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Abstract

The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear
fractional integro-differential equations involving Caputo fractional derivative by using the techniques
such as fractional calculus, Holder inequality, Krasnoselskii’s fixed point theorem and nonlinear
alternative of Leray-Schauder type. Examples are exhibited to illustrate the main results.
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1. Introduction

Fractional differential equations have been recently used as effective tools in study the modelling of
many real phenomena. Scientists and engineers have become more conscious of the fact that the
description of natural phenomena in physics, chemistry, biophysics, biology, blood flow problems,
control theory, aerodynamics, nonlinear oscillation of earthquake, the fluid-dynamic traffic model,
etc. be more precise by fractional derivatives, see for examples [8, [I1]. For more details on fractional
calculus and fractional differential equations theory, see the monographs of Kilbas et al. [I1], Miller
and Ross [14], Podlubny [I5] Samko et al. [16], and the references given therein. Agarwal et al.
[2] studied the existence and uniqueness of solutions for various classes of fractional differential
equations involving the Caputo fractional derivative with initial and boundary value conditions in
finite dimensional spaces. Chalishajar and Karthikeyan [3] and Yang et al. [20] have extended the
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work in [I] from real line R to the abstract Banach space X by using more general assumptions on
the nonlinear function f.

We are motivated by the works in [I}, 20] and influenced by Chalishajar and Karthikeyan [3]. By
applying different techniques and strong conditions, the purpose of the present paper is to study the
following more general class of boundary value problem for fractional integro-differential equation

cDx(t) = f(t,z(t), (Sz)(t)),t € J=1[0,T], € (n—1,n],

z(0) = zg, 2'(0) = 2, 2"(0) = 22, ..., "2(0) = 202, (1.1)
(T = o,
where “D* is the Caputo fractional derivative of order o, f : J X X x X — X and =g, z)(i =
1,2,...,n— 2 n > 3,n is an integer ), xp are elements of X and S is a nonlinear integral operator
given by (Sx)( fo (t,s,x )ds where k € C(J x J x X, X). Here, X be a Banach space with
the norm || - H and C(J,X) denotes the Banach space of X-valued continuous functions on J with

the supremum norm ||z := Sup{||x(t)|| : t € J}. For measurable functions m : J — R, define the

norm ||mlory = (f, [m(t \pdt) 1 < p < oo, where LP(J,R) the Banach space of all Lebesgue
measurable functions m with ||m||rsr) < 0.

Many authors have investigated the special forms of equation (|1.1)) with different boundary con-
ditions by using various techniques, see for examples [1, 2], 4. [5] €, [7, 10, 12 13, I8, 20]. Here,
we establish existence results for the fractional boundary value problem (BVP for short), by
applying Krasnoselskii’s fixed point theorem, nonlinear alternative of Leray-Schauder type, Holder
inequality and fractional calculus.

This paper is organized as follows. In Section 2, we present some preliminaries. In Section 3, we
give the proof of our main results by applying fixed point theorems. Finally, in Section 4, applications
of the main results are provided.

2. Preliminaries

In this section, we set forth some preliminaries from [I1, 21]. Throughout this paper, we denote
R, =[0,00) and Rt = (0, c0).

Definition 2.1. The Riemann-Liouville fractional integral of order o € R™, of a suitable function

h, is defined by

I2h0) = g [ (6= 9 hs

where a € R and I' is the Gamma function.

Definition 2.2. For a suitable function h given on the interval [a, b], the Riemann-Liouville frac-
tional derivative of order o > 0 of h, is defined by

Dz = s () [ sy hisyas

where n = [a] + 1, [a] denotes the integer part of «.
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Definition 2.3. For a suitable function h given on the interval [a, b], the Caputo fractional order
derivative of order a > 0 of h, is defined by

1

(DL = o [ (= O ).

where n = [a] + 1, [a] denotes the integer part of «.

Remark 2.4. We remark that

(i) The Caputo derivative of a constant is equal to zero.

(i) <D™ I*h(t) = h(t)

(iii) For o, 8 > 0 and n = [a] + 1, we have

DY = st B> mand “DtF =0, k=0,1,2,...,n— 1.

(iv) If h is an abstract function with values in X, then integrals which appeared in Definitions ,
2.2l and 2.3] are taken in Bochner’s sense.

Lemma 2.5. ([2I]) Let a > 0; then the differential equation *D*h(t) = 0, has the following general
solution h(t) = ¢+ c1t + cot* + -+ + ¢, 1t" !, where ¢; € R, i =0,1,2,...,n— 1, where n = [a] + 1.

