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Abstract

In this paper, we introduce the concept of a w-compatible mappings and utilize the same to discuss
the ideas of coupled coincidence point and coupled point of coincidence for nonlinear contractive
mappings in the context of complex valued metric spaces besides proving existence theorems which
are following by corresponding unique coupled common fixed point theorems for such mappings.
Some illustrative examples are also given to substantiate our newly proved results.
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1. Introduction and preliminaries

The axiomatic development of a metric space was essentially carried out by French mathematician
Frechet in the year 1906. The utility of metric spaces in the natural growth of Functional Analysis is
enormous. Inspired from the impact of this natural idea to mathematics in general and to Functional
Analysis in particular, several researchers attempted various generalizations of this notion in the
recent past such as: rectangular metric spaces, semi metric spaces, quasi metric spaces, quasi semi
metric spaces, pseudo metric spaces, probabilistic metric spaces, 2-metric spaces, D-metric spaces,
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G-metric spaces, , K-metric spaces, Cone metric spaces etc and by now there exists considerable
literature on all these generalizations of metric spaces (see [8]-[5]).

Most recently, Azam et al. [1] and Fayyaz et al. [12] studied complex valued metric spaces
wherein some fixed point theorems for mappings satisfying a rational inequality were established.
Naturally, this new idea can be utilized to define complex valued normed spaces and complex valued
inner product spaces which, in turn, offer a lot of scopes for further investigation. Though complex
valued metric spaces form a special class of cone metric space, yet this idea is intended to define
rational expressions which are not meaningful in cone metric spaces and thus many results of analysis
cannot be generalized to cone metric spaces. Indeed the definition of a cone metric space banks on
the underlying Banach space which is not a division Ring . However, in complex valued metric
spaces, we can study improvements of a host of results of analysis involving divisions.

In this paper we prove common fixed point theorems involving two pairs of weakly compatible
mappings satisfying certain rational expressions in complex valued metric space.

In what follows, we recall some notations and definitions that will be utilized in our subsequent
discussion. Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on C as
follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Consequently, one can infer that z1 - z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).
In particular, we write z1 � z2 if z1 6= z2 and one of (i), (ii), and (iii) is satisfied and we write

z1 ≺ z2 if only (iii) is satisfied. Notice that 0 - z1 � z2 ⇒ |z1| < |z2|, and z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 1.1. [1] Let X be a nonempty set whereas C be the set of complex numbers. Suppose
that the mapping d : X ×X → C, satisfies the following conditions:

(d1). 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2). d(x, y) = d(y, x) for all x, y ∈ X;
(d3). d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a complex valued metric on X, and (X, d) is called a complex valued metric space.

Example 1.2. [12]. Let X = C be a set of complex number. Define d : C× C→ C, by

d(z1, z2) = |x1 − x2|+ i|y1 − y2|

where z1 = x1 + iy1 and z2 = x2 + iy2. Then (X, d) is a complex valued metric space.

Example 1.3. [14] Let X = C be a set of complex number. Define d : C× C→ C, by

d(z1, z2) = eik|z1 − z2|

where 0 ≤ k ≤ π
2
, z1 = x1 + iy1 and z2 = x2 + iy2. Then (X, d) is a complex valued metric space.

Definition 1.4. [1] Let (X, d) be a complex valued metric space and B ⊆ X
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(i) b ∈ B is called an interior point of a set B whenever there is 0 ≺ r ∈ C such that

N(b, r) ⊆ B

where N(b, r) = {y ∈ X : d(b, y) ≺ r}.
(ii) A point x ∈ X is called a limit point of B whenever for every 0 ≺ r ∈ C,

N(x, r) ∩ (B\X) 6= ∅.

(iii) A subset A ⊆ X is called open whenever each element of A is an interior point of A.

(iv) A subset B ⊆ X is called closed whenever each limit point of B belongs to B.

(v)The family
F = {N(x, r) : x ∈ X, 0 ≺ r}

is a sub-basis for a topology on X. We denote this complex topology by τc. Indeed, the topology τc
is Hausdorff.

Definition 1.5. [1] Let (X, d) be a complex valued metric space and {xn}n≥1 be a sequence in X
and x ∈ X. We say that

(i) the sequence{xn}n≥1 converges to x if for every c ∈ C, with 0 ≺ c there is n0 ∈ N such that
for all n > n0, d(xn, x) ≺ c, . We denote this by limn xn = x, or xn → x, as n→∞,

(ii) the sequence{xn}n≥1 is Cauchy sequence if for every c ∈ C with 0 ≺ c there is n0 ∈ N such
that for all n > n0, d(xn, xn+m) ≺ c,

(iii) the metric space (X, d) is a complete complex valued metric space If every Cauchy sequence
is convergent.

