
Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 1399-1411
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.5239

Variable coefficient fractional partial differential
equations by Base–Chebyshev method
Hasan Shathera

aDepartment of Mathematics, Ministry of Education, Thi-Qar, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, the invariant subspace method is generalized and improved and is then used together
with the Chebyshev polynomial to approximate the solution of the non-linear, mixed fractional
partial differential equations FPDEs with constant, non-constant coefficients. Some examples are
given here to illustrate the efficiency of this method.

Keywords: fractional partial differential equation, Caputo fractional derivative, invariant
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1. Introduction

The last decades have shown that derivatives and integrals of arbitrary order are very convenient for
describing properties of real materials. The new fractional-order models are more satisfying than the
former integer-order ones, a natural phenomenon may depend not only on the time instant but also
on the previous time history, which can be modeled by fractional calculus [3].

So motivated by these reasons, it is important to find efficient methods for solving fractional
partial differential equations (FPDEs) such as invariant subspace method which gives the exact
solution for a wide class of Caputo time and space and mixed (FPDEs) with constant coefficients
[5, 6, 7, 8, 9].

But in the case of non-constant coefficients, we couple the invariant subspace method with the
shifted Chebyshev polynomial of first kind (CISM), to get the approximate solution for such equa-
tions. Firstly the main idea of the invariant subspace method is the separate equation variables, to
get a system of ordinary fractional differential equation which can be easy to solve.
To explain this method, let us state here the following operator form of FPDEs

n∑
j=0

λj
∂α+j

∂ tα+j
u(x, t) = N

(
x, u,

∂β

∂xβ
u,

∂β+1

∂xβ+1
u, · · · , ∂

β+m

∂xβ+m
u
)

+ µ
∂α

∂tα

( ∂β
∂xβ

u
)

(1.1)
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a < α ≤ a+ 1, b < β ≤ b+ 1, a, b ∈ N, λj, µ ∈ R

Solution of this equation by the invariant subspace method given in the following theorem

Theorem 1.1. [5] Suppose In+1 = L{φ0(x), φ1(x), · · · , φn(x)} is a finite- dimensional linear space,

and it is invariant with respect to the operators N [u] and ∂β

∂xβ
u, then FPDE (1.1) has an exact

solution as follows:

u(x, t) =
n∑
i=0

ki(t)φi(x) (1.2)

where {ki(t)} satisfies the following FDEs :

m1∑
j=0

λj
dα+j

dtα+j
ki(t) = ψi + µ

dαψn+1+i

dtα
, i = 0, · · · , n (1.3)

where {ψ0, ψ1, · · · , ψn}, {ψn+1, ψn+2, · · · , ψ2n+1} are the expansion coefficients of N [u], ∂β

∂xβ
u re-

spectively with respect to the base {φ0(x), φ1(x), · · · , φn(x)}, ψi = ψi
(
k0(t), k1(t), · · · , kn(t)

)
.

2. Analysis of the CISM

To explain the analytic view of this technique, we must given a simple argue of Chebyshev polyno-
mials method for approximate a specific function. There are several kinds of Chebyshev polynomials
[2] which have an important position in modern developments including orthogonal polynomial, poly-
nomial approximation, numerical integration, and spectral methods for partial differential equations.
In particular we shall focus on the first kind only among the fourth others.
It is well known that the n− degree Chebyshev polynomial of first kind Tn(x), which defined on
[−1, 1] by :

Tn(x) = cos(nθ), x = cos θ, θ ∈ [0, π]

which have the following recurrence formula

Tn+1(x) = 2x Tn(x)− Tn−1(x), n = 1, 2, 3, · · · with T0(x) = 1, T1(x) = x

Tn(x) has the following analytic form:

Tn(x) =

n/2∑
k=0

(−1)k
2n−2k−1 n(n− k − 1)!