Lemma 2.6. ([21]) Let o > 0; then

I*(°D*h)(t) = h(t) 4+ co + c1t + cot® + - + ¢ g t"
for some ¢; € R, i=10,1,2,...,n— 1, where n = [a] + 1.
For more details, see [11].

Definition 2.7. A function z € C(J, X) with it’s « derivative existing on J is said to be a solution
of the fractional BVP (L.1) if « satisfies the equation “D®z(t) = f(t,z(t), (Sz)(t)) a.e. on J, and the
conditions z(0) = xg, 2'(0) = z§,2”(0) = 23, . . .,

r=2(0) = 2072, 2(T) = 27.

We now prove the following auxiliary lemma.

Lemma 2.8. Let f : J — X be continuous. A function x € C(J,X) is solution of the fractional
integral equation

1 /t =
x(t) = — t—s)*" " f(s)ds
)= [ €= F)
tn_l T o
_ T — g™ d 2.1
T, T s (21)
2 n—2
1 Lo 2 Lo n—2 LT n—1
A R B t
R T ) L P TR
if and only if x 1s a solution of the following fractional BVP
‘D(t) = f(t),t € J=1[0,T],a € (n — 1,n], (2.2)

2(0) = 0,2 (0) = x3, 2" (0) = 22, ..., x=2(0) = 2272, 2" )(T) = 2. (2.3)
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Proof . Suppose that z satisfies fractional BVP (2.2))-(2.3)); then by Lemma and Def. we
get

I -
z(t)+eotat+et®+ ot = / (t—s8)* 1 f(s)ds,
I'(e) Jo
where ¢; € R, 9 =10,1,2,...,n — 1. That is:
1 ' a—17¢ 2 n—2 n—1
x(t)= == [ (t—5)" " f(s)ds —co—crt —cot® — - — ot " — cpqt" . (2.4)
I'(@) Jo
By applying the condition z(0) = zy, we get
Tog = —Cyp = Co = —Xyp.
Now,
() = _ /t(t — 8)*2f(s)ds —c1 — 2ct — -+ — (N — 2)Cpot™ — (n — 1)cp_1t" >
since 2/(0) = x}, we have
x(l) = —C = C = —x(l)
And,
1 t 3
") = ——= t—s)*" ds —2cy — ...
Y0 = g | = 9 Fes 2

—(n—2)(n = 3)cnat" = (n—1)(n — 2)cp_1t" 3,

by using z”(0) = x3, we have

x
=20 =0y = TR

By continuing this process, we get
(n—2) 1 ' a—n+17p
x (t) = —) (t—s) f(s)ds
0

MNa—n+2
—(n=2)(n=3)(n—=4)...(2)(1)ep—2—(n—1)(n—2)(n—3)...(3)(2)cy1t,

applying =2 (0) = x{ 2, we have

xg_2
1‘8_2 =—n—=2)lc, 9= cCpo= _(n —2)I
Finally,
) (0) = 1 /t(t — 5>a7n7(8)d5
F(a —n+ 1) 0
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by using (™ ~1(T) = x7, we obtain

1 g o
Ty = m/o (T —8)* " f(s)ds — (n— 1)le,_1,

and so that
TT 1

O T T = DT a—n+1) /0 (= 5)* " f(s)ds.

By putting the values of ¢;(i = 0,1,2,...,n — 1) in (2.4), we get

() = ﬁ /0 (t— ) F(s)ds

tn_l

- T, T

2 n—2

1 Lo 2 Lo n—2 TT
f 02 gy T0
R T rr T o oy

tn—l

Conversely, assume that if = satisfies fractional integral equation (2.1)), if ¢ € [0,7] then z(0) =
20, 2'(0) = 2}, 2"(0) = 22, ..., 2"=2(0) = 2572, x~V(T) = 27 and applying Remark [2.4] (i)-(iii), we
get ([2.2)) is also satisfied. O

In view of Lemma [2.8] we have the following result which is useful in what follows.

Lemma 2.9. Let f: J x X x X — Xbe continuous function. Then, z € C(J, X)is a solution of the
fractional integral equation

ot) = ﬁ/o(t—s)o‘_lf(s,x(s),(Sx)(s))ds

tnfl

T /0 (T — )" f (s, 2(s), (Sz)(s))ds

n—2

2
1 Ty 0 o) n—2 rT n—1
t+ —t t t
+xo + 2ot + 5] +e 4+ (n—2)! + = 1) )

if and only if x is solution of the fractional BVP (1.1]).