In [1], Azam et al. established the following two lemmas.

Lemma 1.6. Let (X, d) be a complex valued metric space and let {xn} be a sequence in X. Then
{xn} converges to x if and only if |d(xn, x)| → 0 as n→∞.

Lemma 1.7. Let (X, d) be a complex valued metric space and let {xn} be a sequence in X. Then
{xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0 as n→∞.

2. Main results

Bhashkar et al. [2] introduced the concept of coupled fixed point of a mapping F : X × X → X
and investigated some coupled fixed point theorems in partially ordered sets. They also discussed
an application of their result by investigating the existence and uniqueness of solution for periodic
boundary value problem. Recently, Lakshmikantham et al. [10] proved coupled coincidence and cou-
pled common fixed point theorems for nonlinear contractive mappings in partially ordered complete
metric spaces.
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Definition 2.1. [2] An element (x, y) ∈ X × X is called a coupled fixed point of mapping F :
X ×X → X if x = F (x, y) and y = F (y, x).

Inspired with Definition 2.1 in the following we introduce the concept of a coupled fixed point of a
mapping F : X ×X → X.

Definition 2.2. An element (x, y) ∈ X ×X is called

(g1) a coupled coincidence point of mapping F : X ×X → X and g : X → X if g(x) = F (x, y) and
g(y) = F (y, x), and (gx, gy) is called coupled point of coincidence;

(g2) a common coupled fixed point of mappings F : X×X → X and g : X → X if x = g(x) = F (x, y)
and y = g(y) = F (y, x).

Note that if g is the identity mapping, then Definition 2.2 reduces to Definition 2.1. We introduce
the following definition.

Definition 2.3. The mappings F : X × X → X and g : X → X are called w−compatible if
g(F (x, y)) = F (gx, gy) whenever g(x) = F (x, y) and g(y) = F (y, x).

Definition 2.4. [10] Let (X,�) be a partially ordered set and let F : X×X → X and g : X → X.
The mapping F is said to have a mixed g-monotone property if F is monotone g-nondecreasing in
its first argument and monotone g-nonincreasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, gx1 � gx2 ⇒ F (x1, y) � F (x2, y)

and, y1, y2 ∈ X, gy1 � gy2 ⇒ F (x, y2) � F (x, y1).

Now we prove our main result.

Theorem 2.5. Let (X, d) be a complex valued metric space, F : X × X → X and g : X → X be
mappings satisfying

d(F (x, y), F (u, v)) - a1d(gx, gu) + a2d(gy, gv)

+
a3d(F (x, y), gx) + a4d(F (x, y), gu)

1 + d(u, v)

+
a5d(F (u, v), gu) + a6d(F (u, v), gx)

1 + d(x, y)
,

(2.1)

for all x, y, u, v ∈ X, where ai, i = 1, 2, . . . , 6 are nonnegative real numbers such that
∑6

i=1 ai < 1. If
F (X ×X) ⊆ g(X) and g(X) is complete subset of X, then F and g have a coupled coincidence point
in X.

Proof . Let x0, y0 be any two arbitrary point in X. Set g(x1) = F (x0, y0) and g(y1) = F (y0, x0), this
can be done because F (X ×X) ⊆ g(X). Continuing this process we obtain two sequence {xn} and
{yn} in X such that

g(xn+1) = F (xn, yn), g(yn+1) = F (yn, xn).
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From 2.1, we have

d(gxn, gxn+1) = d(F (xn−1, yn−1), F (xn, yn))

- a1d(gxn−1, gxn) + a2d(gyn−1, gyn)

+
a3d(F (xn−1, yn−1), gxn−1) + a4d(F (xn−1, yn−1), gxn)

1 + d(xn, yn)

+
a5d(F (xn, yn), gxn) + a6d(F (xn, yn), gxn−1)

1 + d(xn−1, yn−1)

= a1d(gxn−1, gxn) + a2d(gyn−1, gyn)

+
a3d(gxn, gxn−1) + a4d(gxn, gxn)

1 + d(xn, yn)

+
a5d(gxn+1, gxn) + a6d(gxn+1, gxn−1)

1 + d(xn−1, yn−1)

- a1d(gxn−1, gxn) + a2d(gyn−1, gyn) +
a3d(gxn, gxn−1)

1 + d(xn, yn)

+
a5d(gxn+1, gxn) + a6d(gxn+1, gxn) + a6d(gxn, gxn−1)

1 + d(xn−1, yn−1)
.

