that the thickness of the temperature 

boundary layer decreases with increasing n. In other 

words, the boundary layer of a shear-thinning 

power-law fluid (n < 1) is more expansive than that 

of a shear-thickening power-law fluid (n > 1). This 

difference is more significant in the presence of heat 

generation. These results accord with those of 

previous works [12–14]. That is, an increase in n 

leads to an augmentation in heat transfer [16]. 

 The nondimensionalized temperature profiles at 

different values of injection/suction and heat 

source/sink parameters and two values of n are 

shown in Fig. 3. The thickness of the thermal 

boundary layer decreases when a suction flow exists 

(Λ<0), as is evident in Fig. 3. The fluid is brought 

closer to the wall, thereby reducing the thickness of 

the thermal boundary layer. This reduction 

decreases the temperature profiles. The temperature 

decreases to a greater extent as the suction 

parameter increases, indicating that increased 

suction leads to faster surface cooling. However, the 

exact opposite behavior is produced by the injection 

of a fluid onto the surface (Λ>0). Injection 

generates more flow penetration into the fluid, 

which causes an increase in the thermal boundary 

layer. The effects of suction/injection parameters 

were also investigated in the literature [8, 17]. 

 The main concern here are the effects of a heat 

source/sink parameter (Λ2) on temperature profile. 

Fluid temperature is greater when internal energy is 

generated (Λ2>0), which drives a thickness increase 

in the thermal boundary layer (Fig. 3). This result is 

expected given that the presence of a heat source in 

the boundary layer generates energy and thus 

increases the temperature of the fluid, leading to an 

increase in the thickness of the thermal boundary 

layer. Contrastingly, the heat sink (Λ2<0) exerts an 

opposite effect on the thickness of the thermal 

boundary layer. Specifically, it causes a drop in 

temperature and reduces the thickness of the 

thermal boundary layer. These effects have been 

discussed in previous researches [4, 5]. 

 Note that in the presence of heat generation 

(Fig.s 2-c and 2-f), during which no 

suction/injection (Λ = 0) exists, the maximum fluid 

temperature does not occur at the wall but in the 

fluid region close to it. A peak in temperature 

profile occurs in the fluid near the wall, indicating 

that the temperature of the fluid near the sheet is 

higher than that of the sheet. In other words, heat is 

transferred from the fluid to the wall. This peak is 

sharper when the injection parameter used is Λ>0. 

The same trend does not occur in the presence of a 

suction parameter because, as previously 

mentioned, suction contributes to surface cooling. 

 Some other researchers have solved the energy 

equations of similar problems with other numerical 

methods. Chen [18], for instance, analyzed the 

problem of the magnetohydrodynamic flow and 

heat transfer of an electrically conducting non-

Newtonian power-law fluid flowing past a 

stretching moving sheet in the presence of a 

uniform surface heat flux and suction/injection at 
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the surface. The authors transformed the resultant 

governing equations into nonlinear ODEs by using 

appropriate transformations and then numerically 

solved the ODEs on the basis of central difference 

approximations. Abo-Eldahab et al. [19] delved into 

heat transfer through mixed convection along an 

inclined continuously stretching surface under 

internal heat generation/absorption. The authors 

regarded the surface as permeable to allow fluid 

suction or blowing and stretching with surface 

velocity. They converted the governing equations 

into dissimilar partial differential equations (PDEs), 

which they then integrated using the fourth-order 

Runge–Kutta method. Mahmoud and Megahed [20] 

examined the effects of non-uniform heat 

generation/absorption and viscous dissipation on the 

heat transfer of a non-Newtonian power-law fluid 

flowing on a nonlinearly stretching surface. The 

authors converted the governing nonlinear PDEs 

into a system of nonlinear ODEs by using suitable 

similarity transformation. The researchers then 

numerically solved the ODEs by using the fourth-

order Runge–Kutta method combined with the 

shooting technique. A comparison of these 

numerical methods with the approach used in the 

present study reflected a difference in procedures 

for converting PDEs into ODEs. In our study, the 

Merk–Chao series was used for this transformation. 

The Merk–Chao series expansion is a useful method 

for solving difficult transport problems in simple 

transformations. Universal functions are used to 

solve fundamental differential equations, regardless 

of geometry. 

5. Conclusion  

 The problem of the boundary layer heat transfer 

of a non-Newtonian power-law fluid flowing on a 

porous moving surface under heat 

generation/absorption was studied. The governing 

equations describing the problem were converted 

into a set of ODEs by using the Merk–Chao series. 

The ODEs were then solved numerically by 

adopting the fourth-order Runge–Kutta method, 

coupled with the shooting technique. The effects of 

different parameters on dimensionless temperature 

were illuminated with respect to constant velocity at 

the plate surface. The results indicated that the 

thermal boundary layers of pseudoplastic fluids are 

thicker than those of dilatants. A direct relationship 

exists between dimensionless temperature and an 

increase in injection or heat generation parameters. 