Lemma 2.10. (Mazur theorem, [I7]) Let X be a Banach space. If U C X is relatively compact,
then conv(U) is relatively compact and cono(U) is compact.

Lemma 2.11. (Ascoli-Arzela theorem) Let S = {s(t)} is a function family of continuous mappings
s : [a,b] — X. If S is uniformly bounded and equicontinuous, and for any t* € [a,b], the set

{s(t*)} is relatively compact, then, there exists a uniformly convergent function sequence {s,, (¢t)}(n =
1,2,...,t€a,b])in S,

Lemma 2.12. (Krasnoselskii theorem) Let B be a closed convex and nonempty subset of X. Suppose
that L and N are in general nonlinear operators which maps B into X such that:

(i) Lu + Nv € B whenever u,v € B;

(ii) L is a contraction mapping;

(iii) NV is compact and continuous. Then there exists w € B such that w = Lw + Nw.
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Lemma 2.13. (Nonlinear alternative of Leray-Schauder type) Let C' be a nonempty convex subset
of a Banach space X. Let U be a nonempty open subset of C' with 0 € U and F : U — C be a
compact and continuous operators. Then either

(i)F has fixed points in U, or

(ii) there exist © € U and n € [0, 1]} with x = nF(x).

3. Main Results

First, we list hypotheses that will be used in our further discussion.

e (H1) The function f : J x X x X — X is measurable with respect to ¢ on J and is continu-
ous with respect to x on X.

1
e (H2) There exists a constant a; € (0,a — n + 1) and real-valued function h(t) € L1 (J,R), such

that [|f (¢, z(t), (Sz)(t))|| < h(t), for each t € J, and all z € X. For brevity, let H = HhHLa%(JR)'

e (H3) There exists a constant ay € (0, @ — n + 1), real-valued functions ¢1(t), pa(t) € L‘%?(J, RT)
and there exist a L'-integrable and nondecreasing functions vy, : [0,00) — (0, 00) such that

1f (¢, 2(t), (S2)() | < ex(®) dr(l2@®)]]) + ISz(@)]],

1% (¢, 5, 2()) 1 < @a(t) a(llz(s)1),

for each s € [0,¢], t € J and all z,y € X.

e (H4) For every t € J, the sets

Ky ={(t—s)*""f(s,2(s),(Sz)(s)) : x € C(J,X),s € [0,¢]} and

Ky = %(t —5)* " f(s,z(s), (Sz)(s)) : x € C(J,X),s € [0,t]} are relatively compact.
e (H5) There exists a constant Z > 0 such that

Z (q)lwl (Z2) o2 (1—an) ™ ®athn(Z) T2 (1 — ay) ™

F(a) (Oé - ag)l_” F(a) (Oé _ a2)1—a2
D141 (Z) Ta—02 (1 — q,)' %2
* (n—l)!F(a—n+1) (a_a2_n+1)1—a2 (3.1)
Do)y (Z) To—o2tl (1 — o)™ -
'l'(n_l)!r<0‘_”+1)(04—042—n+1)1—0‘2+X> > 1,

1

where &, = (fJ (901(3))@>a2, oy = (fJ (902(8))£>a2 and

2 -2
_ e H%HTQ [ p— [ —
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Now, before dealing with main results, let us define the operator F': C(J, X) — C(J, X) as follows:

(P = o5 [ =971 (5.2, (2)(0)) s

(cv
g T -
- (n—l)!F(a—n—|—1)/0 (T = )7 f (s, 2(s), (Sz)(s)) ds (3.2)
+I0+Ji0t—i— 2' _|_..._|_(n0_2)!tn—2_|_(n_1) e

Theorem 3.1. Assume that (H1), (H2) and (H4) hold. Then, the fractional BVP (1.1 has at least

one solution on J.

Proof . Let B, = {z € C(J, X) : ||z||« < r}, where

S HTo— N HTo— a—a;—n+1 —(1—a1)
-
T To)(ED)t (=D (a—n+1) 11—

(3.3)

2||

Ly |z 0||T2 7o ) -2 |z n—1

We subdivide the operators F' defined by (3.2)) into two operators A and B on B, as

(An)(0) = s [ (€= 97 (5209, (52)(9) s
- 1)'12‘;@ T /0 (T — )" f (s, 2(s), (Sz)(s))ds
(Br)(t) = m +alp + D4t mt Py

The proof is divided into several steps.