(2k)!(2n− 2)!
xn−2k, n = 2, 3, · · ·

these polynomials are orthogonal on [−1, 1] with respect to the weight function ω(x) = 1√
1−x2 i.e:

∫ 1

−1
ω(x) Tn(x) Tm(x) dx =


π n = m = 0

π/2 n = m 6= 0

0 n 6= m

If we shifted Tn(x) which defined on [−1, 1] to the interval [0, 1], then we change the variable x =
2t− 1, and we get T ∗n(t), the shifted Chebyshev polynomial defined by

T ∗n+1(t) = 2(2t− 1) T ∗n(t)− T ∗n−1(t), n = 1, 2, 3, · · · with T ∗0 (t) = 1, T ∗1 (t) = 2t− 1
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which are orthogonal with respect to the weight function ω∗(t) = 1/
√
t− t2 , that is:

∫ 1

0

ω∗(t) T ∗n(t) T ∗m(t) dt =


π n = m = 0

π/2 n = m 6= 0

0 n 6= m

Although the shifted Chebyshev polynomial of first kind has the following analytic form:

T ∗n(t) =
n∑
k=0

(−1)k
22n−2k n(2n− k − 1)!

k!(2n− 2)!
tn−k, n = 2, 3, · · · or

= n

n∑
k=0

(−1)n−k
22k (n+ k − 1)!

(2k)!(n− k)!
tn−k, n = 2, 3, · · ·

A function f(t), square integrable in [0, 1] , may be expressed in terms of shifted Chebyshev polyno-
mials as

f(t) =
∞∑
i=0

ci T
∗
i (t)

where the coefficients ci are given by

ci =

∫ 1

0

ω∗(t) f(t) T ∗i (t) dt, i = 0, 1, 2, · · ·

If we approximated f(t) by n−order shifted first kind Chebyshev polynomials as:

f(t) '
n∑
i=0

ci T
∗
i (t) = CT Φ(t)

such that CT is the (n + 1)−vector of constant, and Φ(t) is the (n + 1)× (n + 1) shifted first kind
Chebyshev vector, then the fractional derivative α > 0 of the shifted first kind Chebyshev polynomial
has been expressed in the next theorem.

Theorem 2.1. [2] Let Φ(t) be shifted first kind Chebyshev vector which defined by

Φ(t) =
(
T ∗0 (t) T ∗1 (t) · · · T ∗n(t)

)T
, then Dα Φ(t) = ∆α Φ(t)

where, ∆α is (m+1)× (m+1) operational matrix of fractional derivative with respect to the Caputo
sense and it is defined by

∆α =



0 0 · · · 0
...

... · · · ...
0 0 · · · 0

W0,0,i W0,1,i · · · W0,m,i
...

... · · · ...∑n−dαe
i=0 Wn−dαe,0,i

∑n−dαe
i=0 Wn−dαe,1,i · · ·

∑n−dαe
i=0 Wn−dαe,m,i

...
... · · · ...∑m

i=0 Wm,0,i

∑m
i=0 Wm,1,i · · ·

∑m
i=0 Wm,m,i


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Wn−dαe,j,i =
cj√
π

j∑
k=0

(−1)k+i22(j+n−k−i) n(2n− i− 1)!j(2j − k − 1)!Γ(n− i− α + j − k + 1
2
)

i!(2n− 2i)!k!(2j − 2k)!Γ(n− i− α + 1)Γ(n− i− α + k + 1)

where cj =

{
1 j = 0

2 j 6= 0
, n = dαe · · ·m

Now, it is time to construct the solution of non-constant coefficients nonlinear fractional order
partial differential equation to obtain an approximate solution of such equations by applying our tech-
nique in this section which conclude coupled the invariant subspace with the Chebyshev polynomial
for solving FPDE in the form:

m∑
j=1

λj(t)D
jα
t u = N

(
x, u,Dβ

x u,D
2β
x u, · · · , Dm1 β

x u
)

+ µDα
t

(
Dβ
x u
)

(2.1)