 

 

 
Fig. 2. Effects of fluid types (dilatant fluid with n = 0.52 

and pseudoplastic fluid with n = 1.2) on temperature 

profile: λ = 0.1, Λ1 = 1.633, Λ = 0.3 for a, b, and c at Λ2 = –

0.5, 0, and 0.5, respectively. 
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Fig. 3. Effects of injection/suction and heat source/sink on temperature profile for two different cases: n = 1.2, λ = 0.1, Λ1 = 

1.633 for a, b, and c at Λ2 = –0.5, 0, and 0.5, respectively; n = 0.52, λ = 0.1, Λ1 = 1.633 for d, e, and f at Λ2 = –0.5, 0, and 0.5, 

respectively. 

 

Nomenclature 

 

Cp Specific heat at constant pressure 

f Dimensionless stream function defined in Eq. 

(10) 

k Thermal conductivity 

L Reference length 

n Power-law exponent defined in Eq. (4) 

Pr Generalized Prandtl number defined in Eq. (20) 

Q Volumetric rate of heat generation 

Re Generalized Reynolds number defined in Eq. 

(9) 

T Temperature 

u Fluid velocity component in the x-direction 

Uw Plate velocity in the negative x-direction 

U∞ Main stream velocity 

v Fluid velocity component in the y-direction 

ν0 Constant injection velocity at the wall 

Vw Injection velocity at the plate surface 

V(ξ) Dimensionless injection distribution defined in 

Eq. (14) 
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x Stream-wise coordinate along the surface 

measured from the slot 

y Coordinate normal to the plate surface 

 

Greek symbols 

α Thermal diffusivity 

η Dimensionless variable defined in Eq. (8) 

θ Dimensionless temperature defined in Eq. (16) 

λ Plate velocity ratio defined in Eq. (15) 

Λ Injection parameter defined in Eq. (13) 

Λ1 Parameter in the energy equation defined in Eq. 

(19) 

Λ2 Heat source/sink parameter defined in Eq. (21) 

µ0 Consistency index for non-Newtonian viscosity 

defined in Eq. (4) 

ξ Dimensionless variable defined in Eq. (8) 

ρ Density 

τxy Shear stress defined in Eq. (4) 

ψ Stream function defined in Eq. (7) 

 

Subscripts 

i Subscript designating universal functions 

w Subscript designating conditions at the plate 

surface 

∞ Subscript designating conditions in the main 

stream 
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Appendix 1. Converting Eq. (5) into Eq. (17) 

 Eq. (16) is used to convert variable T to 

dimensionless form (θ) in Eq. (5). Thus, the energy 

equation is eventually transformed into 
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(A1.1) 

θ is assumed to be a function of ξ and η (Eq. (16)), 

which are defined in Eq. (8). Thus, x  , y  , 

and 2 2y  can be derived as follows: 
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According to the definition of ψ (Eq. (10)), x 

and y   are derived thus: 
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The following equations are derived for u and v by 

substituting Eqs. (A1.5) and (A1.6) into Eq. (7): 
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Substituting Eqs. (A1.2), (A1.3), (A1.4), (A1.7), 

and (A1.8) into Eq. (A1.1) and simplifying the 

energy equation yield 
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Eq. (A1.9) can be overwritten to establish Eq. (17). 
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Here, the primes are defined as partial 

differentiations with respect to η. Λ, Λ1, and Λ2 are 

defined in Eqs. (13), (19), and (21); the term 

   , ,f     is Jacobian and defined in Eq. (18) in 

the main text. 

Appendix 2. Numerical Procedure 

 This appendix describes the numerical 

procedure for solving Eq. (24), which is the first 
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term of the Merk–Chao series for the energy 

equation. This equation, along with the momentum 

equation, generates a set of coupled first-order 

boundary value differential equations. The first 

term of the Merk–Chao series for the momentum 

equation is 
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 Eq. (A2.1) and the other terms of the Merk–

Chao series for the momentum equation can be 

found in the paper published by Rao et al. [13].  

 To solve these equations, the fourth-order 

Runge–Kutta method is adopted. The third-order 

ODE of the momentum equation can be converted 

into a system of three first-order ODEs through the 

following variable substitution: 
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 The same substitution procedure is used to 

convert the second-order ODE of the energy 

equation (Eq. (24)) into a system of two first-order 

ODEs as follows: 
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 These ODEs are solved in the interval 0 ≤ x ≤ 8 

by using 80 intervals (i.e., with h = 0.1) as follows: 
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(A2.8) 

Because Eqs. (24) and (A2.1) are BVPs, the 

shooting method is used to solve the problem, as 

described in the main text. For this purpose, si0 is 

modified as the problem is run until t(∞) = 1 or 1-

t(∞) = 0 is achieved. This procedure is carried out 

using MATLAB (R2007a). The same procedure is 

used for Eqs. (25) to (30), and the results for 

different values of n, Λ, and Λ1 are listed in Tables 

2 and 3. Note that the momentum equation was 

previously solved by Rao et al. [13], and we used 

their results, as presented in Table 1. 
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