Step 1. Az + By € B,.
For any x,y € B, and t € J, by (H2), Hélder inequality and (3.3)), we have

|(Aw) () + (By) (D)
1 t o—1
< [ =95 (o), (S)9) s
! LT g s d
+(n_1)!r(a_n+1)/< — ) (s, 2(5), (S)(5)) s
Il P L7
+ [|zol| + ||z 0||t+ ‘f‘mt +mt
1 t o—1
< T@)/o (t—s)*"h(s)ds
tnil . a—n
+(n—1)!F(a—n—|—1)/0 (T = 5)"""h(s)ds
v 2Bl P s
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and so

[(Az)(t) + (By)(®)|

1 t w1 1—o1 t L a1
< —— t—s)l-erds / h(s %ds)
o (o) ([
tn—l T . 1—ag T . ai
T — s)i—e1d h(s))er
D@ 0 (/ e ) ([ tenban)
& 0|| 2 L Iz |l 2zl
Lt 4 0 t —_—
HT" HTo a—ay—n+1) "
T o))t (=DM (a—n+1) 11—
2 —2
T C PN PSR A

<
Thus, || Az + By||s < r and we conclude that for all z,y € B,, Ax + By € B,.
Step 2. B is a contraction mapping.

It is obvious that B is a contraction with the constant zero.
Step 3. A is continuous operator.
Let {z,,} be a sequence such that x,, — x in C(J,X). Then for each t € J, we have
[(A(zn))(£) = (A(2)) @)
1 ¢ _
< m/o (t =) [ (s, 2a(s), (Sza)(s)) = f(s,2(s), (Sx)(s))]| ds
tnfl T B
+ (= Do —nt 1) /0 (T —s) ||f(s, xn($), (Sacn)(s)) — f(s, x(s), (Sx)(s)) H ds

<SG an(), (S2a) () = (2 (), (92) ()l %/ (t—s)"""ds

N £ (s 2n(), (Sza)() — f (L 2(), (Sz) ()]t /T(T— §)2nds

(n—1DT(a—n+1)
< 17 Canl), (S2)()) = £ (20, (S2) ) | #a)

N £ (s 2n(), (Sz0)() = f(2(), (Sz) ()|t Ton!
(n—1IMNa—n+1) (a—=n+1)
< ( e n e
“\I(a+1) (mn-—DITI'(a—n+2)

) £ Cown(), (Sza) () = £ (5 2(), (S2) ()| -



On boundary value problems of higher order ... 7 (2016) No. 2, 165-184 173

Taking supremum, we get
| Az, — Az

T T
< (far * o) 1760 8700) = 10, (590) .

since f is continuous, we have

| Az, — Ax| — 0 as n — oc.

Therefore, A is continuous operator.

Step 4. A is compact operator.
For x € B, and all ¢t € J, by using (H2) and Hélder inequality, we have

1 -
(A=) (0] < m/o (t = 5)"7HIf (s, 2(s), (Sz)(s))lds
tnfl T o
* (n—DT(a—n+1) /0 (T = )" " f (s, 2(s), (Sz)(s)) [1ds

< </ot“ - >d) (/ t<h<s>>aﬁds)°”

HT* HT* a—a;—n+1\ 4
T D)=t (=DM (a—n+1) 1 —oy
<1
where
o HT HTo a—ay—n+1) "
o Fla)(f=2)t (n— DI (a—n+1) 1—a ‘

Thus, we have
| Azl <1, and hence A is bounded.

Also, let 0 < t; <ty <T,x € B,. Using (H2) and Holder inequality, again we have
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[(A(2))(t2) — (A(z))(t1)]|
! a-l_ — )t s, x(s x)(s S
<y [ =9 = =9 £ (ale). (S2)(9) 4

I'(a) /t (t2 = )7 [|£ (5. 2(5), (S)(5)) || ds

t721—1 _ t711—1 T o
(T e MG HOEONCRIDI 8

—~

! o=l (t; — s)* Y h(s)ds 1 ’ — ) 'h(s)ds
o A e L T ACRE I,

tg_l—t?_l T
T — $)*"h(s)d
+(n—1)!F(a—n+1)/O (T = s)™"h(s)ds

e[ - ([t
+ iy / -9 as) t<h<s)>aids) 1

R T e = l—en t (g o
+(n—1)!F(a—n—|—1)</0( s)im S) (/0((5))1 S>
a—aq a—aq 1—0&1 a—aq 1—0:1
H [(ta—t)T= ¢, ™ H [—t; ™
< _ _
T ( = —“fz;) L) ( = )

a—ag I-on 1 1 a—aq—n+l 1—ay
i H —<t2 — tl) 1-—ay n H(tg’i — t?i ) T T-ag
['(a) =t (n—DT(a—n+1) a—a;—n+l .