Subject to the initial conditions
Djα
t u(x, 0) = fj(x) (2.2)

where u = u(x, t), N is a non–linear operator; Djα
t u, j = 1, 2, · · · ,m; m ∈ N and Di β

x u, i =
1, 2, · · · ,m1; m1 ∈ N are Caputo time derivatives and Caputo space derivatives, respectively.
a < α ≤ a+ 1, b < β ≤ b+ 1, a, b ∈ N, µ ∈ R.
According to the invariant subspace method, which stated in Chapter 1, the exact solution of (2.1)
has the form

u(x, t) =
n∑
i=0

ki(t)φi(x) (2.3)

Where φi(x) are members of the invariant subspace In+1 = L{φ0(x), φ1(x), · · · , φn(x)} with N [u]

and ∂β

∂xβ
u. Then, if we approximate the k′is functions by the shifted first kind of Chebyshev polyno-

mials with order p, then we have

ki(t) =

p∑
ω=0

aiω Tω(t) = ATi Φ(t),

where Ai is a p+ 1 vector of constants and Φ(t) is a p Chebyshev function vector, so (2.3)

u(x, t) =
n∑
i=0

ki(t)φi(x) =
n∑
i=0

p∑
ω=0

aiω Tω(t) =
n∑
i=0

ATi Φ(t)φi(x).

Then the left hand side of (2.1) became

m∑
j=1

λj(t)D
jα
t u(x, t) =

m∑
j=1

λj(t)D
jα
t

n∑
i=0

ki(t)φi(x) =
m∑
j=1

λj(t)
n∑
i=0

Djα
t ATi Φ(t)φi(x)

=
n∑
i=0

m∑
j=1

λj(t)A
T
i ∆jα Φ(t) φi(x)

(2.4)

where ∆jα is the approximate matrix operation of the jα fractional Caputo derivative.
Since there are 2n+ 2 functions ψ0, ψ1, · · · , ψn; ψn+1, ψn+2, · · · , ψ2n+1

ψi = ψi

(
k0(t), k1(t), · · · , kn(t)

)
, i = 0, 1, 2, · · · , 2n+ 2 such that
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N [u] = N
( n∑
i=0

ki(t)φi(x)
)

=
n∑
i=0

Ai Φ(t) φi(x) =
n∑
i=0

ψi φi(x)

Dβ
x u(x, t) =

n∑
i=0

ψn+1+i φi(x)

where {ψ0, ψ1, · · · , ψn}, {ψn+1, ψn+2, · · · , ψ2n+1}are the expansion coefficients of N [u], Dβ
x u respec-

tively with respect to {φ0(x), φ1(x), · · · , φn(x)}. Thus

N [u] + µDα
t

(
Dβ
x u
)

=
n∑
i=0

ψi φi(x) + µDα
t

( n∑
i=0

ψn+1+i φi(x)
)

=
n∑
i=0

ATi Φ(t) φi(x) + µ
n∑
i=0

ATi ∆α Φ(t) φi(x)

=

[
n∑
i=0

ATi Φ(t) + µ
n∑
i=0

ATi ∆α Φ(t)

]
φi(x)

(2.5)

Substitute (2.4) and (2.5) in (2.1), we get

n∑
i=0

[
m∑
j=1

λj(t)A
T
i ∆jα Φ(t)

]
φi(x) =

n∑
i=0

[
ATi Φ(t) + µATi ∆α Φ(t)

]
φi(x)

Since φi(x) are linearly independent, we get the following ordinary fractional differential system with
variable coefficients

m∑
j=1

λj(t)Ai ∆jα Φ(t) = ATi Φ(t) + µATi ∆α Φ(t) i = 0, 1, · · · , n (2.6)

Subject to the initial conditions which can be derives from (2.2).
To solve this algebraic system i.e ”finding the A′is” vector, we must construct p + 1 algebraic
equation, however these equations arises from the substitute the roots of the polynomial T ∗p−dαe+1(t)

in (2.6) for each i, and dαe equations produced from the initial conditions.
For simplify our work, we’ll applying the following Algorithm steps.

