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Abstract

In this paper, we are concerned with the optimization of a dynamic investment portfolio when the
securities which follow a multivariate Merton model with dependent jumps are periodically invested
and proceed by approximating the Condition-Value-at-Risk (CVaR) by comonotonic bounds and
maximize the expected terminal wealth. Numerical studies, as well as applications of our results to
real datasets, are also provided.

Keywords: Risk analysis, Conditional tail expectation, Merton Model, Geometric Brownian
motion, Comonotonicity.
2010 MSC: 91G10, 91G70, 60G51

1. Introduction

One of the most important problems in investment strategies is choosing the portfolio that ideally
leads to the maximum return but has minimum risk. This problem was first proposed by Markowitz
in 1950 [11], who used a quadratic programming model for solving this optimization problem. Since
then, the problem has been studied by several researchers using different criteria. For example,
Cura [3] used the particle swarm optimization method, while Xu et al. [15] assumed a Black-Scholes
market with stochastic drift and used the fractional Kelly-strategy developed by MacLean et al.
[9]. Furthermore, Afhami et al. [1] used comonotonic approximation to solve the problem when
the securities followed a multivariate Merton model with dependent jumps and the portfolio was
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constant. In this paper, we use the fractional Kelly-strategy to optimize wealth in a jump-diffusion
Merton model with a dynamic control asset allocation (DCAA). The solution leads to a stochastic
differential equation (SDE), which was solved for the constant mix strategy in Afhami et al. [1]
and can be generalized to the DCAA strategy to obtain the terminal wealth of a periodic investment
problem in a DCAA strategy framework. The optimization problem is solved based on a lower bound
of the risk measure of terminal wealth using comonotonic theory.

The rest of the paper is organized as follows. Section 2 provides the definitions and existing results
used throughout the paper. The main results are presented in Section 3, we first obtain the solution
of the SDE corresponding to the terminal wealth process of a portfolio following a jump-diffusion
model using the DCAA strategy, and then calculate the lower comonotonic bound for CVaR of the
terminal wealth in order to solve the portfolio optimization problem. In Section 4, we implement our
optimization method on data containing the daily prices of the stocks of Zoom Video Communication
Inc. (ZM), and Tesla Inc. (TSLA). These data are readily available from the S&P 500 market index.

2. Preliminaries

The Black-Scholes model is a mathematical model used for options pricing and estimating the
variation of financial investments over time. The model assumes that price of assets follows a ge-
ometric Brownian motion with constant drift and volatility, and is widely used in the literature.
Al-Zhour et al. [2] investigated pricing using a nonlinear volatility model. Jankova [6] focused on the
methods of derivative contract pricing and derived the basic differential equation of the Black-Scholes
model for option contract pricing. He also referred to the significant drawbacks and limitations of
other option pricing models which are based on unrealistic assumptions. Merton [12] showed that
the Black-Scholes model is generally not suitable for real market stock pricing, and introduced the
jump-diffusion “Merton” model [13] which is commonly used in the literature and has abundant
applications in the analysis of financial data. For example, Stübinger et al. [14] developed a pairs
trading framework based on a mean-reverting jump-diffusion model and applied it to the S&P 500
oil companies. Li et al. [8] introduced a dynamic model for a risky asset which is governed by its
compensation process, a Brownian motion, and a stationary compound Poisson process. Maruddani
et al. [10] applied jump-diffusion processes to derive bond parameters, equity, and default probability
when the asset prices have extreme values. In this paper, we consider the return of a portfolio in-
cluding one risk-free asset together with several risky assets which follow the jump-diffusion Merton
model and optimize it using the DCAA strategy.

V aR and CV aR are the most common risk measures used in an optimization problem for maxi-
mizing expected terminal wealth.

Definition 2.1. Let X be a random variable with cdf FX the risk measures V aR, CV aR and Con-
ditional Left-side Value at Risk (CLV aR) for the set of real numbers R and p ∈ (0, 1), are defined as

V aRp(X) := inf{x ∈ R | FX(x) ≥ p},
CV aRp(X) := E (X | X > V aRp(X)) ,

CLV aRp(X) := E (X | X < V aRp(X)) .

where FX(x) = Pr(X ≤ x) and by convention, inf{∅} = +∞.

