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Abstract

In this paper, we discuss some common fixed point theorems for compatible mappings of type
(E) and R−weakly commuting mappings of type (P ) of a complete b−multiplicative metric space
along with some examples. As an application, we establish an existence and uniqueness theorem
for a solution of a system of multiplicative integral equations. In the last section, we introduce the
concept of R−multiplicative metric space by giving some examples and at the end of the section, we
give an open question.
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1. Introduction

The concept of multiplicative calculus, in which the role of addition and subtraction are replaced
by multiplication and division, was not the interest of researchers for a long time, even though it
was defined by Grossman and Katz [8] in the period from 1967 till 1970 (published a book called
Non-Newtonian Calculus in 1972), and Stanley [20] published a paper ‘A multiplicative calculus’
in 1999. But in 2008, Bashirov et al. [3] draw the attention of researchers especially in the field
of analysis by highlighting various properties like multiplicative derivatives, multiplicative integrals,
etc. They also highlighted its application to various topics like Newtonian calculus, semi-groups of
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linear operators, multiplicative spaces, multiplicative differential equations, multiplicative calculus
of variation, etc. For more applications, we refer ([4], [7]) and references therein.

In 2017, Ali et al. [1] introduced the concept of b−multiplicative metric space as a generalization
of multiplicative metric space for fixed point results on multiplicative contraction mapping with an
application in Fredholm multiplicative integral equation.

In this paper, we discuss some common fixed point theorems for compatible mappings of type (E)
and R−weakly commuting mappings of type (P ) of complete b−multiplicative metric spaces. Also,
we study the existence and uniqueness of solution of a system of multiplicative integral equations. In
the last section, we introduce the concept of R−multiplicative metric space by giving some examples
and at the end of the section, we give an open question.

2. Preliminaries

Before going to our main work, we recall some definitions, properties, and lemmas that will be
used in this paper.

Definition 2.1. [3] Let U 6= ∅ be a set. A mapping d : U × U → [1,+∞) such that

(i) d(u, v) = 1 if and only if u = v,

(ii) d(u, v) = d(v, u), ∀u, v ∈ U ,

(iii) d(u, v) ≤ d(u,w). d(w, v), ∀u, v, w ∈ U ,

is called a multiplicative metric and (U, d) is called a multiplicative metric space.

Example 2.2. Define a mapping d : R2 × R2 → R by

d(u, v) = emax
{
|u1−v1|,|u2−v2|

}
,

where u = (u1, u2), v = (v1, v2) ∈ R2. Then, d is a multiplicative metric on R2.

Definition 2.3. [1] Let U 6= ∅ be a set and s ≥ 1 be a given real number. A mapping db : U ×U →
[1,+∞) such that

(i) db(u, v) = 1 if and only if u = v,

(ii) db(u, v) = db(v, u), ∀u, v ∈ U ,

(iii) db(u, v) ≤ db(u,w)s. db(w, v)s, ∀u, v, w ∈ U ,

is called a b−multiplicative metric and (U, db) is called b−multiplicative metric space.

Remark 2.4. Every multiplicative metric space is b−multiplicative metric space, but the converse is
not true.

We give the following examples to illustrate the above remark.

Example 2.5. Define a mapping

db : R+ ∪ {0} × R+ ∪ {0} → [1,+∞) by db(u, v) = e(u−v)
2
,

for all u, v ∈ R+ ∪ {0}. Then, db is a b−multiplicative metric on R+ ∪ {0} with s = 2. Note that db
is not a multiplicative metric on R+ ∪ {0}.
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Example 2.6. Let U = Lp[0, 1] be the space of all real functions u(t), t ∈ [0, 1] such that
∫ 1

0
|u(t)|p <

∞ with 0 < p < 1. Define db : U × U → R+ as

db(u, v) = e

( ∫ 1
0 |u(t)−v(t)|

pdt

)1

p
.

It is obvious that the conditions (i) and (ii) of Definition 2.3 hold true. For condition (iii), we have

ln db(u, v) =
(∫ 1

0

|u(t)− v(t)|pdt
) 1
p

=
(∫ 1

0

|
(
u(t)− w(t)

)
+
(
w(t)− v(t)

)
|pdt
) 1
p

≤ 2
(∫ 1

0

|u(t)− w(t)|pdt+

∫ 1

0

|w(t)− v(t)|pdt
) 1
p

Since 0 < p < 1, so 1 < 1
p
<∞. By the property of convexity, we obtain

ln db(u, v) ≤ 2
1
p

[( ∫ 1

0

|u(t)− w(t)|pdt
) 1
p +

( ∫ 1

0

|w(t)− v(t)|pdt
) 1
p

]
db(u, v) ≤ e

2
1
p

[( ∫ 1
0 |u(t)−w(t)|

pdt
) 1
p
+
( ∫ 1

0 |w(t)−v(t)|
pdt
) 1
p ]

= e2
1
p

( ∫ 1
0 |u(t)−w(t)|

pdt
) 1
p

. e2
1
p

( ∫ 1
0 |w(t)−v(t)|

pdt
) 1
p

= db(u,w)2
1
p
. db(w, v)2

1
p

Thus, db(u, v) is a b−multiplicative metric space with s = 2

1

p .

Definition 2.7. [1] Let (U, db) be a b−multiplicative metric space and u ∈ U . Then,

(i) a sequence {un} is b−multiplicative convergent to u ∈ U if for each ε > 1, there exist some
n0 ∈ N such that db(un, u) < ε for each n ≥ n0.