Algorithm Steps

Step 1 : Choose a suitable invariant space for our problem.

Step 2 : Specify the order of the approximate Chebyshev polynomial.

Step 3 : Derive the approximate formulation of coefficient variable (FPDEs) by using
invariant subspace shifted first kind Chebyshev method (CISM) in (2.6).

Step 4 : Derive the initial conditions for the system in Step 3, by using (2.2).

Step 5 : Compute the solution of the system formulating in Step 3. And then for origin
problem.

Step 6 : Check the efficient and convergent of the numerical solution with the exact
solution of ordinary partial differential equation by using different fractional
orders of (2.6).
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2.1. Illustrative Numerical Examples

In this section, we give some numerical examples to clear the applicability and accuracy of the
proposed method.

Example 2.2. Consider the following nonlinear fractional order partial differential equation with
variable coefficients

tα Dα
t u =

(
Dβ
x D

β
x u
)2
− u2, 1 < α ≤ 2, 0 < β ≤ 1 (2.7)

u(x, 0) = 0, ut(x, 0) = Eβ(xβ). (2.8)

The exact solution is u(x, t) = tEβ(xβ)

Solution:

Step1: Let I2 = {1, Eβ(xβ)} be an invariant subspace under the operator N [u] =
(
Dβ
x D

β
x u
)2
−u2,

as for u = a + b Eβ(xβ) ∈ I2, we have

N [u] =
(
bEβ(xβ)

)2
−
(
a + bEβ(xβ)

)2
= −a2 − 2 a b Eβ(xβ) ∈ I2

Step 2: For the p = 4 order of the shifted Chebyshev polynomial of the first kind, the approximate
solution of (2.7) has the form

u(x, t) =
1∑
i=0

ki(t)φi(x) =
1∑
i=0

ATi Φ(t) φi(x), with

k0(t) = AT0 Φ(t) = AT Φ(t), k1(t) = AT1 Φ(t) = BT Φ(t)

where AT =
(
a0 a1 a2 a3 a4

)
, BT =

(
b0 b1 b2 b3 b4

)
and ΦT (t) =

(
1 2t− 1 8t2 − 8t+ 1 32x3 − 48x2 + 18x− 1 128x4 − 256x3 + 160x2 − 32x+ 1

)
Step3: According to the discussion in section 2, we have the following ordinary FDEs with variable
coefficients

tα AT∆α Φ(t) = −
(
AT Φ(t)

)2
(2.9a)

tα BT∆α Φ(t) = −2 AT Φ(t) BT Φ(t) (2.9b)

Step4: Subject to the following initial conditions, which derived from (2.8)

u(x, 0) = k0(0) + k1(0) Eβ(xβ) = 0 =⇒ k0(0) = k1(0) = 0

ut(x, 0) = ḱ0(0) + ḱ1(0) Eβ(xβ) = Eβ(xβ) =⇒ ḱ0(0) = 0, ḱ1(0) = 1
(2.10)

Step5: Operational matrix of fractional derivative of order α = 1.5 in the Caputo sense. is

∆1.5 =


0 0 0 0 0
0 0 0 0 0
0 3.8312 −0.7662 0.3284 −0.1824
0 −10.7273 6.3488 −2.1649 1.1477
0 −2.7731 −23.1088 8.6907 −4.1169


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By using the first root tr = 0.5, 0.933, 0.067 of the polynomial T ∗p+1−dαe(t) = T ∗3 (t), together (2.10),

Equation (2.9a) reads

(a0 − a2 + a4)
2 + 0.206a2 + 6.714a4 − 1.839a3 = 0(

a0 − 0.866a1 + 0.5a2 − 0.5a4

)2
− 0.063a2 + 0.206a3 − 0.123a4 = 0(

a0 − 0.866a1 + 0.499a2 − 0.50a4

)2
+ 2.727a2 − 6.029a3 − 10.721a4 = 0

a0 − a1 + a2 − a3 + a4 = 0

2a1 − 8a2 + 18a3 − 32a4 = 0

Hence, the solution of equation (2.9a) is k0(t) = AT Φ(t) = 0.
By the same manipulate, for (2.9b) we have the following algebraic system