Therefore

d(gxn, gxn+1) - a1d(gxn−1, gxn) + a2d(gyn−1, gyn) +
a3d(gxn, gxn−1)

1 + d(xn, yn)

+
a5d(gxn+1, gxn) + a6d(gxn+1, gxn) + a6d(gxn, gxn−1)

1 + d(xn−1, yn−1)

so that

|d(gxn, gxn+1)| ≤ a1|d(gxn−1, gxn)|+ a2|d(gyn−1, gyn)|+ a3|d(gxn, gxn−1)|
|1 + d(xn, yn)|

+
a5|d(gxn+1, gxn)|+ a6|d(gxn+1, gxn)|+ a6|d(gxn, gxn−1)|

|1 + d(xn−1, yn−1)|

since |1 + d(xn, yn)| ≥ 1 and |1 + d(xn−1, yn−1)| ≥ 1, therefore

|d(gxn, gxn+1)| ≤ a1|d(gxn−1, gxn)|+ a2|d(gyn−1, gyn)|+ a3|d(gxn, gxn−1)|
+ a5|d(gxn+1, gxn)|+ a6|d(gxn+1, gxn)|+ a6|d(gxn, gxn−1)|

= (a1 + a3 + a6)|d(gxn, gxn−1)|+ (a5 + a6)|d(gxn+1, gxn)|
+ a2|d(gyn−1, gyn)|

from which it follows

(1− a5 − a6)|d(gxn, gxn+1)| ≤ (a1 + a3 + a6)|d(gxn, gxn−1)|+ a2|d(gyn−1, gyn)|. (2.2)

Similarly, one can prove that

(1− a5 − a6)|d(gyn, gyn+1)| ≤ (a1 + a3 + a6)|d(gyn, gyn−1)|+ a2|d(gxn−1, gxn)|. (2.3)
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Because of the symmetry in 2.1,

d(gxn+1, gxn) = d(F (xn, yn), F (xn−1, yn−1))

- a1d(gxn, gxn−1) + a2d(gyn, gyn−1)

+
a3d(F (xn, yn), gxn) + a4d(F (xn, yn), gxn−1)

1 + d(xn−1, yn−1)

+
a5d(F (xn−1, yn−1), gxn−1) + a6d(F (xn−1, yn−1), gxn)

1 + d(xn, yn)

= a1d(gxn, gxn−1) + a2d(gyn, gyn−1)

+
a3d(gxn+1, gxn) + a4d(gxn+1, gxn−1)

1 + d(xn−1, yn−1)

+
a5d(gxn, gxn−1) + a6d(gxn, gxn)

1 + d(xn, yn)

- a1d(gxn, gxn−1) + a2d(gyn, gyn−1)

+
a3d(gxn+1, gxn) + a4d(gxn+1, gxn) + a4d(gxn, gxn−1)

1 + d(xn, yn)

+
a5d(gxn, gxn−1)

1 + d(xn, yn)
.

So

|d(gxn+1, gxn)| ≤ a1|d(gxn, gxn−1)|+ a2|d(gyn, gyn−1)|+ a3|d(gxn+1, gxn)|
+ a4|d(gxn+1, gxn)|+ a4|d(gxn, gxn−1)|+ a5|d(gxn, gxn−1)|.

From which it follows

(1− a3 − a4)|d(gxn+1, gxn)| ≤ (a1 + a4 + a5)|d(gxn−1, gxn)|+ a2|d(gyn, gyn−1)|. (2.4)

Similarly, we can prove that

(1− a3 − a4)|d(gyn+1, gyn)| ≤ (a1 + a4 + a5)|d(gyn−1, gyn)|+ a2|d(gxn, gxn−1)|. (2.5)

Let δn = |d(gxn, gxn+1)|+ |d(gyn, gyn+1)|. Now, from 2.2 and 2.3 respectively 2.4 and 2.5 we obtain:

(1− a5 − a6)δn ≤ (a1 + a2 + a3 + a6)δn−1. (2.6)

(1− a3 − a4)δn ≤ (a1 + a2 + a4 + a5)δn−1. (2.7)

Finally, from 2.6 and 2.7 we have

(2− a3 − a4 − a5 − a6)δn ≤ (2a1 + 2a2 + a3 + a4 + a5 + a6)δn−1,

that is,

δn ≤ ηδn−1, η =
2a1 + 2a2 + a3 + a4 + a5 + a6

2− a3 − a4 − a5 − a6
< 1. (2.8)