(ii) a sequence {un} is b−multiplicative Cauchy, if for each ε > 1, there exists n0 ∈ N such that
db(un, um) < ε for each m,n ≥ n0.

(iii) a b−multiplicative metric space is complete if every b−multiplicative Cauchy sequence in it is
b−multiplicative convergent to some u ∈ U .

Lemma 2.8. [1] Let (U, db) be a b−multiplicative metric space. If a sequence {un} is a b−multiplicative
convergent, then the limit is unique.

In 1976, Jungck [11] used the notion of commuting mappings to prove the existence of a common
fixed point theorem on a metric space. Sessa [18] introduced the notion of weakly commuting map-
pings, which is a generalization of commuting mappings. Recently in 2013, Gu et al. [9] introduced
the notion of commuting and weakly commuting mappings in a multiplicative metric space and
proved some fixed point theorems for these mappings. Now, we use these notions in b−multiplicative
metric spaces as follows.

Definition 2.9. Suppose that A,B are two self-mappings of a b−multiplicative metric space (U, db).
Then, we say that A,B are commuting mappings if ABu = BAu, ∀u ∈ U .



1302 Singh, Bimol Singh, Mahendra Singh

Definition 2.10. Let (U, db) be a b−multiplicative metric space. Then, we say that two self-
mappings A and B on U are weakly commuting mappings if db(ABu,BAu) ≤ db(Au,Bu), ∀u ∈ U .

Remark 2.11. Commuting mappings are weakly commuting mappings, but the converse is not true.

Example 2.12. Let U = [0, 1]. Define a mapping db(u, v) : U × U → R by db(u, v) = e(u−v)
2

for all
u, v ∈ U . Consider the self-mappings f(u) = u

2−u and g(u) = u
2

for all u ∈ U .
For any u ∈ U ,

db(fgu, gfu) = e(
u2

(4−u)(4−2u)
)2 ≤ e(

u2

4−2u
)2 = db(fu, gu).

Then, f and g are weakly commuting but f and g are not commuting since fgu = u
4−u 6=

u
4−2u = gfu

for any non-zero u ∈ U .

The notion of compatible mapping in a metric space was introduced by Jungck [12] in 1986. In 2015,
Kang et al. [13] introduced the concept of compatible mapping in multiplicative metric space.

Definition 2.13. We say that two self-mappings A and B of a b−multiplicative metric space (U, db)
are compatible if lim

n→+∞
db(ABun,BAun) = 1, whenever {un} ⊂ U such that lim

n→+∞
Aun = lim

n→+∞
Bun

.

Remark 2.14. Every weakly commuting mappings is compatible but the converse need not be true.

In 1999, Pant [17] introduced the concept of reciprocally continuous mappings in metric space. In
2017, Jung et al. [10] introduced this concept in multiplicative metric space.

Definition 2.15. Let (U, db) be a b−multiplicative metric space. We say that two self-mappings
A and B on U are reciprocally continuous if lim

n→+∞
ABun = At and lim

n→+∞
BAun = Bt, whenever

{un} ⊂ U such that lim
n→+∞

Aun = lim
n→+∞

Bun = t for some t ∈ U .

In 2009, Kumar et al. [15] introduced the concept of R−weakly commuting mappings of type (P )
in metric spaces. Recently in 2016, Nagpal et al. [16] introduced this notion in multiplicative metric
spaces.

Definition 2.16. Let (U, db) be a b−multiplicative metric space and A,B be two self-mappings on
U . Then we say that A,B are R−weakly commuting mappings of type (P ) if there exist some R > 0
such that db(AAu,BBu) ≤ db(Bu,Au)R for every u ∈ U .

In 2007, Singh and Singh [21] introduced the notion of compatible mappings of type (E) in metric
space. Recently in 2020, Sharma et al. [19] used this notion in multiplicative metric space.

Definition 2.17. Let (U, db) be a b−multiplicative metric space and A and B be two self-mappings
on U . We say that A and B are compatible mappings of type (E) if lim

n→+∞
AAun = lim

n→+∞
ABun = Bt

and lim
n→+∞

BBun = lim
n→+∞

BAun = At, whenever {un} ⊂ U such that lim
n→+∞

Aun = lim
n→+∞

Bun = t for

some t ∈ U .

Example 2.18. Let U = [0, 1]. Define the mapping db : U × U → R+ by db(u, v) = e(u−v)
2

for all
u, v ∈ U . Consider the self-mappings A and B defined as

A(u) =


0, if u ∈ [0, 1

2
] \ {1

4
}

1, if u = 1
4
,

1−u
2
, if u ∈ (1

2
, 1]

and B(u) =


1, if u ∈ [0, 1

2
] \ {1

4
}

0, if u = 1
4

u
2
, if u ∈ (1

2
, 1]

Then, A and B are compatible mappings of type (E).
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3. Main results

Here are our main results.

Theorem 3.1. Let P ,Q,V and W be self-mappings of a complete b−multiplicative metric space
(U, db) satisfying the following conditions :

(i) P(U) ⊂ W(U) and Q(U) ⊂ V(U),

(ii) dqb(Pρ,Qθ) ≤ ∆(ρ, θ), ∀ρ, θ ∈ U ,

where

∆(ρ, θ) = max
{
db(Vρ,Wθ), db(Pρ,Vρ), db(Qθ,Wθ), db(Pρ,Wθ)

1
2s , db(Qθ,Vρ)

1
2s

}
,

1 ≤ s < q <∞;

(iii) {P ,V} and {Q,W} are weakly commuting mappings. Furthermore, either {P ,V} or {Q,W}
is a compatible mapping of type (E).