It is obvious that
CV aR1−p(X) = −CLV aRp(−X).

The following definition characterizes comonotonicity (see Theorem 3 in Dhaene et al. [4]).
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Definition 2.2. The random vector X = (X1, X2, . . . , Xn) is comonotonic if and only if one of the
following equivalent conditions holds:

(1) X has a comonotonic support;

(2) For all x = (x1, x2, . . . , xn), we have

FX(x) = min{FX1(x1), FX2(x2), . . . , FXn(xn)};

(3) For U ∼ Uniform(0, 1), we have

X
d
= (F−1

X1
(U), F−1

X2
(U), . . . , F−1

Xn
(U));

(4) There exist a random variable Z and non-decreasing functions fi, (i = 1, 2, . . . , n), such that

X
d
= (f1(Z), f2(Z), . . . , fn(Z)).

The following theorem presents the additivity property of risk measures for sums of comonotonic
risks (Dhaene et al. [5]).

Theorem 2.3. For the comonotonic random vector (X1, X2, . . . , Xn) we have

V aRp(
n∑
j=1

Xj) =
n∑
j=1

V aRp(Xj),

CV aRp(
n∑
j=1

Xj) =
n∑
j=1

CV aRp(Xj),

if all marginal distributions Fk, (k = 1, 2, . . . , n) are continuous.

A random variable X is said to precede Y in the convex order sense (X ≤cx Y ), if E(X) = E(Y )
and E[max(X − d, 0)] ≤ E[max(Y − d, 0)] for all real d. With respect to convex order, Kaas et al. [7]
obtains bounds for sum of random variables.

Theorem 2.4. For any random vector (X1, . . . , Xn) and any random variable Λ,

n∑
j=1

E(Xj | Λ) ≤cx
n∑
j=1

Xj ≤cx
n∑
j=1

F−1
Xj

(U).
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Table 1: Notations used throughout this paper

Symbol Definition
Pj(t) Price of the jth risky asset at time t
µj Drift of geometric Brownian motion
σj Volatility of the asset Pj, j = 1, 2, . . . ,m
µ (r + µ1 − λh1,0 − λ1h1,1, . . . , r + µm − λhm,0 − λmhm,1)>

x(l − 1) (x1(l − 1), . . . , xm(l − 1))>

r Interest rate of risk-free asset
A µ− r1

µ(x(l − 1)) A> x(l − 1) + r
B′j m-dimensional standard Brownian motions,

j = 1, 2, . . . ,m
ρi,j

1
t
Cov(B′i(t),B

′
j(t+ s)) , t, s ≥ 0, i, j = 1, . . . ,m

Σm×m (σi σj ρi,j)i,j , i, j ∈ {1, 2, . . . ,m}
σ2(x(l − 1)) (x(l − 1))>Σ x(l − 1)

Bx(l−1)(t) (σ2(x(l − 1)))−1
m∑
j=1

xj(l − 1)σj B
′
j(t)

N (t) Poisson processes with intensity rates λ
Nj(t) Poisson processes with intensity rates λj
Zk,j,0 The jump magnitude of the k-th common jump

for the asset Pj in (0, t], k = 1, 2, . . . ,N (t)
Zk,j,1 The jump magnitude of the k-th individual jump

of asset Pj, in (0, t], k = 1, 2, . . . ,Nj(t)
hj,` E[eZι(t),j,` ]− 1, j = 1, 2, . . . ,m, ` = 0, 1

αl? The periodic endowments at predetermined
points, l? = 0, 1, . . . , τ − 1

µZ1,j,`
E(Zk,j,`)

σ2
Z1,j,`

V ar(Zk,j,`)
rn corr(Vn,Λ)
wl−1 The amount of wealth at the beginning of the period l
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3. Main results

In this section, we consider (m + 1) securities consisting of one risk-free and m risky asset that
is traded continuously. We also assume that the decision-maker invests a fraction xj(l − 1), (j =
1, 2, . . . ,m) of his/her wealth in the j-th risky asset at the beginning of the l-th period and 1 −
m∑
j=1

xj(l−1) in the risk-free asset. In what follows, Theorem 3.1 gives the solution of the corresponding

SDE (Eq. 3.3) and Theorem 3.4 characterizes the solution to the optimization problem. All notations
are provided in Table 1 for simplicity.