Consequently, we have

0 ≤ δn ≤ ηδn−1 ≤ · · · ≤ ηnδ0. (2.9)
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If δ0 = 0 then (x0, y0) is a coupled coincidence point of F and g. So let 0 < δ0. If m > n, we have

d(gxn+m, gxn) - d(gxn+m, gxn+m−1) + d(gxn+m−1, gxn+m−2) + · · ·+ d(gxn−1, gxn),

and

d(gyn+m, gyn) - d(gyn+m, gyn+m−1) + d(gyn+m−1, gyn+m−2) + · · ·+ d(gyn−1, gyn),

so that

|d(gxn+m, gxn)| ≤ |d(gxn+m, gxn+m−1)|+ |d(gxn+m−1, gxn+m−2)|+ · · ·+ |d(gxn−1, gxn)|,

and

|d(gyn+m, gyn)| ≤ |d(gyn+m, gyn+m−1)|+ |d(gyn+m−1, gyn+m−2)|+ · · ·+ |d(gyn−1, gyn)|.

Therefore,

|d(gxn+m, gxn)|+ |d(gyn+m, gyn)| ≤ (|d(gxn+m, gxn+m−1)|+ |d(gyn+m, gyn+m−1)|)
+ (|d(gxn+m−1, gxn+m−2)|+ |d(gyn+m−1, gyn+m−2)|)
+ · · ·+ (|d(gxn−1, gxn)|+ |d(gyn−1, gyn)|),

that is,

|d(gxn+m, gxn)|+ |d(gyn+m, gyn)| ≤ δn+m−1 + δn+m−2 + · · ·+ δn

≤ (ηn+m−1 + ηn+m−2 + · · ·+ ηn)δ0

=
ηn

1− η
δ0 → 0, as n→∞,

hence |d(gxn+m, gxn)| → 0 and |d(gyn+m, gyn)| → 0 as n → ∞. Thus by Lemma 1.7, {gxn} and
{gyn} are Cauchy sequence in g(X). Since g(X) is complete subset of X, so there exists x and y in
X such that gxn → gx and gyn → gy. Now, we prove thatF (x, y) = gx and F (y, x) = gy. For that,
we have

d(F (x, y), gx) - d(F (x, y), gxn+1) + d(gxn+1, gx)

= d(F (x, y), F (xn, yn)) + d(gxn+1, gx)

- a1d(gx, gxn) + a2d(gy, gyn) +
a3d(F (x, y), gx) + a4d(F (x, y), gxn)

1 + d(xn, yn)

+
a5d(F (xn, yn), gxn) + a6d(F (xn, yn), gx)

1 + d(x, y)
+ d(gxn+1, gx)

= a1d(gx, gxn) + a2d(gy, gyn) +
a3d(F (x, y), gx) + a4d(F (x, y), gxn)

1 + d(xn, yn)

+
a5d(gxn+1, gxn) + a6d(gxn+1, gx)

1 + d(x, y)
+ d(gxn+1, gx)

- a1d(gx, gxn) + a2d(gy, gyn) +
a3d(F (x, y), gx) + a4d(F (x, y), gx) + a4d(gx, gxn)

1 + d(xn, yn)

+
a5d(gxn+1, gx) + a5d(gx, gxn) + a6d(gxn+1, gx)

1 + d(x, y)
+ d(gxn+1, gx),
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so that

|d(F (x, y), gx)| ≤ a1|d(gx, gxn)|+ a2|d(gy, gyn)|+ a3|d(F (x, y), gx)|
+ a4|d(F (x, y), gx)|+ a4|d(gx, gxn)|+ a5|d(gxn+1, gx)|+ a5|d(gx, gxn)|
+ a6|d(gxn+1, gx)|+ |d(gxn+1, gx)|,

which further implies that,

|d(F (x, y), gx)| ≤ a1 + a4 + a5
1− a3 − a4

|d(gxn, gx)|+ a5 + a6
1− a3 − a4

|d(gxn+1, gx)|

+
a2

1− a3 − a4
|d(gyn, gy)|.

(2.10)

Since gxn → gx and gyn → gy as n→∞, then, |d(F (x, y), gx)| = 0, it follows that d(F (x, y), gx) = 0,
and hence F (x, y) = gx. Similarly, we can prove F (y, x) = gy. Hence (x, y) is coupled coincidence
point of the mappings F and g. �

By setting a1 = a2 = α, a3 = a4 = β and a5 = a6 = γ in Theorem 2.5, we deduce the following
corollary.