Then, P ,Q,V and W have a unique common fixed point in U .

Proof .
Since P(U) ⊂ W(U) and Q(U) ⊂ V(U), we can choose ρ1, ρ2 in U , starting with ρ0 ∈ U such

that θ0 =Wρ1 = Pρ0 and θ1 = Vρ2 = Qρ1. Continuing in this fashion, we construct sequences {ρn}
and {θn} in U such that

θ2n = Wρ2n+1 = Pρ2n,
and θ2n+1 = Vρ2n+2 = Qρ2n+1, for each n ∈ N ∪ {0}.

From (ii), we obtain

dqb(θ2n, θ2n+1) = dqb(Pρ2n,Qρ2n+1) ≤ ∆(ρ2n, ρ2n+1)

= max
{
db(Vρ2n,Wρ2n+1), db(Pρ2n,Vρ2n), db(Qρ2n+1,Wρ2n+1),

db(Pρ2n,Wρ2n+1)
1
2s , db(Qρ2n+1,Vρ2n)

1
2s

}
= max

{
db(θ2n−1, θ2n), db(θ2n, θ2n−1), db(θ2n+1, θ2n),

db(θ2n, θ2n)
1
2s , db(θ2n+1, θ2n−1)

1
2s

}
= max

{
db(θ2n−1, θ2n), db(θ2n+1, θ2n), db(θ2n+1, θ2n−1)

1
2s

}
≤ max

{
db(θ2n−1, θ2n), db(θ2n+1, θ2n),

[db(θ2n+1, θ2n)s.db(θ2n, θ2n−1)
s]

1
2s

}
. (3.1)

Suppose that db(θ2n−1, θ2n) < db(θ2n, θ2n+1), then from (3.1), we obtain

dqb(θ2n, θ2n+1) < db(θ2n+1, θ2n)

a contradiction and hence db(θ2n, θ2n+1) ≤ db(θ2n−1, θ2n), for all n ≥ 1. Therefore from (3.1), we
obtain

db(θ2n, θ2n+1) ≤ db(θ2n−1, θ2n)
1
q , for all n ≥ 1. (3.2)
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Also from (ii), we obtain

dqb(θ2n+2, θ2n+1) = dqb(Pρ2n+2,Qρ2n+1) ≤ ∆(ρ2n+2, ρ2n+1)

= max
{
db(Vρ2n+2,Wρ2n+1), db(Pρ2n+2,Vρ2n+2),

db(Qρ2n+1,Wρ2n+1), db(Pρ2n+2,Wρ2n+1)
1
2s ,

db(Qρ2n+1,Vρ2n+2)
1
2s

}
= max

{
db(θ2n+1, θ2n), db(θ2n+2, θ2n+1), db(θ2n+1, θ2n),

db(θ2n+2, θ2n)
1
2s , db(θ2n+1, θ2n+1)

1
2s

}
≤ max

{
db(θ2n+1, θ2n), db(θ2n+2, θ2n+1), db(θ2n+1, θ2n),

[db(θ2n+2, θ2n+1)
s. db(θ2n+1, θ2n)s]

1
2s

}
≤ db(θ2n+1, θ2n)

otherwise it leads to a contradiction that db(θ2n+2, θ2n+1) < (db(θ2n+2, θ2n+1))
1
q . Thus, we obtain

db(θ2n+2, θ2n+1) ≤ (db(θ2n+1, θ2n))
1
q , for all n ∈ N. (3.3)

From (3.2) and (3.3), we write

db(θn, θn+1) ≤ (db(θn−1, θn))
1
q

≤ (db(θn−2, θn−1))
1
q2

≤ ...

≤ (db(θ0, θ1))
1
qn , for all n ∈ N.

Let n ∈ N and p ≥ 1, then by b−multiplicative triangular inequality, we have

db(θn, θn+p) ≤ db(θn, θn+1)
s.db(θn+1, θn+2)

s2 ... db(θn+p−1, θn+p)
sp−1

≤ db(θ0, θ1)
s
qn .db(θ0, θ1)

s2

qn+1 ... db(θ0, θ1)
sp−1

qn+p−1

= db(θ0, θ1)
s
qn

(1+( s
q
)+...+( s

q
)p−2)

≤ db(θ0, θ1)
s
qn

(1+r+...+rp−2+rp−1+...)

= db(θ0, θ1)
s
qn

( 1
1−r ),

where 1 ≤ s < q < ∞ setting with r = s
q
< 1. Letting n → +∞ in the above inequality, we get

db(θn, θn+p)→ 1. Hence the sequence {θn} is a b−multiplicative Cauchy sequence. By the complete-
ness of U , there exists x∗ ∈ U such that θn → x∗ as n → +∞. Consequently, the subsequences
{Pρ2n}, {Qρ2n+1}, {Vρ2n+2}, {Wρ2n+1} converge to x∗ as n→ +∞.