0.2064b2 − 1.8389b3 + 6.7147b4 = 0

2.727b2 − 6.0288b3 + 10.7207b4 = 0

−0.0657b2 − 1.8389b3 − 0.1143b4 = 0

b0 − b1 + b2 − b3 + b4 = 0

2b1 − 8b2 + 18b3 − 32b4 = 1

Solving this system yields BT =
(
1/2 1/2 0 0 0

)
, Consequently, the approximate solution of

(2.9b) is

k1(t) = BT Φ(t) = b0(1) + b1

(
2t− 1

)
+ b2

(
8t2 − 8t+ 1

)
+ b3

(
32x3 − 48x2 + 18x− 1

)
+ b4

(
128x4 − 256x3 + 160x2 − 32x+ 1

)
= 1/2 + t− 1/2 = t.

Also, for other values of α ∈ (1, 2], and other order of Chebyshev polynomials (p), we have the
same solution.
Finally, the approximate solution of the original equation (2.7) obtain by CISM is given by

u(x, t) = k0(t) + k1(t)Eβ(xβ) = AT Φ(t) +BT Φ(t) Eβ(xβ) = t Eβ(xβ)

which is exact solution in this case.

Example 2.3. Consider the following nolinear fractional partial differential equation with variable
coefficients(

1− tα
)
Dα
t u =

(
Dβ
xu
)2
− Γ(1 + 2β)

Γ2(1 + β)
u
(
Dβ
x D

β
xu
)

1 < α ≤ 2, 0 < β ≤ 1. (2.11)

u(x, 0) = 0, ut(x, 0) = x2β

The exact solution is u(x, t) = t x2β
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Solution:
Step1: By consider I3 = L{1, xβ, x2β} be an invariant subspace under the nonlinear operator

N [u] =
(
Dβ
xu
)2
− Γ(1 + 2β)

Γ2(1 + β)
u Dβ

x D
β
xu

=
(

Γ(1 + β) b+
Γ(1 + 2β)

Γ(1 + β)
xβ
)2
− Γ(1 + 2β)

Γ2(1 + β)

(
a + b xβ + c x2β

)
Γ(1 + 2β) c

=
(

Γ(1 + β)2 b2 − Γ2(1 + 2β)

Γ2(1 + β)
a c
)

+
(

2Γ(1 + 2β)− 2Γ2(1 + 2β)

Γ2(1 + β)

)
b c xβ ∈ I3

whenever u = a+ b xβ + c x2β ∈ I3

Step2: For the p = 4, order of the shifted Chebyshev polynomial of the first kind, the approximate
solution of (2.11) has the form

u(x, t) =
2∑
i=0

ki(t)φi(x) =
2∑
i=0

ATi Φ(t) φi(x)

with
k0(t) = AT0 Φ(t) = AT Φ(t), k1(t) = AT1 Φ(t) = BT Φ(t)

where AT =
(
a0 a1 a2 a3 a4

)
, BT =

(
b0 b1 b2 b3 b4

)
and ΦT (t) =

(
1 2t− 1 8t2 − 8t+ 1 32x3 − 48x2 + 18x− 1 128x4 − 256x3 + 160x2 − 32x+ 1

)
Step3: According to the discussion in section 2, we have the following ordinary FDEs with variable
coefficients(

1− tα
)
AT∆α Φ(t) = Γ2(1 + β)

(
BT Φ(t)

)2
− Γ2(1 + 2β)

Γ2(1 + β)
AT Φ(t) CT Φ(t) (2.12a)(

1− tα
)
BT∆α Φ(t)) =

[
2Γ(1 + β)− Γ2(1 + 2β)

Γ2(1 + β)

]
BT Φ(t) CT Φ(t) (2.12b)(

1− tα
)
CT∆α Φ(t) = 0 (2.12c)

