
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,830 |
تعداد دریافت فایل اصل مقاله | 7,656,340 |
Best proximity point theorems by $K$, $C$ and $\mathcal{MT}$ types in $b$-metric spaces with an application | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 1317-1329 اصل مقاله (381.54 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.19156.2060 | ||
نویسندگان | ||
Setareh Ghezellou1؛ Mahdi Azhini2؛ Mehdi Asadi* 3 | ||
1Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
2Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
3Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran | ||
تاریخ دریافت: 02 آذر 1398، تاریخ پذیرش: 18 خرداد 1400 | ||
چکیده | ||
In this paper, we introduce the concept of weak $\mathcal{MT}-K$ rational cyclic and weak $\mathcal{MT}-C$ rational cyclic conditions and a combination of both conditions in what we call weak $\mathcal{MT}-KC$ rational cyclic condition. We investigate some best proximity points theorems for a pair of mappings that satisfy these conditions that have been established in $b$-metric spaces. Our results include an application to the nonlinear integral equation as well. | ||
کلیدواژهها | ||
$b$-metric space؛ $mathcal{MT}$-function؛ Rational cyclic condition؛ Cyclic map؛ Best proximity point | ||
مراجع | ||
[1] A. Aghajani and M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64(4) (2014) 941–960. [2] I. A. Bakhtin, The contraction mapping principle in almost metric space, Funct. Anal. Gos. Ped. Inst. Unianowsk, 30 (1989) 26-37. [3] M. Boriceanu and M. Bota and A. Petrusel, Mutivalued fractals in b-metric spaces, Cent. Eur. J. Math. 8 (2010) 367–377. [4] S. Chaipornjareansri and J.Nantadilok, Some best proximity point results for MT-rational cyclic contractions, J. Math. Anal. 10(6) (2019) 9–22. [5] W. S. Du, Some new results and generalizations in metric fixed point theory, Nonlinear Anal. Theo. Meth. Appl. 73(5) (2010) 1439–1446. [6] W. S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topol. Appl. 159(1) (2012) 49–56. [7] A. A. Eldred and W. A. Kirk, and P.Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math. 171(3) (2005) 283–293. [8] A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006) 1001–1006. [9] H. Faraji and D. Savic and S. Radenovic, Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications, Axioms, 8 (2019) 484–490. [10] N. Hussain and A. Latif and P. Salimi , Best proximity point results in G-metric spaces, Abst. Appl. Anal. 2014 (2014) 837–943. [11] E. Karapınar, J. M. Erhan and A. Yildiz Ulus, Fixed point theorem for cyclic maps on partial metric space, Appl. Math. Inf. Sci. 1 (2012) 239–244. [12] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theo. 4(1) (2003) 79–89. [13] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Berlin, 2014. [14] I. J. Lin and H. Lakzian and Yi. Chou, On best proximity point theorems for new cyclic maps, Int. Math. Forum, 73(7) (2012) 1839–1840. [15] I. J. Lin and H. Lakzian and Yi. Chou, On convergence theorems for nonlinear mappings satisfying the MT − C conditions, Appl. Math. Sci. 67(6) (2012) 3329–3337. [16] J. Nantadilok, Best proximity point results in S-metric spaces, Int. J. Math. Anal. 10(27) (2016) 1333–3346. [17] S. Sadiq Basha, Best proximity points:global optimal approximate solution, J. Global Optim. 49 (2010) 15—21. | ||
آمار تعداد مشاهده مقاله: 15,709 تعداد دریافت فایل اصل مقاله: 416 |