Since P and V are compatible mappings of type (E), we have, lim
n→+∞

VVρ2n = lim
n→+∞

VPρ2n = Px∗

and lim
n→+∞

PPρ2n = lim
n→+∞

PVρ2n = Vx∗

Also, P and V are weakly commuting mappings. By Remark (2.14), we have,

lim
n→+∞

db(PVρ2n,VPρ2n) = 1
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that is, Px∗ = Vx∗.
Since P(U) ⊂ W(U), there exists a point y∗ in U such that Px∗ =Wy∗. Using (ii), we have,

dqb(Px
∗,Qy∗) ≤ ∆(x∗, y∗)

= max
{
db(Vx∗,Wy∗), db(Px∗,Vx∗), db(Qy∗,Wy∗),

db(Px∗,Wy∗)
1
2s , db(Qy∗,Vx∗)

1
2s

}
= max

{
db(Px∗,Px∗), db(Px∗,Px∗), db(Qy∗,Px∗),

db(Px∗,Px∗)
1
2s , db(Qy∗,Px∗)

1
2s

}
= max

{
1, db(Qy∗,Px∗)

}
= db(Px∗,Qy∗)

=⇒ db(Px∗,Qy∗) = 1.

Therefore, Px∗ = Qy∗. Thus, Px∗ = Vx∗ = Qy∗ = Wy∗. Since weakly commutativity of P
and V implies that db(PVx∗,VPx∗) ≤ db(Px∗,Vx∗) implies PVx∗ = VPx∗ and PPx∗ = PVx∗ =
VPx∗ = VVx∗.
Similarly, QQy∗ =WWy∗.

Again, from (ii), we have

dqb(Px
∗,PPx∗) = dqb(Qy

∗,PPx∗)
= dqb(PPx

∗,Qy∗)
≤ ∆(Px∗, y∗)

= max
{
db(VPx∗,Wy∗), db(PPx∗,VPx∗),

db(Qy∗,Wy∗), db(PPx∗,Wy∗)
1
2s , db(Qy∗,VPx∗)

1
2s

}
= max

{
db(PPx∗,Px∗), db(PPx∗,PPx∗), db(Qy∗,Qy∗),

db(PPx∗,Px∗)
1
2s , db(Px∗,PPx∗)

1
2s

}
= max

{
1, db(PPx∗,Px∗)

}
= db(Px∗,PPx∗).

Therefore, PPx∗ = Px∗. Thus, Px∗ = PPx∗ = VPx∗.
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Thus, Px∗ is a common fixed point of P and V . Again, from (ii), we have

dqb(Qy
∗,QQy∗) = dqb(Px

∗,QQy∗)
≤ ∆(x∗,Qy∗)

= max
{
db(Vx∗,WQy∗), db(Px∗,Vx∗), db(QQy∗,WQy∗),

db(Px∗,WQy∗)
1
2s , db(QQy∗,Vx∗)

1
2s

}
= max

{
db(QQy∗,Qy∗), db(Qy∗,Qy∗), db(QQy∗,QQy∗),

db(Qy∗,QQy∗)
1
2s , db(QQy∗,Qy∗)

1
2s

}
= max

{
1, db(QQy∗,Qy∗)

}
= db(QQx

∗, Qy∗).

Therefore, QQy∗ = Qy∗. Thus, Qy∗ = QQy∗ = WQy∗. Therefore, Qy∗ is common fixed point
of Q and W . If Qy∗ = Px∗ = z, then Pz = Vz = Qz = Wz = z. Thus, the common fixed point
of P ,Q,V and W is z. Let, if possible, w be another common fixed point of P ,Q,V and W . Then,
from (ii), we have

dqb(z, w) = dqb(Pz,Qw) ≤ ∆(z, w)

= max
{
db(Vz,Ww), db(Pz,Vz), db(Qw,Ww), db(Pz,Wz)

1
2s , db(Qw,Vz)

1
2s

}
= max

{
db(z, w), db(z, z), db(w,w), db(z, z)

1
2s , db(w, z)

1
2s

}
= max{1, db(z, w)}
= db(z, w).

Therefore, db(z, w) = 1. Thus, z = w, which is a contradiction. Thus, P ,Q,V and W have a unique
common fixed point in U . �

Corollary 3.2. Let P ,Q be self-mappings of a complete b−multiplicative metric space (U, db) satis-
fying

dqb(Pρ,Qθ) ≤ max
{
db(ρ, θ), db(Pρ, ρ), db(Qθ, θ), db(Pρ, θ)

1
2s , db(Qθ, ρ)

1
2s

}
, 1 ≤ s < q <∞.

Then, P and Q have a unique common fixed point in U .

Proof . By considering V = W = IU (identity mapping on U), then by Theorem 3.1 gives that P
and Q have a unique common fixed point. �

Corollary 3.3. Theorem 3.1 remains true if the condition, that is, {P ,V} is a compatible mapping
of type (E) is replaced by the condition that {P ,V} is a compatible pair of reciprocally continuous
mappings.

Corollary 3.4. Let P be a self-mapping of a complete b−multiplicative metric space (U, db) satisfying

dqb(Pρ,Pθ) ≤ max
{
db(ρ, θ), db(Pρ, ρ), db(Pθ, θ), db(Pρ, θ)

1
2s , db(Pθ, ρ)

1
2s

}
, 1 ≤ s < q <∞.

Then, P has a unique fixed point in U .
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Proof . Take V and W as identity mappings on U and P = Q and then apply Theorem 3.1. �

Theorem 3.5. Let P ,Q,V and W be self-mappings of a complete b−multiplicative metric space
(U, db) satisfying the following conditions :

(i) P(U) ⊂ W(U) and Q(U) ⊂ V(U),

(ii) dqb(Pρ,Qθ) ≤ ∆(ρ, θ), ∀ρ, θ ∈ U ,

where

∆(ρ, θ) = max
{
db(Vρ,Wθ), db(Pρ,Vρ), db(Qθ,Wθ), db(Pρ,Wθ)

1
2s , db(Qθ,Vρ)

1
2s

}
,

1 ≤ s < q <∞;

(iii) {P ,V} and {Q,W} are pairs of R−weakly commuting mappings of type (P );

(iv) {P ,V} is a compatible mapping of type (E).

