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Abstract

In this paper, we establish some common fixed point theorems of a new class of compatible mappings
satisfying an implicit relation via inverse C-class function.
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1. Introduction and Preliminaries

In 1922, Stephen Banach [5] established a fixed point theorem using Picard iteration known as
“Banach contraction principle”, which is one of important result and it is widely used fixed point
theorem not only in mathematical analysis but also in other related branch of applied Sciences. In
1976, Jungck [9] established existence theorems of common fixed point of two commuting mappings
by extending Banach contraction principle. Sessa [20] introduced a weaker hypothesis than commu-
tativity, called weak commutativity of two mappings and generalized the results of Jungck[9] and
Daneš [6]. In 1986, Jungck [10] generalized the notion of commutativity and weak commutativity
by introducing the notion of compatible mappings. Further in 1998, Jungck and Rhoades [12] in-
troduced the weaker form of compatibility named weak compatibility. In 2008, Al-Thagafi et al. [2]
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introduced other weaker form of compatible mappings by introducing notion of occasionally weakly
compatible (in short, owc) and proved that weakly compatible mappings are owc, but converse is
not true in general. On the other hand, many authors also introduced different types of compatible
and non compatible mappings to prove common fixed point theorems (for more details and their
relationship, we refer to Jungck et al. [11], Pathak and Khan [17, 18], Pathak et al.[15], Pathak et
al. [16], Singh and Singh[21, 22] and references therein).

In this paper, we establish the existence of common fixed point theorems for six mappings using
a new class of compatible mappings satisfying with an implicit relation via inverse C-class function.
Let A,B and T be self mappings on a metric space (X, d).

Definition 1.1. [10] A pair (A,B) on a metric space (X, d) is called compatible mappings if

lim
n→+∞

d(ABx,BAxn) = 0,

whenever {xn} is a sequence in X such that limn→+∞ Axn = limn→+∞ Bxn = w, for some w ∈ X.

Definition 1.2. [18] A pair (A,B) on a metric space (X, d) is called A-compatible if

lim
n→+∞

d(ABx,BBxn) = 0,

whenever {xn} is a sequence in X such that limn→+∞ Axn = limn→+∞ Bxn = w, for some w ∈ X.

Definition 1.3. [18] A pair (A,B) on a metric space (X, d) is called B-compatible if

lim
n→+∞

d(BAx,AAxn) = 0,

whenever {xn} is a sequence in X such that limn→+∞ Axn = limn→+∞ Bxn = w, for some w ∈ X.

Definition 1.4. [12] A pair (A,B) on a metric space (X, d) is called weakly compatible if they
commute at their coincidence points i.e., Aw = Bw implies ABw = BAw , for some w ∈ X.

We define the notion of ST -compatible mappings.

Definition 1.5. [14] A pair (A,B) is said to be compatible w.r.t T (in short, ST -compatible) if there
exists a sequence {xn} in X such that

lim
n→+∞

T xn = w and lim
n→+∞

AT xn = lim
n→+∞

BT xn = T w,

for some w ∈ X.

Example 1.6. Let X = R with usual metric d(x, y) = |x − y|, for all x, y ∈ X. Define A,B, T :
X → X as Ax = 2x, Bx = 3 − x and T x = x + 1, for all x ∈ X. Consider a sequence {xn} in X,
where xn = 1

3
+ ϵn, n ∈ N and ϵn → 0 as n → +∞, then limn→+∞ T xn = 4

3
= w(say). Moreover,

limn→+∞ AT xn = limn→+∞ BT xn = 8
3
̸= T w = T 4

3
= 7

3
. On the other hand, let {yn} be a sequence

in X, defined by yn = 1
n
, n ∈ N, then limn→+∞ T yn = 1 = w ∈ X and T w = 2. Also we have,

limn→+∞ AT yn = limn→+∞ BT yn = 2 = T w. Therefore, the pair (A,B) is ST -compatible for the
sequence {yn} in X.
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Example 1.7. Let X = [0,∞) with usual metric d(x, y) = |x − y|. Define A,B, T : X → X as
Ax = x, Bx = x2, T x = 3x, for all x ∈ X. Consider a sequence {xn} in X, where xn = 1

n
,

n ∈ N. Then limn→+∞ T xn = 0 and also limn→+∞ AT xn = limn→+∞ BT xn = T0. Moreover, if
{yn} be a sequence in X such that yn → 1

3
as n → +∞. Then, limn→+∞ T yn = 1 = w(say) and

limn→+∞ AT yn = limn→+∞ BT yn = 1 ̸= 3 = T w. Therefore, the pair (A,B) is ST - compatible for
the sequence {xn} in X.