Corollary 2.6. Let (X, d) be a complex valued metric space, F : X × X → X and g : X → X be
mappings satisfying

d(F (x, y), F (u, v)) -α[d(gx, gu) + d(gy, gv)] + β
d(F (x, y), gx) + d(F (x, y), gu)

1 + d(u, v)

+ γ
d(F (u, v), gu) + d(F (u, v), gx)

1 + d(x, y)
,

(2.11)

for all x, y, u, v ∈ X, where α, β and γ are nonnegative real numbers such that α + β + γ < 1
2
. If

F (X ×X) ⊆ g(X) and g(X) is complete subset of X, then F and g have a coupled coincidence point
in X.

Now, we present two examples showing that Theorem 2.5 is a proper extension of known results.

Example 2.7. Let X = [0,∞). The mapping d : X ×X → C defined as:

d(x, y) = |x− y|i.

Clearly, (X, d) is a complete complex valued metric space. We define the functions F : X ×X → X
and g : X → X by

g(x) = 3x and F (x, y) =
x

5
+
y

5
.

It is easy to verify that F and g satisfy all the conditions of Theorem 2.5, taking a1 = a2 = 1
10
, a3 =

a4 = 1
12

and a5 = a6 = 1
14

. Moreover (0, 0), is common coupled coincidence point of F and g.

Example 2.8. Let X = [0,∞) and d : X×X → C is a mapping defined by: d(x, y) = |x−y|+|x−y|i.
Clearly, (X, d) is a complete complex valued metric space. We define the functions F : X ×X → X
and g : X → X by

g(x) = 3x and F (x, y) = x+
| sin y|

5
.

It is easy to verify that F and g satisfy all the conditions of Theorem 2.5, taking a1 = 2
3
, a2 =

1
9

and a3 = a4 = a5 = a6 = 1
15

. Moreover (0, 0) is common coupled coincidence point of F and g.
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Theorem 2.9. Let (X, d) be a complex valued metric space, F : X×X → X and g : X → X be two
mappings which satisfy all the conditions of Theorem 2.5. If F and g are w−compatible, then F and
g have unique common coupled fixed point. Moreover, common fixed point of F and g has the form
(u, u) for some u ∈ X.

Proof . First we claim that coupled point of coincidence is unique. suppose that (x, y), (x∗, y∗) ∈
X ×X with g(x) = F (x, y), g(y) = F (y, x), and g(x∗) = F (x∗, y∗), g(y∗) = F (y∗, x∗). Using 2.1, we
get

d(gx, gx∗) = d(F (x, y), F (x∗, y∗))

- a1d(gx, gx∗) + a2d(gy, gy∗)

+
a3d(F (x, y), gx) + a4d(F (x, y), gx∗)

1 + d(x∗, y∗)

+
a5d(F (x∗, y∗), gx∗) + a6d(F (x∗, y∗), gx)

1 + d(x, y)

= a1d(gx, gx∗) + a2d(gy, gy∗) +
a4d(gx, gx∗)

1 + d(x∗, y∗)
+
a6d(gx∗, gx)

1 + d(x, y)
,

so that

|d(gx, gx∗)| ≤ a1|d(gx, gx∗)|+ a2|d(gy, gy∗)|+ | a4d(gx, gx∗)

1 + d(x∗, y∗)
|+ |a6d(gx∗, gx)

1 + d(x, y)
|,

and

|d(gx, gx∗)| ≤ a1|d(gx, gx∗)|+ a2|d(gy, gy∗)|+ a4|d(gx, gx∗)|+ a6|d(gx∗, gx).

Therefore

|d(gx, gx∗)| ≤ (a1 + a4 + a6)|d(gx, gx∗)|+ a2|d(gy, gy∗)|. (2.12)

Similarly, one gets

|d(gy, gy∗)| ≤ (a1 + a4 + a6)|d(gy, gy∗)|+ a2|d(gx, gx∗)|. (2.13)

Thus

|d(gx, gx∗)|+ |d(gy, gy∗)| ≤ (a1 + a2 + a4 + a6)(|d(gx, gx∗)|+ |d(gy, gy∗)|).