Then, P ,Q,V and W have a unique common fixed point in U .

Proof . Following the proof of Theorem 3.1, we know that the sequence {θn} in U defined by

θ2n+1 = Wρ2n+1 = Pρ2n
and θ2n+2 = Vρ2n+2 = Qρ2n+1 for n = 0, 1, 2, . . .

is a b−multiplicative Cauchy sequence. From the completeness of U , there exists x∗ ∈ U such that
θn → x∗ as n → +∞. As a result, {Pρ2n}, {Qρ2n+1}, {Vρ2n+2}, {Wρ2n+1} converge to x∗ as
n→ +∞.

Since {P ,V} is a compatible mapping of type (E),

lim
n→+∞

VVρ2n = lim
n→+∞

VPρ2n = Px∗.

lim
n→+∞

PPρ2n = lim
n→+∞

PVρ2n = Vx∗.

Since the pair {P ,V} is R-weakly commuting mapping of type (P ), we have

db(VVρ2n,PPρ2n) ≤ db(Pρ2n,Vρ2n)R.

Taking n→ +∞, we have

lim
n→+∞

db(VVρ2n,PPρ2n) ≤ lim
n→+∞

db(Pρ2n,Vρ2n)R

=⇒ lim
n→+∞

db(PPρ2n,Px∗) ≤ 1

Therefore, lim
n→+∞

PPρ2n = Px∗. Using (ii), we have

dqb(PPρ2n,Qρ2n+1) ≤ ∆(Pρ2n, ρ2n+1)

= max
{
db(VPρ2n,Wρ2n+1), db(PPρ2n,VPρ2n),

db(Qρ2n+1,Wρ2n+1), db(PPρ2n,Wρ2n+1)
1
2s , db(Qρ2n+1,VPρ2n)

1
2s

}
Taking n→ +∞ in the above inequality, we obtain

dqb(Px
∗, x∗) ≤ max

{
db(Px∗, x∗), db(Px∗,Px∗), db(x∗, x∗), db(Px∗, x∗)

1
2s , db(x

∗,Px∗)
1
2s

}
= max{db(Px∗, x∗), 1}
= db(Px∗, x∗)
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which implies that db(Px∗, x∗) = 1, i.e., Px∗ = x∗. Thus, Px∗ = Vx∗ = x∗. Since x∗ = Px∗ ∈
P(U) ⊂ W(U), so there exists y∗ ∈ U such that x∗ =Wy∗. Then,

dqb(x
∗,Qy∗) = dqb(Px

∗,Qy∗) ≤ ∆(x∗, y∗)

= max
{
db(Vx∗,Wy∗), db(Px∗,Vx∗), db(Qy∗,Wy∗), db(Px∗,Wy∗)

1
2s , db(Qy∗,Vx∗)

1
2s

}
= max

{
db(x

∗, x∗), db(x
∗, x∗), db(Qy∗, x∗), db(x∗, x∗)

1
2s , db(Qy∗, x∗)

1
2s

}
= max{1, db(Qy∗, x∗)}
= db(x

∗,Qy∗)

which implies that db(x
∗,Qy∗) = 1, that is, Qy∗ = x∗. Since Q and W are R−weakly commuting

mappings of type (P ), we have

db(Qx∗,Wx∗) = db(QQy∗,WWy∗) ≤ db(Wy∗,Qy∗)R = db(x
∗, x∗)R = 1.

Therefore, db(Qx∗,Wx∗) = 1, so Qx∗ =Wx∗. Lastly, we have

dqb(x
∗,Qx∗) = dqb(Px

∗,Qx∗) ≤ ∆(x∗, x∗)

= max
{
db(Vx∗,Wx∗), db(Px∗,Vx∗), db(Qx∗,Wx∗), db(Px∗,Wx∗)

1
2s , db(Qx∗,Vx∗)

1
2s

}
= max

{
db(x

∗,Qx∗), db(x∗, x∗), db(Qx∗,Qx∗), db(Qx∗, x∗)
1
2s , db(Qx∗, x∗)

1
2s

}
= db(x

∗,Qx∗)

which implies that db(Qx∗, x∗) = 1, that is, Qx∗ = x∗ = Wx∗. In addition, we prove that P ,Q,V
and W have a unique common fixed point. Suppose that z ∈ U is another common fixed point of
P ,Q,V and W . Then,

dqb(x
∗, z) = dqb(Px

∗,Qz) ≤ ∆(x∗, z)

= max
{
db(Vx∗,Wz), db(Px∗,Vx∗), db(Qz,Wz), db(Px∗,Wz)

1
2s , db(Qz,Vx∗)

1
2s

}
= max{db(x∗, z), db(x∗, x∗), db(z, z), db(x

∗, z)
1
2s , db(z, x

∗)
1
2s}

= db(x
∗, z)

which implies that db(x
∗, z) = 1, that is, x∗ = z, which is a contradiction. Hence, P ,Q,V and W

have a unique common fixed point. �

Theorem 3.6. Let P ,Q,V and W be self mappings of a complete b−multiplicative metric space
(U, db) such that P(U) ⊆ W(U), Q(U) ⊆ V(U) and satisfying

db(Pρ,Qθ) ≤ ∆1(ρ, θ), ∀ρ, θ ∈ U, (3.4)

where

∆1(ρ, θ) = max
{
db(Vρ,Wθ), db(Pρ,Vρ), db(Qθ,Wθ),

1

2

(
db(Vρ,Qθ) + db(Pρ,Wθ)