We define the above definition for a pair of mappings (A,B) on a metric space (X, d) as follows:

Definition 1.8. A pair (A,B) is said to be SA-compatible if there exists a sequence {xn} in X such
that limn→+∞ Axn = w and limn→+∞ AAxn = limn→+∞ BAxn = Aw, for some w ∈ X.

Definition 1.9. A pair (A,B) is said to be SB-compatible if there exists a sequence {xn} in X such
that limn→+∞ Bxn = w and limn→+∞ ABxn = limn→+∞ BBxn = Bw, for some w ∈ X.

Example 1.10. Let X = [1,∞) with usual metric d. Define self mappings A,B : X → X as:

Ax =

{
2x− 1, x ∈ [1, 2)

4, x ∈ [2,∞)
; Bx =

{
3x− 1, x ∈ [1, 2)

x+ 2, x ∈ [2,∞).

Choose xn = 1 + ϵn, n ∈ N, where ϵn → 0 as n → +∞, then limn→+∞ Bxn = 2 = w(say). Also
limn→+∞ ABxn = limn→+∞ BBxn = 4 = Bw, then (A,B) is SB–compatible.

Example 1.11. Let X = [1,∞) with usual metric d. Define self mappings A,B : X → X as:

Ax =

{
1, x ∈ [1, 2)

3, x ∈ [2,∞)
; Bx =

{
x+ 1, x ∈ [1, 2)
x+4
2
, x ∈ [2,∞).

Choose xn = 1+ ϵn in X such that ϵn → 0 as n → +∞, then limn→+∞ Bxn = 2 = w(say). Moreover
limn→+∞ ABxn = 3 = Bw. Since limn→+∞ BBxn = Bw = 3 as B is continuous. Then (A,B) is
SB-compatible.

Proposition 1.12. Let A and B be self mappings of a metric space (X, d).
(i) If (A,B) is compatible (resp. B-compatible) and A is continuous, then the pair (A,B) is SA-
compatible;
(ii) If (A,B) is compatible (resp. A-compatible) and B is continuous, then the pair (A,B) is SB-
compatible.

Proof . (i) Suppose(A,B) is compatible, then limn→∞ d(ABxn,BAxn) = 0 whenever {xn} is a
sequence in X such that limn→∞ Axn = limn→∞ Bxn = w, for some w ∈ X. By continuity of A, we
have limn→∞AAxn = limn→∞ABxn = Aw and consequently, we have limn→∞ BAxn = Aw. Thus,
(A,B) is SA-compatible. Again suppose that (A,B) is B-compatible, then limn→∞ d(BAxn,AAxn) =
0, whenever {xn} is a sequence in X such that limn→∞ Axn = limn→∞ Bxn = w, for some w ∈ X.
Since A is continuous, then limn→∞AAxn = Aw. Thus, limn→∞AAxn = limn→∞ BAxn = Aw.
Therefore, (A,B) is SA-compatible.
(ii) Similarly, one can prove as in (i). □

Definition 1.13. [3] A continuous function K : [0,∞)× [0,∞) → R is called a C-class function if
for any s, t ∈ [0,∞), the following conditions holds:
(i) K(s, t) ≤ s;
(ii) K(s, t) = s implies s = 0 or t = 0.
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Definition 1.14. [19] A continuous function F : [0,∞)× [0,∞) → R is called an inverse C-class
function if for any s, t ∈ [0,∞), the following conditions holds:
(i) F (s, t) ≥ s;
(ii) F (s, t) = s implies s = 0 or t = 0.

Denote Cinv, the set of all inverse C-class functions. For more examples on C-class and inverse
C-class functions, we refer to Ansari [3] and Saleem et al.[19].