Since a1 + a2 + a4 + a6 < 1, therefore we have |d(gx, gx∗)| + |d(gy, gy∗)| = 0, which implies that
gx = gx∗ and gy = gy∗. Similarly we can prove that gx = gy∗ and gy = gx∗. Therefore (gx, gy) is
unique coupled point of coincidence of F and g. Now, let g(x) = u. Then we have u = g(x) = F (x, x).
By w−compatibility of F and g, we have

g(u) = g(g(x)) = g(F (x, x)) = F (gx, gx) = F (u, u).

Then (gu, gu) is coupled point of coincidence of F and g. Consequently gu = gx. Therefore u = gu =
F (u, u). Hence (u, u) is unique common coupled fixed point of F and g. �
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Theorem 2.10. Let (X, d) be a complex valued metric space, F : X ×X → X and g : X → X be
w−compatible mappings such that

d(F (x, y), F (u, v)) � kU +mV (2.14)

for all x, y, u, v ∈ X, where,

U, V ∈ Sx,yu,v = {d(gx, gu), d(gy, gv),
d(F (x, y), gx)

1 + d(u, v)
,
d(F (x, y), gu)

1 + d(u, v)
,
d(F (u, v), gu)

1 + d(x, y)
},

and k,m are nonnegative real numbers such that k+m < 1. If F (X×X) ⊆ g(X) than F and g have
unique common coupled fixed point having the form (u, u) for some u ∈ X.

Proof . Following similar arguments to those given in Theorem 2.5, we construct two sequences
{xn} and {yn} in X such that

g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn).

Now, from 2.14, we have

d(gxn, gxn+1) = d(F (xn−1, yn−1), F (xn, yn)) � kU +mV, (2.15)

where U, V ∈ Sxn−1,yn−1
xn,yn , and

d(gyn, gyn+1) = d(F (yn−1, xn−1), F (yn, xn)) � kU +mV, (2.16)

where U, V ∈ Syn−1,xn−1
yn,xn .

We have the following 15 cases:

(i) : U = d(gxn−1, gxn) and V = d(gxn−1, gxn).

(ii) : U = d(gxn−1, gxn) and V = d(gyn−1, gyn).

(iii) : U = d(gxn−1, gxn) and V = d(F (xn−1,yn−1),gxn−1)
1+d(gxn,gyn)

.

(iv) : U = d(gxn−1, gxn) and V = d(F (xn−1,yn−1),gxn)
1+d(gxn,gyn)

.

(v) : U = d(gxn−1, gxn) and V = d(F (xn,yn),gxn)
1+d(gxn−1,gyn−1)

.

(vi) : U = d(gyn−1, gyn) and V = d(gyn−1, gyn).

(vii) : U = d(gyn−1, gyn) and V = d(F (xn−1,yn−1),gxn−1)
1+d(gxn,gyn)

.

(viii) : U = d(gyn−1, gyn) and V = d(F (xn−1,yn−1),gxn)
1+d(gxn,gyn)

.

(ix) : U = d(gyn−1, gyn) and V = d(F (xn,yn),gxn)
1+d(gxn−1,gyn−1)

.

(x) : U = d(F (xn−1,yn−1),gxn−1)
1+d(gxn,gyn)

and V = d(F (xn−1,yn−1),gxn−1)
1+d(gxn,gyn)

.

(xi) : U = d(F (xn−1,yn−1),gxn−1)
1+d(gxn,gyn)

and V = d(F (xn−1,yn−1),gxn)
1+d(gxn,gyn)

.
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(xii) : U = d(F (xn−1,yn−1),gxn−1)
1+d(gxn,gyn)

and V = d(F (xn,yn),gxn)
1+d(gxn−1,gyn−1)

.

(xiii) : U = d(F (xn−1,yn−1),gxn)
1+d(gxn,gyn)

and V = d(F (xn−1,yn−1),gxn)
1+d(gxn,gyn)

.

(xiv) : U = d(F (xn−1,yn−1),gxn)
1+d(gxn,gyn)

and V = d(F (xn,yn),gxn)
1+d(gxn−1,gyn−1)

.

(xv) : U = d(F (xn,yn),gxn)
1+d(gxn−1,gyn−1)

and V = d(F (xn,yn),gxn)
1+d(gxn−1,gyn−1)

.

In case (i), according to 2.15 and 2.16 we get

d(gxn, gxn+1) = d(F (xn−1, yn−1), F (xn, yn)) � (k +m)d(gxn−1, gxn),

and

d(gyn, gyn+1) = d(F (yn−1, xn−1), F (yn, xn)) � (k +m)d(gyn−1, gyn).