1—ay 1—an

As ty — tq, the right-hand side of the above inequality tends to zero and since z is an arbitrary in
B,, A is equicontinuous.

Now, let {z,},n =1,2,... be a sequence on B,, and

(Azn)(t) = (Arzn) () + (Asza)(2), 1 € J,

where
(Ajx,)(t) = ﬁfo (t —s)* ' f(s,xals), (Sz,)(s))ds, t € J,
(Agz,)(t) = — o= 1)!;;; m— /0 (T = 5)* " f(s,20(s), (Szn)(s))ds, t € J.
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In view of hypothesis (H4) and lemma [2.10 the set convK; is compact. For any t* € J,

1ot
m/o (t* = 5)* 7 f (s, 20(s), (Szy)(s))ds

1 =t e\, i it it*
-l Y5 (- 5) s (Fed sap)

1=
t*
= = Cnt,

[(a)

(Arzn)(t7) =

where

k . a—1 . . .

Now, we have {(A;z,)(t)} is a function family of continuous mappings Az, : J — X, which is
uniformly bounded and equicontinuous. As convK; is convex and compact, we know (,; € convKj.
Hence, for any t* € J = [0,T], the set {(Aiz,)(t*)}, is relatively compact. Therefore by lemma
2.11] every {(Aiz,)(t)} contains a uniformly convergent subsequence {(A;z,,)(t)},k=1,2,..., on
J. Thus, {Az : x € B,} is relatively compact.

Set
tn—l

(Axzn) () = — (n— )T (a—n+

For any t* € J,

1) /0 (t—8)*"f(s,zn(s), (Szn)(s))ds,t € J.

() (1) = -

where

k . a—n . . .
. L[, it i it it'
Cn2 = I}Lrgoz; z (t ?) f (?7xn<?)7 (5%)(?)) :

Now, we have {(Asx,)(t)} is a function family of continuous mappings Asx, : J — X, which is
uniformly bounded and equicontinuous. As  conv K, is convex and compact, we know (o € convky.
Hence, for any t* € J = [0,T], the set {(A2z,)(t*)}, is relatively compact. Therefore by lemma
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2.11}, every {(Asx,)(t)} contains a uniformly convergent subsequence {(Ayz,, )(t)}, k = ., on
J. Particularly, {(Azz,)(t)} contains a uniformly convergent subsequence {(Asx,, )(t)}, k: 1 2
on J. Thus, {Ayz : © € B,} is relatively compact. As a result, the set {Az : x € B, } is relatlvely
compact.

Therefore, the continuity of A and relatively compactness of the set { Az : z € B,} imply that A
is compact operator. By Krasnoselskii’s fixed point theorem given in Lemma [2.12] we deduce that
A + B has a fixed point that is the solution of fractional BVP (1.1)). [

Theorem 3.2. Assume that (H1) and (H3)-(H5) hold. Then the fractional BVP (1.1)) has at least

one solution on J.

Proof . Clearly, the fixed points of the operator F' defined by ({3.2]) are solutions of fractional BVP
(1.1). We subdivide the proof into several steps.

Firstly, we prove that the operator F'is continuous.
Since f is continuous, as in the proof of Theorem (step 3), we can show that the operator F' is
continuous.

Secondly, we show that the operator F' maps bounded sets into bounded sets in C(J, X).

We have to show that for any 7* > 0, there exists a [* > 0 such that for each z € B,» = {z €
C(J, X) : ||l < 7%}, we have || Fz|o < I*.

For each t € J, by (H3) and Hélder inequality, we get

PO < a5 [ =917 (5.2, (S2)() s

(a
tn—l

i ) / (T = )" | £ (s, 2(s), (S)(5)) | ds

(n—1MNa—n+1

5 e

ozl s

+ ||zol| + gt + >+

: (TL — 2) (n — 1)
1 t a1
< e [ =0 (@ alla) + Isa)1 s

tn_l

A P E— / (T — s (901(8) vr(ll2(s)1) + 11(S2)(s)]| ) ds

5l
21

I

25~ [E [
t"
(n—2)! o (n—1)!