Definition 1.15. [13] A function φ : [0,∞) → [0,∞) is called an altering distance if φ is continu-
ous, non-decreasing and φ(0) = 0.

Definition 1.16. [3] A function φ : [0,∞) → [0,∞) is called an ultra altering distance if φ is
continuous, φ(t) > 0, for all t > 0 and φ(0) ≥ 0. We denote Φu, the set of all ultra altering distance
functions.

An implicit relation, which was used by Djoudi[7, 8] is as follows:
Let R+ be the set of all non-negative real numbers and g be the set of all continuous functions
g(t1, t2, ..., t6) : R6

+ → R that satisfies the following conditions:
(g1) : g is non decreasing in variables t5 and t6;
(g2): There exists h ∈ (1,∞) such that for every u, v ≥ 0 with
(g2a) : g(u, v, u, v, u+ v, 0) ≥ 0, or (g2b) : g(u, v, v, u, 0, u+ v) ≥ 0, we have u ≥ hv;
(g3) : g(u, u, 0, 0, u, u) < 0, for every u > 0.

Example 1.17. Define g(t1, t2, ..., t6) = 1− t2(h+1)
max{t1, t2, t3, t4, t5+t6} , where h ∈ (1,∞).

(g1): It is obvious;
(g2): Let u, v ∈ R+, for h ∈ (1,∞), we have

(g2a): g(u, v, u, v, u+ v, 0) = 1− v(h+1)
max{u,v,u,v,u+v} = 1− v(h+1)

u+v
≥ 0, then u ≥ hv;

(g2b): g(u, v, v, u, 0, u+ v) = 1− v(h+1)
max{u,v,v,u,0,u+v} = 1− v(h+1)

u+v
≥ 0, then u ≥ vh,

(g3): g(u, u, 0, 0, u, u) = 1− u(h+1)
max{u,u,0,0,2u} = 1− u(h+1)

2u
< 0, for all u > 0.

Example 1.18. Define g(t1, t2, ..., t6) = at1 − bt2 + c(t3 + t4)−min{t3, t5t6}, where 0 < c < b−a
2

and
h = b−c

a+c
> 1.

(g1): It is obvious;
(g2): For u, v ≥ 0 and h ∈ (1,∞), we have
(g2a):g(u, v, u, v, u+ v, 0) = au− bv + c(u+ v) ≥ 0, then u ≥ hv;
(g2b): g(u, v, v, u, 0, u+ v) = au− bv + c(u+ v) ≥ 0, then u ≥ hv;
(g3): g(u, u, 0, 0, u, u) = au− bu = −(b− a)u < 0, for all u > 0.

For more examples and fixed point results, we refer to Akkouchi[1] and Djoudi [7, 8] and references
therein. Motivated by Ansari et al.[4], we extend an implicit relation of Djoudi [7, 8] by using the
inverse C-class function.
Let GC be the set of all continuous functions G(t1, t2, ..., t6) : R6

+ → R satisfying the conditions:
(G1): G is non decreasing in variables t5 and t6;
(G2): There exists F ∈ Cinv such that for every u, v ≥ 0 with
(G2a) : G(u, v, u, v, u+ v, 0) ≥ 0, or (G2b) : G(u, v, v, u, 0, u+ v) ≥ 0, we have u ≥ F (v, φ(v));
(G3) : G(u, u, 0, 0, u, u) < 0, for every u > 0.
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2. Main Results

Theorem 2.1. Let (X, d) be a complete metric space and A,B,P , T ,F , I : X → X be self mappings
that satisfy the conditions:
(i) A and B are surjective;
(ii) there exists G ∈ GC such that

G
(
d(Ax,By), d(PFx, T Iy), d(Ax,PFx), d(By, T Iy), d(Ax, T Iy),

d(By,PFx)
)
≥ 0

for all x, y ∈ X;
(iii) (B, T I) is SA-compatible and (A,PF) is SB-compatible.
Then A, B, PF and T I have a common fixed point in X.
Further, if the pairs (A,F), (P ,F), (B, I), and (T , I) are commuting at common fixed points of
A, B, PF and T I. Then A, B, P , T , F and I have a unique common fixed point in X.