Therefore,

|d(gxn, gxn+1)| ≤ (k +m)|d(gxn−1, gxn)|,

and

|d(gyn, gyn+1)| ≤ (k +m)|d(gyn−1, gyn)|.

Hence,

(|d(gxn, gxn+1)|+ |d(gyn, gyn+1)|) ≤ (k +m)(|d(gxn−1, gxn)|+ |d(gyn−1, gyn)|),

and also, in the cases (ii), (iii), (vi), (vii), (x), (xiii) and (xv) according to 2.15 and 2.16 we obtain
that

(|d(gxn, gxn+1)|+ |d(gyn, gyn+1)|) ≤ (k +m)(|d(gxn−1, gxn)|+ |d(gyn−1, gyn)|).

Similarly, in the cases (ix), (xii) and (xiv), according to 2.15 and 2.16 we again obtain that

(|d(gxn, gxn+1)|+ |d(gyn, gyn+1)|) ≤
k

1−m
(|d(gxn−1, gxn)|+ |d(gyn−1, gyn)|),

and, in the cases (iv), (v), (viii) and (xi) we have

(|d(gxn, gxn+1)|+ |d(gyn, gyn+1)|) ≤ k(|d(gxn−1, gxn)|+ |d(gyn−1, gyn)|).

Thus we conclude that

(|d(gxn, gxn+1)|+ |d(gyn, gyn+1)|) ≤ β(|d(gxn−1, gxn)|+ |d(gyn−1, gyn)|),

for some β ∈ {k, (k +m), k
1−m}(β < 1) and for all n ≥ 1.

Following similar arguments to those given in Theorem 2.5, (x, y) is common coupled coincidence
point of F and g, where gxn → gx and gyn → gy. Now we prove that coupled point of coincidence
is unique.
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Suppose that (x, y), (x∗, y∗) ∈ X × X such that g(x) = F (x, y), g(y) = F (y, x) and g(x∗) =
F (x∗, y∗), g(y∗) = F (y∗, x∗).

By using 2.14 we get

d(gx, gx∗) = d(F (x, y), F (x∗, y∗)) � kU +mV (2.17)

where U, V ∈ Sx,yx∗,y∗ , and

d(gy, gy∗) = d(F (y, x), F (y∗, x∗)) � kU +mV, (2.18)

where U, V ∈ Sy,xy∗,x∗ .
Again we have the following 15 cases:

(i) : U = d(gx, gx∗) and V = d(gx, gx∗).

(ii) : U = d(gx, gx∗) and V = d(gy, gy∗).

(iii) : U = d(gx, gx∗) and V = d(F (x,y),gx)
1+d(gx∗,gy∗)

.

(iv) : U = d(gx, gx∗) and V = d(F (x,y),gx∗)
1+d(gx∗,gy∗)

.

(v) : U = d(gx, gx∗) and V = d(F (x∗,y∗),gx∗)
1+d(gx,gy)

.

(vi) : U = d(gy, gy∗) and V = d(gy, gy∗).

(vii) : U = d(gy, gy∗) and V = d(F (x,y),gx)
1+d(gx∗,gy∗)

.

(viii) : U = d(gy, gy∗) and V = d(F (x,y),gx∗)
1+d(gx∗,gy∗)

.

(ix) : U = d(gy, gy∗) and V = d(F (x∗,y∗),gx∗)
1+d(gx,gy)

.

(x) : U = d(F (x,y),gx)
1+d(gx∗,gy∗)

and V = d(F (x,y),gx)
1+d(gx∗,gy∗)

.

(xi) : U = d(F (x,y),gx)
1+d(gx∗,gy∗)

and V = d(F (x,y),gx∗)
1+d(gx∗,gy∗)

.

(xii) : U = d(F (x,y),gx)
1+d(gx∗,gy∗)

and V = d(F (x∗,y∗),gx∗)
1+d(gx,gy)

.

(xiii) : U = d(F (x,y),gx∗)
1+d(gx∗,gy∗)

and V = d(F (x,y),gx∗)
1+d(gx∗,gy∗)

.

(xiv) : U = d(F (x,y),gx∗)
1+d(gx∗,gy∗)

and V = d(F (x∗,y∗),gx∗)
1+d(gx,gy)

.

(xv) : U = d(F (x∗,y∗),gx∗)
1+d(gx,gy)

and V = d(F (x∗,y∗),gx∗)
1+d(gx,gy)

.