)}λ
where λ ∈ (0, 1), then P ,Q,V and W have a unique common fixed point in U provided that V and
W are continuous and pairs {P ,V} and {Q,W} are compatible.
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Proof . Following the proof of Theorem 3.1, we know that the sequence {θn} in U defined by

θ2n+1 = Wρ2n+1 = Pρ2n
and θ2n+2 = Vρ2n+2 = Qρ2n+1 for n = 0, 1, 2, . . . .

is a b−multiplicative Cauchy sequence. By the completeness of U , there exists x∗ ∈ U such that
θn → x∗ as n → +∞. As a result, {Pρ2n}, {Qρ2n+1}, {Vρ2n+2}, {Wρ2n+1} converge to x∗ as
n→ +∞. Since V is continuous, therefore,

lim
n→+∞

V2ρ2n+2 = Vx∗ and lim
n→+∞

VPρ2n = Vx∗.

Since the pair {P ,V} is compatible, lim
n→+∞

db(PVρ2n,VPρ2n) = 1. So, we have lim
n→+∞

PVρ2n =

Vx∗. Putting ρ = Vρ2n and θ = ρ2n+1 in (3.4), we obtain

db(PVρ2n,Qρ2n+1) ≤ max
{
db(V2ρ2n,Wρ2n+1), db(PVρ2n,V2ρ2n), db(Qρ2n+1,Wρ2n+1),

1

2

(
db(V2ρ2n,Qρ2n+1) + db(PVρ2n,Wρ2n+1

)}λ
Letting n→ +∞ in the above inequality, we get

db(Vx∗, x∗) ≤ max
{
db(Vx∗, x∗), db(x∗, x∗), db(x∗, x∗),

1

2

(
db(Vx∗, x∗) + db(Vx∗, x∗)

)}λ
= max{db(Vx∗, x∗), 1}λ

= dλb (Vx∗, x∗)

which implies that Vx∗ = x∗. Using the continuity of W , we obtain,

lim
n→+∞

W2ρ2n+1 =Wx∗ and lim
n→+∞

WQρ2n+1 =Wx∗.

Since Q and W are compatible,

lim
n→+∞

d(QWρ2n+1,WQρ2n+1) = 1.

So, we have, lim
n→+∞

QWρ2n+1 = Qx∗. Putting ρ = ρ2n and θ =Wρ2n+1 in (3.4), we obtain,

db(Pρ2n,QWρ2n+1) ≤ max
{
db(Vρ2n,W2ρ2n+1), db(Pρ2n,Vρ2n), db(QWρ2n+1,W2ρ2n+1),

1

2

(
db(Vρ2n,QWρ2n+1) + db(Pρ2n,W2ρ2n+1

)}λ
Letting n→ +∞ in the above inequality, we have

db(x
∗,Wx∗) ≤ max

{
db(x

∗,Wx∗), 1, 1,
1

2

(
db(x

∗,Wx∗) + db(x
∗,Wx∗)

)}λ
= dλb (x

∗,Wx∗)

This shows that Wx∗ = x∗ and

db(Px∗,Qρ2n+1) ≤ max
{
db(Vx∗,Wρ2n+1), db(Px∗,Vx∗), db(Qρ2n+1,Wρ2n+1),

1

2

(
db(Vx∗,Qρ2n+1) + db(Px∗,Wρ2n+1)

)}λ
.
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Taking the upper limit as n→ +∞ and using Vx∗ =Wx∗ = x∗, we have

db(Px∗, x∗) ≤ max
{
db(Vx∗, x∗), db(x∗, x∗), db(x∗, x∗),

1

2

(
db(Vx∗, x∗) + db(Px∗, x∗)

)}λ
≤ max{db(x∗, x∗), db(Px∗, x∗)}λ

= dλb (Px∗, x∗)

which implies that db(Px∗, x∗) = 1 and hence Px∗ = x∗. Finally, from (3.4) and the fact that
Px∗ = Vx∗ =Wx∗ = x∗, we have

db(x
∗,Qx∗) = db(Px∗,Qx∗)

≤ max
{
db(Vx∗,Wx∗), db(Px∗,Vx∗), db(Qx∗,Wx∗),

1

2

(
db(Sx

∗, Qx∗) + db(Px
∗, Tx∗)

)}λ
= max{1, 1, db(Qx∗, x∗),

1

2
(db(x

∗,Qx∗) + 1)}

= dλb (x
∗,Qx∗)

this shows that Qx∗ = x∗. Hence, there exists a common fixed point for the mappings P ,Q,V and
W . Let, if possible, z ∈ U be another common fixed point of P ,Q,V and W , then

db(x
∗, z) = db(Px∗,Qz)

≤ max
{
db(Vx∗,Wz), db(Px∗,Vx∗), db(Qz,Wz),

1

2
(db(Vx∗,Qz) + db(Px∗,Wz))

}λ
= max{db(x∗, z), 1}λ

= dλb (x
∗, z).

which implies that x∗ = z. Hence, P ,Q,V and W have a unique common fixed point in U . �

Example 3.7. Let U = [0, 1]. We define a mapping db : U × U → R+ by db(ρ, θ) = e(ρ−θ)
2
, for all