Proof . Let x0 ∈ X be an arbitrary. Since A is surjective, there exists x1 ∈ X such that Ax1 =
T Ix0 = y0. For x1 ∈ X and B is surjective, there exists x2 ∈ X such that Bx2 = PFx1 = y1.
Similarly, we can choose x3, x4 ∈ X such that Ax3 = T Ix2 = y2 and Bx4 = PFx3 = y3. Inductively,
we can construct two sequences {xn} and {yn} in X such that

y2n = Ax2n+1 = T Ix2n; y2n+1 = Bx2n+2 = PFx2n+1, where n ∈ N.

By condition (ii), we obtain

G
(
d(Ax2n+1,Bx2n+2), d(PFx2n+1, T Ix2n+2), d(Ax2n+1,PFx2n+1),

d(Bx2n+2, T Ix2n+2), d(Ax2n+1, T Ix2n+2), d(Bx2n+2,PFx2n+1)
)
≥ 0

G
(
d(y2n, y2n+1), d(y2n+1, y2n+2), d(y2n, y2n+1), d(y2n+1, y2n+2), d(y2n, y2n+2), d(y2n+1, y2n+1)

)
≥ 0

G
(
d(y2n, y2n+1), d(y2n+1, y2n+2), d(y2n, y2n+1), d(y2n+1, y2n+2), d(y2n, y2n+2), 0

)
≥ 0.

By triangle inequality, we have d(y2n, y2n+2) ≤ d(y2n, y2n+1) + d(y2n+1, y2n+2). Then by (G1), we
obtain

G
(
d(y2n, y2n+1), d(y2n+1, y2n+2), d(y2n, y2n+1), d(y2n+1, y2n+2),

d(y2n, y2n+1) + d(y2n+1, y2n+2), 0
)
≥ 0.

By using (G2a), we obtain

d(y2n, y2n+1) ≥ F
(
d(y2n+1, y2n+2), φ(d(y2n+1, y2n+2))

)
. (2.1)

Therefore,

d(y2n+1, y2n+2) ≤ d(y2n, y2n+1).
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Similarly, we can show that

d(y2n+2, y2n+3) ≤ d(y2n+1, y2n+2).

Therefore, {d(yn, yn+1)}, where n ∈ N is even or odd, is a monotone decreasing sequence and there
exists r ≥ 0 such that limn→+∞ d(yn, yn+1) = r. Now we claim that limn→+∞ d(yn, yn+1) = 0,
otherwise by (2.1) letting with n → +∞, we obtain

r ≥ F (r, φ(r)) ≥ r ⇒ F (r, φ(r)) = r ⇒ r = 0, or φ(r) = 0 ⇒ r = 0.

This is a contradiction. Therefore, limn→+∞ d(yn, yn+1) = 0. In order to show {yn} is a Cauchy
sequence in X, it is sufficient to show that subsequence {y2n} is Cauchy. Suppose on contrary that
{y2n} is not a Cauchy sequence, then there exists a number ϵ > 0, and integers (2m)k and (2n)k
such that (2m)k > (2n)k ≥ k, for each even integer k satisfying d(y(2m)k , y(2n)k) > ϵ. Further assume
that (2m)k is the smallest even integer greater that (2n)k, for each even interger k, then we obtain
d(y(2m)k−2, y(2n)k) < ϵ.
By triangular inequality, we obtain

ϵ ≤ d(y(2m)k , y(2n)k) ≤d(y(2m)k , y(2m)k−2) + d(y(2m)k−2, y(2n)k)

<ϵ+ d(y(2m)k , y(2m)k−1) + d(y(2m)k−1, y(2m)k−2)

Letting limit as k → +∞, we obtain

lim
k→+∞

d(y(2m)k , y(2n)k) = ϵ. (2.2)

Also by triangular inequality, we obtain

d(y(2m)k , y(2n)k) ≤d(y(2m)k , y(2m)k+1) + d(y(2m)k+1, y(2n)k−1) + d(y(2n)k−1, y(2n)k).