In the cases (i), (ii), (iv), (vi), (viii) and (xiii) according to 2.17 and 2.18, we obtain that

|d(gx, gx∗)|+ |d(gy, gy∗)| ≤ (k +m)(|d(gx, gx∗)|+ |d(gy, gy∗)|). (2.19)

Similarly, from 2.17 and 2.18, in the cases (iii), (v), (vii), (ix), (x), (xi), (xii), (xiv) and (xv) we again
obtain that

|d(gx, gx∗)|+ |d(gy, gy∗)| ≤ α(|d(gx, gx∗)|+ |d(gy, gy∗)|), (2.20)
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where α ∈ {0, k,m} (α < 1). Since k + m < 1 and α < 1, therefore from 2.19 and 2.20, we have
|d(gx, gx∗)| + |d(gy, gy∗)| = 0, i.e. gx = gx∗ and gy = gy∗. That is, (gx, gx) is the unique common
coupled point of coincidence. Since F and g are w−compatible maps, we have,

g(g(x)) = F (gx, gx). (2.21)

Let u = g(x). By 2.21, we have g(u) = F (u, u). Therefore (gu, gu) is a coupled point of coincidence
of F and g. Consequently, u = g(u) = F (u, u). Hence (u, u) is unique common coupled fixed point
of F and g. �

Example 2.11. Let X = {(x, 0) : x ∈ [0,∞)} ∪ {(0, x) : x ∈ [0,∞)}. Define d : X × X → C by
d(x, y) = |x1 − y1| + |x2 − y2|i, where x = (x1, x2) and y = (y1, y2). Clearly, (X, d) is a complete
complex valued metric space. Consider mappings F : X ×X → X and g : X → X, given by

g(x) =

{
(0,t); x = (t, 0), t ∈ [0,∞)

(t,0); x = (0, t), t ∈ [0,∞)
and F

(
(x1, x2), (y1, y2)

)
= (

x1
2
,
x2
2

).

Note that F and g satisfy all the conditions of Theorem 2.9, if we take a1 = a2 = a3 = a4 = a5 =
a6 = 1

12
. Moreover (0, 0) is the unique common coupled fixed point of F and g.

Next, we give a example which supports Theorems 2.5 and 2.9, while a lot of results in partially
ordered metric spaces, cone metric spaces, ordered cone metric spaces and complex valued metric
spaces for example the results of Nashine et al. [11] do not.

Example 2.12. Let X = {ix : x ∈ [0, 1]}. Define d : X ×X → C by d(x, y) = i|x− y|, where x, y ∈
X. Clearly, (X, d) is a complete complex valued metric space. Consider mappings F : X ×X → X
and g : X → X, given by

F (x, y) = i
x4 + y4

16
and g(x) = i

x4

4
.

If y1 = 3
4
i and y2 = 1

2
i, then g(y2) = i

1
16

4
� i

81
44

4
= g(y1), but for x = i, we get

F (x, y2) = F (i,
1

2
i) = i

1 + 1
16

16
� i

1 + 81
44

16
= F (i,

3

4
i) = F (x, y1).

So, the mappings F and g do not satisfy the mixed g-monotone property. Therefore, Theorems 3.1
and 3.2 of Nashine et al. [11] cannot be supported to reach this conclusion.

Now, we show that Theorems 2.5 and 2.9 can be used for this case.

d(F (x, y), F (u, v)) = i|ix
4 + y4

16
− iu

4 + v4

16
| = 1

4
i|ix

4 − u4

4
+ i

y4 − v4

4
|

� 1

4
i|ix

4 − u4

4
|+ 1

4
i|iy

4 − v4

4
| = 1

4
i|x

4 − u4

4
|+ 1

4
i|y

4 − v4

4
|

=
1

4
d(g(x), g(u)) +

1

4
d(g(y), g(v)),

where a1 = a2 = 1
4

and a3 = a4 = a5 = a6 = 0. Note that a1 + a2 + a3 + a4 + a5 + a6 < 1.

F (X ×X) = {ix : x ∈ [0,
1

8
]} ⊂ g(X) = {ix : x ∈ [0,

1

4
]},
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and g(X) is a complete subset of X. Hence, the conditions of Theorem 2.5 are satisfied. Therefore,
F and g have a coupled coincidence point in X.
Since, g(0) = F (0, 0) and

g(F (0, 0)) = g(0) = F (0, 0) = F (g(0), g(0)),

then F and g are W-compatible. Therefore, conditions of Theorem 2.9 are satisfied. Now, we can
apply Theorem 2.9 to conclude the existence of a unique common coupled fixed point of F and g
that is a point (0, 0).
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