Step4: Subject to

u(x, 0) = 0 =⇒ k0(0) + k1(0) xβ + k2(0) x2β = 0 =⇒ k0(0) = k1(0) = k2(0) = 0

ut(x, 0) = x2β =⇒ ḱ0(0) + ḱ1(0) xβ + ḱ2(0) x2β = x2β =⇒ ḱ0(0) = ḱ1(0) = 0, ḱ2(0) = 1
(2.13)

Step5: On the other hand, operational matrix of fractional derivative of order α = 1.6 in the Caputo
sense is

∆1.6 =


0 0 0 0 0
0 0 0 0 0
0 3.501 −0.8753 0.4119 −0.2434
0 −7.8774 6.7962 −2.682 1.5227
0 −14.0483 −23.1921 10.4168 −5.4133


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Then, by using t = 0.5, 0.933, 0.06699 the roots of the polynomial T ∗p+1−dαe(t) = T ∗3 (t), together

with equations (2.13), and (2.12c) gives

0.4235c2 − 3.5339c3 + 11.914c4 = 0

0.2852c2 − 0.4396c3 − 2.2112c4 = 0

−3.3035c2 + 9.3333c3 + 3.2343c4 = 0

c0 − c1 + c2 − c3 + c4 = 0

2c1 − 8c2 + 18c3 − 32c4 = 1

Solving this system to get CT =
(
1/2 1/2 0 0 0

)
, and the approximate solution of (2.12c) is

CTΦ(t) = c0(1) + c1(2t− 1) + c2(8t
2 − 8t+ 1) + c3(32x3 − 48x2 + 18x− 1)

+ c4(128x4 − 256x3 + 160x2 − 32x+ 1) =
1

2
+

1

2
(2t− 1) = t

For β = 0.6, (2.12b) together with (2.13) yields

0.5567b2 − 0.1332b0 − 3.5339b3 + 11.7807b4 = 0

0.161b2 − 0.2486b0 − 0.4396b3 − 2.0868b4 − 0.2153b1 = 0

3.3125b2 − 0.0179b0 + 9.3333b3 + 3.24324 + 0.0155b1 = 0

b0 − b1 + b2 − b3 + b4 = 0

2b1 − 8b2 + 18b3 − 32b4 = 0.

This gives the zero vector B. So, the solution of (2.12b) is zero, i.e BTΦ(t) = 0.
By the same way, we can have A is the zero vector. And the solution of (2.12a) is ATφ(t) = 0.
Finally, the solution of the original equation (2.11) is

u(x, t) = c0(t) + c1(t) x
β + c2(t) x

2β = AT Φ(t) +BT Φ(t) xβ + CT Φ(t) x2β = t x2β

which is the exact solution.

Example 2.4. Consider the following non-linear fractional partial differential equation with variable
coefficients

t2α

(
Dα
t −D2α

t

)
u =

(
Dβ
x u

)2

− 2u Dβ
x u, 0 < α, β ≤ 1. (2.14)

Subject to
u(x, 0) = Eβ(2xβ), ut(x, 0) = Eβ(2xβ) e2x+t (2.15)

Solution:
Step1: By consider I2 = L{1, Eβ(2xβ)} be an invariant subspace under the nonlinear operator

N [u] =

(
Dβ
x u

)2

− 2u Dβ
x ,
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since for u = a+ b Eβ(2xβ) ∈ I2

N [u] =

(
Dβ
x u

)2

− 2u Dβ
x =

(
2 b Eβ(2xβ)

)2

− 2

(
a+ b Eβ(2xβ)

)
(2 b Eβ(2xβ)

= −4 a b Eβ(2xβ) ∈ I3

Step2: For the p = 2, order of the shifted Chebyshev polynomial of the first kind, the approximate
solution of (2.14) has the form

u(x, t) =
1∑
i=0

ki(t)φi(x) =
1∑
i=0

ATi Φ(t) φi(x)

with
k0(t) = AT0 Φ(t) = AT Φ(t), k1(t) = AT1 Φ(t) = BT Φ(t)

where AT =
(
a0 a1 a2

)
, BT =

(
b0 b1 b2

)
and ΦT (t) =

(
1 2t− 1 8t2 − 8t+ 1

)
Step 3: According to the discussion in section 2, we have the following ordinary FDEs with variable
coefficients