ρ, θ ∈ U . Obviously, (U, db) is a complete b−multiplicative metric space. Consider the self-mappings;

P(ρ) = Q(ρ) =


ρ

2
, if ρ ∈

[
0,

1

2

)
1

4
, if ρ ∈

[1
2
, 1
]

and V(ρ) =W(ρ) =


ρ

3
, if ρ ∈

[
0,

1

2

)
1

4
, if ρ ∈

[1
2
, 1
]

Since P(U) = Q(U) =
[
0,

1

4

]
, V(U) = W(U) =

[
0,

1

6

)
∪
{1

4

}
, so, we have V(U) ⊂ Q(U) and

W(U) ⊂ P(U) .
Now we show that {P ,V} is a compatible mapping of type (E). For this, we define a sequence

{ρn} where ρn =
1

n
, for n ≥ 1. Then, lim

n→+∞
Pρn = lim

n→+∞

ρn
2

= lim
n→+∞

1

2n
= 0 = t. Also we have,

lim
n→+∞

PPρn = lim
n→+∞

P(
ρn
2

) = 0, lim
n→+∞

PVρn = lim
n→+∞

P(
ρn
3

) = 0,P(0) = 0 and lim
n→+∞

VVρn =
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lim
n→+∞

V(
ρn
3

) = 0, lim
n→+∞

VPρn = lim
n→+∞

V(
ρn
2

) = 0,V(0) = 0.

Therefore, {P ,V} is a compatible mapping of type (E) and also we have P(0) = V(0), so {P ,V} is
a compatible mapping. Also, we have db(PVρ,VPρ) ≤ db(Pρ,Vρ) for all ρ ∈ U and hence P and
V are weakly commuting mappings. Similarly, Q and W are also weakly commuting mappings. For
ρ, θ ∈ [0, 1

2
),

dqb(Pρ,Qθ) ≤ max
{
db(Vρ,Wθ), db(Pρ,Vρ), db(Qθ,Wθ), db(Pρ,Wθ)

1
2s , db(Qθ,Vρ)

1
2s

}
=⇒ e(

ρ
2
− θ

3
)2q ≤ max

{
1, e(

ρ
6
)2 , e(

θ
6
)2 , e(

ρ
2
− θ

3
)2 1

2s , e(
θ
2
− ρ

3
)2 1

2s

}
.

Because θ = ln ρ is an increasing function, so

(
ρ

2
− θ

3
)2q ≤ max

{
0, (

ρ

6
)2, (

θ

6
)2, (

ρ

2
− θ

3
)2

1

2s
, (
θ

2
− ρ

3
)2

1

2s

}
which is true for all ρ, θ ∈ U . All the conditions of Theorem 3.1 are satisfied, so by Theorem 3.1, we
obtain a unique common fixed point. Here, the unique common fixed point is 0.

Example 3.8. Let U = [0, 1]. Define a mapping db : U × U → R+ by db(ρ, θ) = e(ρ−θ)
2

for all
ρ, θ ∈ U . Obviously, (U, db) is a complete b−multiplicative metric space. Consider the self-mappings

P(ρ) = (ρ
2
)4, Q(ρ) = (ρ

3
)2, V(ρ) = (ρ

2
)2, W(ρ) = (ρ

3
).

One can easily see that V(U) and W(U) are continuous mappings also (P ,V) and (Q,W) are
compatible. For each ρ, θ ∈ U , we have

db(Pρ,Qθ) = e(Pρ−Qθ)
2

= e

(
( ρ
2
)4−( θ

3
)2
)2

= e

(
( ρ
2
)2+ θ

3

)2(
( ρ
2
)2− θ

3

)2
≤ e

(
( ρ
2
)2− θ

3

)2
= db(Vρ,Wθ)

≤ ∆1(ρ, θ).

Thus, P ,Q,V and W satisfy all the conditions of Theorem 3.6. By theorem 3.6, we will have a
unique common fixed point. Here, 0 is the unique common fixed point of P ,Q,V and W.

4. Application

In this section, we study the existence and uniqueness of the solution of a system of multiplicative
integral equations. Consider the integral equation

ρ(t) =

∫ b

a

Ki

(
t, s, ρ(s)

)ds
, for i = 1, 2 and s, t ∈ [a, b] (4.1)

where a, b ∈ R and Ki : [a, b]× [a, b]×R. The purpose of this section is to give an existence theorem
for a solution of (4.1) using Theorem 3.1.

Consider the space U = C[a, b] of real continuous functions defined on [a, b]. Obviously this space,
with the b−multiplicative metric given by

db(ρ, θ) =

{
supt∈[a,b]

∣∣ρ(t)
θ(t)

∣∣2, if ρ(t)
θ(t)

> 1

supt∈[a,b]
∣∣ θ(t)
ρ(t)

∣∣2, if ρ(t)
θ(t)

< 1
is a complete b−multiplicative metric space.
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Theorem 4.1. Assume that

(i) for each t, s ∈ [a, b] and ρ, θ ∈ U , there exists a constant η > 0 such that∣∣∣K1(t, s, ρ(s))

K2(t, s, θ(s))

∣∣∣2 ≤ (∣∣∣ρ(s)

θ(s)

∣∣∣)η,
(ii) the constant η is such that η < 1

q(b−a) , 1 < q <∞,

(iii) Ki : [a, b]× [a, b]× R→ R is continuous.

Then the system (4.1) have a unique common solution in U .