< i [ =9 (v et /Hksm )l ) ds

tnfl
+(n—1)!F(a—n—|—1)/0 (T =)™
< (o1 (=) + / Ik (s, 7, 2(r)) 1 ) ds

1 I OH 2 |zg 2” lzrll 0y
t+ 00 T T e
+ |lzol| + [zt + AR (n—2)l ’+ =1

2t
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and so

1 ¢ ol
IFENON < 575 / (t =50 (21(5) r (lelo) + Tpa(s) (Il <) ) ds

g1 T o
(n— 1)!F(a—n+1)/0 (T=s)

% (1(9) Y1 (llzll) + Tipas) vz (lolsc) ) ds

+

2 n—2
1 ||x0|| 2 ||I0 || n—2 ||$T” n—1
+ ¢4 D20y oo 0 T et |
lzoll + llollt + 2! * (n—2)! * (n—1)!

40 [ ™ ([ cora)”
T (i) ([ aoyban)
e (o) ([ o)
e (o)™ (]

=

Q

2 ds)
a2
2 ds)

2|

i 173l e [ o I
t t t —
+ |lzoll + [|zollt + AR (n—2) + (=11
q)lwl (T*) Ta—oz @2¢2 (T‘*) To—az+l
() (a—az)l_a2 I'(c) <a—0¢2>1_a2

1—a2 1—a2

N N (T*) Ta—as N Dy1)y (7“*) Ta—az+1

(n—DM(a—n+1) (aa2n+1>1_°‘2 n—DT(a—n+1) (aa2n+1>1_a2
1—as 1—a2
2 n—2
L ST L IR s e
<,
where
. Py (7’*) Ta—oz N D1y (fr*) To—az+l
- I(a) <-)1 I(a) ()1
1—ap2 1—as
N @1¢1 (T*) Toa—o2 N @21/}2 (7“*) Ta—az+l
(n - 1)'F(Oé —n+ 1) (a—ag—n-ﬁ-l)l_(m (TL - 1)'F(Oé —n+ 1) (06—062—n+1)1_a2
1—a2 1—ao
2 n—2
L PSR L IR o [

Thus, we have
|(F(2))(t)|| < I* for every t € J =[0,T] and hence ||[Fz| < I*.
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Thirdly, we show that the operator F' maps bounded sets into equicontinuous sets of C(J, X).
Let 0 <t <ty <T,x € B,». Using (H3) and Hélder inequality, again we have

I(F () (t2) = (F(2)) (1)

t1

[(t2 = s)* " = (t1 — 9)* '] || f (s, 2(s), (Sz)(s)) || ds

0

‘ -

<
«

—~
~—

‘ -

r
) / (t2 = 5)* 71 [f (s, 2(s), (Sz)(5)) || ds

n—1 n—1
t2 B tl

n—DT(a—n+1

—2
s
+ Hx[l)H(tQ _tl) + ||2(']||(t2 —t2) 4. || || (tn72 _t?72) + || TH (tgfl _t?fl)

(” —2)! (n—1)!
1 t o1 -
< W/o (ty — )" = (tr — 5)*7] (sol(s) U1 ([12ll) +T302(8)¢2(||x||00))ds

—

) / (T —s)* ™" Hf(s x(s), (S:c)(s)) H ds

—

1 t2 a1
t 57 | =9 () lele) + Tin(e) () s
=1 _ -1 T -
i L =9 (a0 (lele) + Tnls) vala) ) s
|| L P 5

+ ||zl (t2 — 1) + (ts—t]) 4+ -+

zoll
2! (n—2)!

1/’1( )</o1<t?_8>1&&12d3>1 a2</0t1 (sol(s))a%dsfz
([ ) ([ et >)%ds)“2
?((T)(/Ol(m—slwdsl‘*? /0 ‘%
%( )</0 (Yfl—slazdsla2 /0 ) ds a2
(/ 2—81a2d3102 /
ot 0 ([ %(/ S )
" (1ilE 1)>§;2(a - T:: 1)) ( /0T<T - sy ds>1 ) ( /: (e1(s) = ds)
Ty (r*) (657 = 1777) (/T(T— s)1-e3 d8>1a2(/j (@2(8))?1%8)&2

(n—DIM(a—n+1)
[Erl

£l
2! (n—2)!