In the constant mix strategy, the initial proportions of assets will remain fixed until the end
of the terminal horizon. However, when using the DCAA strategy, the optimal portfolio strategy
is obtained based on the current wealth to design a policy that remains fixed until the end of the
terminal horizon [10]. If at the start of the next period the amount of wealth changes, the strategy
is updated.

Assume that P0(t), the price of the risk-free asset at time t, satisfies

dP0(t)

P0(t−)
= r dt, r > 0, (3.1)

and the dynamics of risky assets prices for j = 1, 2, . . . ,m, follow

dPj(t)
Pj(t−)

= (r + µj − λhj,0 − λj hj,1) dt+ σj dB
′
j(t) + (eZι(t−),j,0 − 1) dN (t)

+(eZι(t−),j,1 − 1) dNj(t). (3.2)

Discounted changes in assets price are divided into two groups: individual changes corresponding
to Nj(t) and common changes corresponding to N (t). We assume that for all j, k, and ` = 0, 1 the
random variables Zk,j,` are independent of B′j(t) and for fixed j = 1, 2, . . . ,m, the random variables
Zk,j,` are i.i.d for all k and `. The variables Zk,j,` and Zk,j′,` are also independent for j 6= j′, but they
may not be identically distributed. We assume that Zk,j,`, (j = 1, . . . ,m, ` = 0, 1) are continuous
random variables.

Then, according to (3.2) and (3.1), the wealth process W (t) within the l-th period is

dP(t)

P(t−)
=

m∑
j=1

xj(l − 1)
dPj(t)
Pj(t−)

+ (1−
m∑
j=1

xj(l − 1))
dP0(t)

P0(t−)

= µ (x(l − 1)) dt+ σ2(x(l − 1)) dBx(l−1)(t) +
m∑
j=1

xj(l − 1) (eZι(t−),j,0 − 1) dN (t)

+
m∑
j=1

xj(l − 1) (eZι(t−),j,1 − 1) dNj(t). (3.3)

With a simple modification of Proposition 2.1 in Afhami et al. [1] we can obtain the solution of
the Equation (3.3), and because of the similarity of proof, we do not provide the proof here.

Theorem 3.1. If the random processes N ,Nj1 and Nj2 do not have common jumps for j1 6= j2 =
1, 2, . . . ,m, then the solution of (3.3) is as bellow

P(t) = e

(
µ(x(l−1))−σ

2(x(l−1))
2

)
t+σ2(x(l−1))Bx(l−1)(t)+

m∑
j=1

N (t)∑
k=1

Z?k,j,0(x(l−1))

×e
m∑
j=1

Nj(t)∑
k=1

Z?k,j,1(x(l−1))

. (3.4)
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where eZ
?
k,j,`(x(l−1)) − 1 = xj(l − 1)(eZk,j,` − 1), ` = 0, 1, j = 1, . . . ,m.

An investment of a unit amount of wealth at time t− 1 will grow to amount eYt(x(l−1)) at time t,
where

Yt(x(l − 1)) = µ(x(l − 1))− σ2(x(l − 1))

2
+

m∑
j=1

N (t)∑
k=N(t−1)+1

Z?k,j,0(x(l − 1))

+
m∑
j=1

Nj(t)∑
k=Nj(t−1)+1

Z?k,j,1(x(l − 1)) + σ2(x(l − 1))
(
Bx(l−1)(t)−Bx(l−1)(t− 1)

)
. (3.5)

In Afhami et al. [1], the terminal wealth was calculated from (3.4) assuming constant proportions
and an optimal strategy was obtained to maximize the expectation of terminal wealth when the
comonotonic approximation of CLV aR, was controlled. We now consider portfolio optimization
under the DCAA strategy.