Proof . Consider the two mappings P ,Q : U → U defined as

Pρ(t) =

∫ b

a

K1(t, s, ρ(s))ds,

Qρ(t) =

∫ b

a

K2(t, s, ρ(s))ds, s, t ∈ [a, b],

The system (4.1) has a common solution if and only if the self-mappings P and Q have a common
fixed point in U . Since Ki are continuous, so P and Q are continuous, then {IU ,P} and {IU ,Q}
are compatible mappings of type (E). Further we have∣∣∣Pρ(t)

Qθ(t)

∣∣∣2 =
(∫ b

a

∣∣K1(t, s, ρ(s))

K2(t, s, θ(s))

∣∣ds)2
≤

(∫ b

a

(∣∣∣ρ(s)

θ(s)

∣∣∣η)ds)2
≤

(∫ b

a

(
db(ρ, θ)

η
2

)ds)2
=

((
db(ρ, θ)

b−a) η2)2
= db(ρ, θ)

η(b−a)

< db(ρ, θ)
1
q

≤ max
{
db(ρ, θ), db(Pρ, ρ), db(Qθ, θ), db(Pρ, θ)

1
2s , db(Qθ, ρ)

1
2s

} 1
q
,

where 1 ≤ s <∞.

Therefore

dqb(Pρ,Qθ) ≤ max
{
db(ρ, θ), db(Pρ, ρ), db(Qθ, θ), db(Pρ, θ)

1
2s , db(Qθ, ρ)

1
2s

}
,

where 1 ≤ s < q <∞.

for all ρ, θ ∈ U . Consequently, all the hypotheses of Theorem 3.1 (with V =W = IU) hold. Then P
and Q have a unique common fixed point and so the system (4.1) have a unique common solution.
�
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5. R−multiplicative metric space

In this section, we introduce the notion of R−multiplicative metric space with some examples.
At the end of this section, we have an open question.

Recently, Eshagi Gordji et al. [6] introduced the concept of orthogonal set (for more details, we
refer [2],[5]) and Khalehogli et al. [14] introduced the notion of R−metric spaces and gave a real
generalization of the Banach fixed point theorem. Inspired by the works of Khalehogli et al. [14] ,
we introduce the concept of R−multiplicative metric space as follows.

Definition 5.1. Suppose (U, d) is a multiplicative metric space and R is a relation on U . Then,
the triple (U, d,R) is called R−multiplicative metric space.

Definition 5.2. [6] Let U 6= ∅ and ⊥ ⊆ U × U be a binary relation. If ⊥ satisfies the following
conditions:

∃x0 : (∀y, y⊥x0) or (∀y, x0⊥y),

then it is called an orthogonal set (briefly O-set) and it is denoted by (U,⊥).

If R = ⊥ ⊆ U×U , then we say that the triplet (U, d,⊥) is orthogonal multiplicative metric space.

Example 5.3. Let U = (0,+∞) and d : Un × Un → R be defined by

d(x, y) =
∣∣x1
y1

∣∣ ∣∣x2
y2

∣∣ . . . ∣∣xn
yn

∣∣,
where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Un and

∣∣ . ∣∣ : R+ → R+ is defined by

|a| =

{
a, if a ≥ 1

1
a
, if a < 1

Obviously, d is a multiplicative metric. Define xRy, x, y ∈ Un if |xy| ≤ max{|x|, |y|}. Then
(Un, d, R) is a R−multiplicative metric space.

Example 5.4. Let U = [0,+∞) and d : U × U → R be defined by d(x, y) = e|x−y|,∀x, y ∈ U . Also,
define a relation R on U as {(x, y) : x ≤ y, x, y ∈ U}. Then, (U, d,R) is an R−multiplicative metric
space.

Definition 5.5. Let {xn} be a sequence in an R−multiplicative metric space (U, d,R). Then

(i) {xn} is called an R−multiplicative sequence if xnRxn+k for each n, k ∈ N.

(ii) {xn} is said to converge to x ∈ U if for every ε > 1, there is an integer N such that d(xn, x) < ε

if n ≥ N . In this case, we write xn
R−→ x.

(iii) {xn} in U is said to be an R−multiplicative Cauchy sequence if for every ε > 1, there exists
an integer N such that d(xn, xm) < ε if n,m ≥ N . It is clear that xnRxm or xmRxn.

(iv) U is said to be R−multiplicative complete if every R−multiplicative Cauchy sequence in U
converges to a point in U .

Definition 5.6. Let A : U → U be a mapping. Then, A is called R−multiplicative preserving if
xRy, then AxRAy for all x, y ∈ U .
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Definition 5.7. Let A : U → U be a mapping. Then, A is said to be R−multiplicative continuous

at x ∈ U if for every R−multiplicative sequence {xn} in U with xn
R−→ x, we have Axn → Ax. Also,

A is said to be R−multiplicative continuous on U if A is R−multiplicative continuous in each x ∈ U .

Definition 5.8. A mapping A : U → U is said to be an R−multiplicative contraction with Lipschitz
constant 0 < λ < 1 if for all x, y ∈ U such that xRy, we have

d
(
Ax,Ay

)
≤ d(x, y)λ

Open question:
Let U be an R−multiplicative metric space. Let A : U → U be R−multiplicative continuous,

R−multiplicative contraction with Lipschitz constant λ ∈ (0, 1) and R−multiplicative preserving.

Does A has a unique fixed point if ∃x0 ∈ U such that x0Ry for all y ∈ A(U)?
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