(n—1)!

gm

+

\3\/

Q‘H

+

(tn—Z . t711—2) + ||$T|| (t'gL—l B trlz—l)

(t—t]) +-+ (n— 1)1

+ bl — 1) +
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and so

I(F(2))(t2) = (F(2))(t)]

a—ag a—ag 1-az a—ag 1—as
() ((ta—t)TF ) Ban() [t
He) =N = R
a—ag a—an 1-a2 a—ag 1—as
Toon(rr) ((ta—t) T 32\ Tun(r) =t
[(e) ot T (o) =
« a—ag 1—a2 . a—ag 1—ao
®1¢1 (T ) —(tg — tl) 1—ag T®2f(/}2 (/r ) _(t2 _ tl) T-ay
* Q- + a—ao
F(a> 1—ao F(O() E

(n—1Ma—n+1) a—ap—n+tl (n—1)T(a—n+1) a—aa—n+1

1—a2 1—as

L B () (BT -4 <_T“?2a5“ ) T Ty (B -6 (‘T )

n—2
[ ”!(tg—Q_t?—2)+ |z || (L — o1y,

1 e P
ty—t) + (22— ) 0L
Fllolltt = b+ TR = H) e T (n— 1)

As ty — tq, the right-hand side of the above inequality tends to zero and since z is an arbitrary in

B,«, F'is equicontinuous.
Now, let {z,},n =1,2,... be a sequence on B,-, and

(F'zn)(t) = (Fran)(t) + (Fawn)(t) + (Fsa)(1),t € J,

where

(Fyza)(t) = ﬁ /0 (£ — 5)*F (5, 2n(s), (Sa)(5))ds,t €

tn—l
(Fow,)(t) = — (n—DIT(a—n+

1 /0 (T = $)* " f (s, 2n(s), (Szn)(s))ds, t € J,

x? zn? T
Fax,)(t) = T e ey DN S
(Fyaa)(t) = wo +wgt + 51t + +(n_2)! +(n_1>! ,

As in the proof of previous theorem, we can show that the sets {Fiz : © € B.«} and {Fyx : x € B+ }
are relatively compact. Obviously, the set {F3x : © € B,+} is relatively compact, and hence, the set

{Fz : x € B,} is relatively compact.
Consequently, we can conclude that F' is continuous and completely continuous.

Finally, we suppose that for some n € [0,1], let z(t) = n(Fz)(t), by using (H3), (H5), Holder
inequality and for each t € J, we have
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< ﬁ i (t — 3)a—1<gpl(s) 1/11(||:v||oo) + Tps(s) ¢2(||x||oo)>ds
tnfl T o
* (n—l)!F(a—n+1)/ (T=3)
x (15 w1 (J2ll) + Tioa(s wg(uxuw))ds
|| H 4 Ja” W Mozl s
2t ( )] "+ =1 t
D19y ([|2]joc) T2 Bty (2] n0)  TO02+
1-az 1—as
N ()T ()
n 141 (||| oo) T2
(n — 1)'F(Oé —n+ 1) (a—ag—n—‘rl)l_aQ
1—apo
Caths ([l ) Ta-oz+l
_ _ 1—a2
(n—DTM(a—n+1) (a,?;;l“)
1 I 0|| 2 ||xg_2|| n—2 B —
ol + i+ Bl gy B e el
< q)lwl(HfEHoo) a—og (1 _ &2)1—@2 q)QwQ(HxHoo) Toa—az+l (1 _ Ov/2)1—042
F(Oé) (Oé — a2>1*a2 F(CY) (a — a2)17a2
L () T -0y
(n—1)T(a—n+1)(a —ay —n+1)"*
Pothy (||| o) To—02t1 (1 — o)™ N
(n—1)T(a—n+1) (@ —ay—n+1)"" X-

H H @1% HSC||oo) T2 (1—ay)' ™ N Doty (J|2floc) T2+ (1 — ) ™™
(o — ) ™ I'(a) (a —ag)' ™
q)1¢1(|’$||oo) Tom (1 —ay)' ™™
(n—DT(a—n+1) (0 — g —n+ 1)1_a2

~1
(I)ZwQ(HxHoo) Ta—ocg—l—l (1 o Odg)l_a2 N <1
(n—DMa—n+ )(a—a2—n+1)1*a2 X -

_'_

But by (H5), there exists a Z > 0 such that [|z[|« # Z and |z[| < Z.
Let U = {z € C(J,X) : ||z||o < Z < 7*}. The operator F' : U — C(J,X) is continuous and
completely continuous. From the choice of U, there is no € oU such that x = nFz,n € [0,1]. As
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a consequence of the nonlinear alternative of Leray-Schuder type given in Lemma [2.13, we deduce
that F has a fixed point € U, which implies that the fractional BVP (|1.1)) has at least one solution
reC(J,X). O

4. Examples

In order to illustrate the applications of our results, we give the following an examples.