AT ∆α Φ(t) + AT ∆2α Φ(t) = 0 (2.16a)

BT ∆α Φ(t) + BT ∆2α Φ(t) + 4 AT Φ(t) BT Φ(t) = 0 (2.16b)

Case 1: α ∈ (0, 0.5]
Step4: Subject to the following initial conditions which can be derive from (2.15)

u(x, 0) = k0(0) + k1(0) Eβ(xβ) = Eβ(xβ) =⇒ k0(0) = 0, k1(0) = 1

ut(x, 0) = k̇0(0) + k̇1(0) Eβ(xβ) = Eβ(xβ) =⇒ k̇0(0) = 0, k̇1(0) = 1
(2.17)

Step 5: Operational matrix of fractional derivative of order α = 0.35 in the Caputo sense. is

∆0.35 =

0 0 0
0 1.0238 −0.1352
0 −1.3611 1.0278

 , ∆0.7 =

0 0 0
0 0.7528 −0.2291
0 0.48 1.2338


By using t = 0.8536, 0.1464 the roots of the polynomial T ∗p+1−d2αe(t) = T ∗2 (t), then

For (2.16a), with (2.17) we have

0.1917 a1 + 1.3021 a2 = 0

1.302 a2 − 0.1917a1 = 0

a0 − a1 + a2 = 0

Solving this system yields A is a zero vector.
For (2.16b), we have the following algebraic system

0.192 b1 − 1.302 b2 = 0

−0.192 b1 + 1.302 b2 = 0

b0 − b1 + a2 = 1
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Solving this system to get BT =
(
1 0 0

)
, and the solution of equation (2.16b) is BT Φ(t) = 1

So, in this case the approximate solution of the original equation (2.14) is as following

u(x, t) = k0(t) + k1(t) Eβ(2xβ) = AT Φ(t) + BT Φ(t) = Eβ(2xβ)

Case 2: α ∈ (0.5, 1]
Operational matrix of fractional derivative of order α = 0.6 in the Caputo sense. is

∆1.2 =

0 0 0
0 0 0
0 4.1507 −0.2965

 , ∆0.6 =

0 0 0
0 0.8753 −0.2188
0 −0.2188 1.2614


By using t = 0.5, the root of the polynomial T ∗p+1−d2αe(t) = T ∗1 (t), then for(2.16a), together (2.17),

we have the same solution in case 1.
For (2.16b), the following algebraic system

0.219 b1 − 1.558 b2 = 0

2b1 − 8b2 = 1

b0 − b1 + b2 = 1

gives BT =
(
1.981 1.141 0.16

)
, thus the solution of (2.16b) is BT Φ(t) = 1 + t+ 1.282 t2.

So, the approximate solution of (2.14) in this case is

u(x, t) = k0(t) + k1(t) Eβ(2xβ) =
(

1 + t+ 1.282 t2
)
Eβ(2xβ), and

for α = 0.95, u(x, t) = k0(t) + k1(t) Eβ(2xβ) =
(

1 + t+ 0.528 t2
)
Eβ(2xβ),

for α = 0.75, u(x, t) = k0(t) + k1(t) Eβ(2xβ) =
(

1 + t+ 0.851 t2
)
Eβ(2xβ).

Exact solution and some of approximate solutions for (2.14) are plotted in Figure 1.

3. Conclusion

The technique CISM which applies in this work for solving some linear and nonlinear space, time,
and mixed fractional partial differential equations is a sufficient and important tool for which it
sometimes gives the exact solution for such equations dependent on α− fractional order of Caputo
derivative. On the other hand, the approximated solutions resulting from which done by Mathcad
and Maple programs are very accurate.
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