So the wealth Wl at the end of the l-th period satisfy the recursion equation

Wl =Wl−1 e
Yl(x(l−1)) + αl, l = 1, 2, . . . , τ,

with W0 = α0. Hence the terminal wealth can be written as

Wτ (x(l − 1)) = wl−1 e

τ∑
k=l

Yk(x(l−1))
+

τ−1∑
j=l

αj e

τ∑
k=j+1

Yk(x(l−1))

. (3.6)

Due to the limitation of borrowing from risky assets, we impose the upper bound c0 to µ(x(l−1)) ,
so the portfolio optimization problem is given by:

max
x(l−1)

E (Wτ (x(l − 1))) , (3.7)

CLV aRp (Wτ (x(l − 1))) ≥ K,

µ(x(l − 1)) ≤ c0.

Since we cannot obtain the exact distribution of Wτ , instead we approximate its comonotonic
lower bound.

Theorem 3.2. Let Λ = σ2(x(l−1))
τ−1∑
k=l−1

αk
(
Bx(l−1)(τ)−Bx(l−1)(k)

)
, then the comonotonic lower

bound is

WL
τ (x(l − 1)) = wl−1 e

c1,l−1+c2,l−1(x(l−1))+c3,l−1

√
σ2(x(l−1)) Λ

σΛ

+
τ−1∑
i=l

αi e
c1,i+c2,i(x(l−1))+c3,i

√
σ2(x(l−1)) Λ

σΛ , (3.8)

where c1,n, c2,n, and c3,n are defined in (A.2), (A.3) and (A.4).

Calculating risk measures of (3.8) is difficult, to come up with this issue, we use the first-order
Taylor expansion of the exponential function. Its result is given in following Lemma.
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Lemma 3.3. We can approximate WL
τ (x(l − 1)) using the first-order Taylor expansion as

W ′L
τ (x(l − 1)) = c4 + c5(x(l − 1)) + c6

√
σ2(x(l − 1))

Λ

σΛ

, (3.9)

where c4, c5(x(l − 1)) and c6 are given in (A.5), (A.6) and (A.7).

One can easily shown that E(W ′L
τ ) = c4 + c5(x(l − 1)), and its risk measure is

CV aR1−p(−W
′L
τ ) = −c4 − c5(x(l − 1)) + c7

√
σ2(x(l − 1)),

where c7 = c6
1

p
√

2π
e−

1
2

(Φ−1(p))2
.

So portfolio optimization problem reduces to

max
x(l−1)

(c4 + c5(x(l − 1))) , (3.10)

−c4 − c5(x(l − 1)) + c7

√
σ2(x(l − 1)) ≤ −K,

r + A>x(l − 1) ≤ c0,

and its solution is given in the following result.

Theorem 3.4. The solution of problem (2.9) for p < 0.5 is of the form x(l− 1) = q(l− 1) x?, where
x? = Σ−1 A, q(l − 1) = min{q1, q2, q3}, and

q1 =
−B2 −

√
B2

2 − 4B1B3

2B1

, q2 =
c8

2 c9

, q3 =
c0 − r

A>Σ−1 A
, (3.11)

with

B1 = −c9

(
A>Σ−1 A

)
, B2 =

c8

−c9

B1 − c7

√
B1

−c9

, B3 = c4 −K,

and

c8 = wl−1 (τ − l + 1) +
τ−1∑
i=l

αi (τ − i),

c9 =
1

2
wl−1 (τ − l + 1) r2

l−1 +
1

2

τ−1∑
i=l

αi r
2
i .

4. Data Example

In Example 4.1, we compute the optimal portfolio for a DCAA strategy for two stocks listed in
the S&P 500 stock market index.