Example 4.1.

2(s+|z(s
{CDal'(t) = 3+sm COS l'(t ft tl‘f‘:‘;'l‘x ()l dS te Jl’ ac (2 3] (41)

z(0) =0,2'(0) = 1 z'(1) =1,

Take J; = [0,1] and so T' = 1.
Set

fi (t,x(t),Sx(t)) = %S;m(t)cos(a:(t)) —i—/o if%m
For all x € C(J;, X) and each t € J; = [0, 1], we have
Hf1 (t,z(t), Sz t))H = Hm cos(z(t)) —{—/0 %ds”

t 1
< -+t e Lai(J,R).

2
Now
/0 (t —s)* " fi(s,z(s), Sz(s))ds < /0 (t—s)* ! (g + 32> ds
b o
s+
L()I(2) 4o, H@OTA+2) 50,
= 2F(2+a) T1+2+a)
L(@)l(2) | D(@)I(E)
“2l24+a) TB+a)’
also

/0 (t—s)* 3f1(s x( ),Sm(s))ds < i (t —s)>3 (g + 52> ds
<TI'(a—2)1°72 <% + t2>
Lla = 2I(2) o | Dle=2TEG)
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As a result, the sets
Ky = {(t — s)a_lfl(s,m(s),Sx(s)) cxeC(N,X),s € [O,t]},

Kyp = {(t - 3)a_3f1(3»$<3)75$(3)) 11 € O(J1, X), s € [O’t]}’

are bounded which implies that Ki;, K15 are relatively compact. Thus, all the assumptions in
Theorem [3.1] satisfied, and, hence, the fractional BVP has at least one solution on J;.

Example 4.2.
“Diz(t) = 1+et 1+|a:(t |3 fo 2 iﬁzsllz ds,t € Ji, o € (3,4, (4.2)
z(0) = 0,2/(0) = 0,2”(0) = 0,2"(1) = 0. '
Take X; =Ry, .J; =[0,1] and so 7' = 1.
Set
_ ot x@P t2]a(s)?
fa(t,z(t), (Sx)(t)) = e+ |af + (Sz)(t), ka(t, s, 2(s)) = 20+ 2(s)]2)

a=1Ia,=1 ForallzeC(J,X;)andeach t € J; =[0,1], we have

t2|ZL‘< )|2 |$( )|27

a2 )| = |57 ot |

and
3

t
(. 2(8), S2()] < Sle@F + |(S2))|
1 1
Then, we have ¢, (t) = & € L# (J,RY), () = & € Lo (J,RY), 9y (Jz(t)]) = |x(t)? and o (|z(t)]) =
|z(s)|?. Further, we can choose a real number Z = 1. Therefore ®; = <f01 (%)4dt>4 = (2%8)% =

4&‘1‘ = () = 0.289, ¢1(Z) = 1(Z) = F(O 5) = 1.77, and T'(3.5) = 3.32.
(6.1 )N

0.263,®, = (f, (%)
) is satisfies, that is (5.75237080 > 1.

Then, the inequality

/0 (t—s)a1f2(8,x(8),5$(8))d3§/[; ( %fl (534—%) ds
< r(;)JZ 5+ g)
_T@ru N T(3)0(3)
=ThE )
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As a result, the sets
K3 = {(t —5)* " fals, 2(s), Sx(s)) 1z € C(J1, X1), s € [Ovt]}a

Kus = {(t = )" fa(s.2(s). S2()) : 2 € O X)), s € 0.0},

are bounded which implies that K3, K14 are relatively compact. Thus, all the assumptions in
Theorem [3.2] satisfied, and, hence, the fractional BVP has at least one solution on J;.

5. Conclusions

In this paper, we have discussed the achievement of sufficient conditions for the existence of solutions
of fractional BVP (1.1) which is more general than problems in literatures review [I, B, 20], by
applying Krasnoselskii’s fixed point theorem, nonlinear alternative of Leray-Schauder type, Holder
inequality and fractional calculus. Examples provided to illustrate main results.
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