Example 4.1. In this example, we consider the daily prices of ZM and TSLA for time horizon τ = 6
months from August of 2020 to January of 2021. These prices are plotted in Figure 1.

For simplification, we set α0 = α1 = . . . = α5 = 1, and assume that the interest rate and the

risk budget are r = 0.03 and p = 0.05, respectively. In Equation (3.10) we set K = k?
τ∑
i=1

e
(τ−i+1) r

τ

where k? is the stop loss rate. From Theorem 3.4 we obtain the optimal proportions x1(l) and x2(l)
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Figure 1: Diagram of daily prices of assets.

Figure 2: Illustration of the algorithm for six periods.

respectively of the stocks ZM and TSLA at the beginning of the l-th period i.e. at time l? = l− 1 and
write x(l?) = (x1(l?), x2(l?)), (l? = 0, 1, . . . , 5).

Let Sb(l) = (Sb,1(l), Sb,2(l)) and Se(l) = (Se,1(l), Se,2(l)) be vectors respectively containing the
prices of ZM and TSLA at the beginning and end of the l-th period, respectively.

Consider fl = (Wl x1(l)
Sb,1(l)

, Wl x2(l)
Sb,2(l)

) where Wl x1(l)
Sb,1(l)

and Wl x2(l)
Sb,2(l)

are respectively the stock volumes of ZM

and TSLA which are bought at the beginning of the l-th period. We compute terminal wealth (W6)
as follows:

First step: At time l? = 0 (or l = 1), with W0 = 1 we obtain x(0) using Theorem 3.4.
Second step: At time l? = 1 (or l = 2), we calculate W1 = f0 Se(0)> + α1, and again using

Theorem 3.4 obtain x(1).
Third step: We repeat second step for l? = 2, 3, . . . , 5 (or l = 3, 4, . . . , 6), withWl? = fl?−1 Se(l

?−
1)> + αl? , and using Theorem 3.4 to obtain x(l?).

This algorithm is illustrated in Figure 2.
The results for different values of k? are given in Table 2. This table illustrates that wealth and

return of portfolio decreases as k? increases.

optimization of a dynamic investment portfolio when the securities which follow a multivari-
ate Merton model with dependent jumps are periodically invested and proceed by approximating

Table 2: Optimal wealth for the first six periods.

k? W1 W2 W3 W4 W5 W6 Return
0.50 2.4640 3.3657 4.0509 6.0675 7.2707 7.7254 26.5194%
0.85 2.3898 3.2944 3.9863 5.9867 7.1871 7.6366 25.0651%
0.90 2.3118 3.0252 3.7422 5.6813 6.8715 7.3012 19.5722%
0.95 2.2326 2.7155 3.4355 5.2977 6.4751 6.8801 12.6758%
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the Condition-Value-at-Risk (CVaR) by comonotonic bounds and maximize the expected terminal
wealth.

5. Discussion

In this paper, we considered the problem of portfolio optimization of a dynamic investment
portfolio when the securities which follow a multivariate Merton model with dependent jumps are
periodically invested by controlling CV aR. The comonotonic bounds of CVaR were obtained since
the solution to the optimization problem does not have a closed-form. Real data analysis is provided
for more illustration. This work can be extended in several directions. For example, the compound
Poisson process can be replaced by a multivariate Lévy process, or a Lévy copula can be implemented
to model stock prices in a portfolio optimization problem.

Acknowledgement: The authors are grateful to Professor Mahbanoo Tata for editing this paper
as well as for her valuable suggestions.

Appendix A.

Proof of Theorem 3.2:
Proof . From (3.6) and (3.5) it can be easily shown

Wτ (x(l − 1)) = wl−1 e
Vl−1+Sl−1 +

τ−1∑
i=l

αi e
Vi+Si ,

where for n = l − 1, l, . . . , τ − 1,

Vn = σ2(x(l − 1))
(
Bx(l−1)(τ)−Bx(l−1)(n)

)
,

Sn = (τ − n)

(
µ(x(l − 1))− σ2(x(l − 1))

2

)
+

m∑
j=1

N(τ)∑
k=N(n)+1

Z?k,j,0(x(l − 1))

+
m∑
j=1

Nj(τ)∑
k=Nj(n)+1

Z?k,j,1(x(l − 1)),

By using Theorem 2.4, we obtain lower bound for Wτ (x(l − 1)). First we set

Λ = σ2(x(l − 1))
τ−1∑
k=l−1

αk
(
Bx(l−1)(τ)−Bx(l−1)(k)

)
, so

σ2
Λ = σ2(x(l − 1))

τ−1∑
k,w=l−1

αk αw min{τ − k, τ − w},

σ2
Vn = (τ − n)σ2(x(l − 1)),

moreover

rn = Corr(Vn,Λ) =

τ−1∑
k=l−1

αk min{τ − n, τ − k}√
(τ − n)

τ−1∑
k,w=l−1

αk αw min{τ − k, τ − w}
.
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Therefore the lower bound is

WL
τ (x(l − 1)) = E

(
wl−1 e

Vl−1+Sl−1 +
τ−1∑
i=l

αi e
Vi+Si | Λ

)
(A.1)

= wl−1 E(eVl−1 | Λ)E(eSl−1) +
τ−1∑
i=l

αi E(eVi | Λ)E(eSi).

Since Vn | Λ = λ has standard normal distribution with mean and variance, respectively rn σVn
λ
σΛ
,

and σ2
Vn

(1− r2
n). We have

E(eVn | Λ) = e
rn
√

(τ−n)σ2(x(l−1)) Λ
σΛ

+ 1
2

(τ−n)σ2(x(l−1))(1−r2
n)
,

and

E(eSn) = e
(τ−n)µ(x(l−1))− 1

2
(τ−n)σ2(x(l−1))+λ(τ−n)

(
m∏
j=1

MZ?
1,j,0

(x(l−1))(1)−1

)

×e
(τ−n)

m∑
j=1

λj

(
MZ?

1,j,1
(x(l−1))(1)−1

)
.

Thus

WL
τ (x(l − 1)) = wl−1 e

c1,l−1+c2,l−1(x(l−1))+c3,l−1

√
σ2(x(l−1)) Λ

σΛ

+
τ−1∑
i=l

αi e
c1,i+c2,i(x(l−1))+c3,i

√
σ2(x(l−1)) Λ

σΛ ,

where

c1,n = (τ − n)r + λ(τ − n)

(
m∏
j=1

MZ?1,j,0(x(l−1))(1)− 1

)

+(τ − n)
m∑
j=1

λj

(
MZ?1,j,1(x(l−1))(1)− 1

)
, (A.2)

c2,n(x(l − 1)) = (τ − n)
(
A>x(l − 1)

)
− 1

2
(τ − n) r2

n σ
2(x(l − 1)), (A.3)

c3,n =
√

(τ − n) rn, (A.4)

which completes the proof of the result.�
Proof of Lemma 3.3: Here, we use the first-order Taylor expansion of the exponential function

in (3.8). Therefore,

W ′Lτ (x(l − 1)) = wl−1

(
1 + c1,l−1 + c2,l−1(x(l − 1)) + c3,l−1

√
σ2(x(l − 1))

Λ

σΛ

)
+

τ−1∑
i=l

αi

(
1 + c1,i + c2,i(x(l − 1)) + c3,i +

Λ

σΛ

√
σ2(x(l − 1))

)
.
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By straightforward calculation, we have

W ′L
τ (x(l − 1)) = c4 + c5(x(l − 1)) + c6

√
σ2(x(l − 1))

Λ

σΛ

,

where

c4 = wl−1 (1 + c1,l−1) +
τ−1∑
i=l

αi (1 + c1,i), (A.5)

c5(x(l − 1)) = wl−1 c2,l−1(x(l − 1)) +
τ−1∑
i=l

αi c2,i(x(l − 1)), (A.6)

and

c6 = wl−1 c3,l−1 +
τ−1∑
i=l

αi c3,i. (A.7)

This completes the proof of results.
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