Letting limit as k → +∞, we obtain

ϵ ≤ lim
k→+∞

d(y(2m)k+1, y(2n)k−1) (2.3)

On the other hand, we obtain

d(y(2m)k+1, y(2n)k−1) ≤ d(y(2m)k+1, y(2m)k) + d(y(2m)k , y(2n)k) + d(y(2n)k , y(2n)k−1)

Letting limit as k → +∞, we obtain

lim
k→+∞

d(y(2m)k+1, y(2n)k−1) ≤ ϵ. (2.4)

From (2.3) and (2.4), we obtain

lim
k→+∞

d(y(2m)k+1, y(2n)k−1) = ϵ. (2.5)

Similarly, by triangular inequality, we obtain

d(y(2m)k+1, y(2n)k−1) ≤d(y(2m)k+1, y(2n)k) + d(y(2n)k , y(2n)k−1)

≤d(y(2m)k+1, y(2m)k) + d(y(2m)k , y(2n)k) + d(y(2n)k , y(2n)k−1).
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Letting limit as k → +∞ with (2.2) and (2.5), we obtain

ϵ ≤ lim
k→+∞

d(y(2m)k+1, y(2n)k) ≤ ϵ ⇒ lim
k→+∞

d(y(2m)k+1, y(2n)k) = ϵ (2.6)

Also, we obtain

d(y(2m)k+1, y(2n)k−1) ≤d(y(2m)k+1, y(2m)k) + d(y(2m)k , y(2n)k−1)

≤d(y(2m)k+1, y(2m)k) + d(y(2m)k , y(2n)k) + d(y(2n)k , y(2n)k−1).

Letting limit as k → +∞ with (2.2) and (2.5), we obtain

ϵ ≤ lim
k→+∞

d(y(2m)k , y(2n)k−1) ≤ ϵ ⇒ lim
n→+∞

d(y(2m)k , y(2n)k−1) = ϵ. (2.7)

Now from condition (ii), we obtain

G
(
d(Ax(2m)k+1,Bx(2n)k), d(PFx(2m)k+1, T Ix(2n)k), d(Ax(2m)k+1,PFx(2m)k+1), d(Bx(2n)k , T Ix(2n)k),

d(Ax(2m)k+1, T Ix(2n)k), d(Bx(2n)k ,PFx(2m)k+1)
)
≥ 0

G
(
d(y(2m)k , y(2n)k−1), d(y(2m)k+1, y(2n)k), d(y(2m)k , y(2m)k+1), d(y(2n)k−1, y(2n)k), d(y(2m)k , y(2n)k),

d(y(2n)k−1, y(2m)k+1)
)
≥ 0

Letting limit as k → +∞ with (2.2), (2.5), (2.6) and (2.7), we obtain

G(ϵ, ϵ, 0, 0, ϵ, ϵ) ≥ 0.

This is a contradiction to (G3) for ϵ > 0. Therefore, {yn} is a Cauchy sequence in X. Since
X is complete metric space, the sequence {yn} converges to a point w ∈ X. Consequently, the
subsequences {Ax2n+1}, {Bx2n+2}, {PFx2n+1} and {T Ix2n} also converge to w ∈ X.
From (iii), (B, T I) is SA-compatible, we obtain

lim
n→∞

BAx2n+1 = lim
n→∞

T IAx2n+1 = Aw.

We show Aw = w, otherwise by condition (ii), we obtain

G
(
d(Ax2n+1,BAx2n+1), d(PFx2n+1, T IAx2n+1), d(Ax2n+1,PFx2n+1),

d(BAx2n+1, T IAx2n+1), d(Ax2n+1, T IAx2n+1), d(BAx2n+1,PFx2n+1)
)
≥ 0.

Taking limit as n → +∞, we obtain

G
(
d(w,Aw), d(w,Aw), d(w,w), d(Aw,Aw), d(w,Aw), d(Aw,w)

)
≥0

G
(
d(w,Aw), d(w,Aw), 0, 0 , d(w,Aw), d(w,Aw)

)
≥0.

This is a contradiction to (G3) for Aw ̸= w and hence, Aw = w.
To show that PFw = Aw, by condition (ii), we obtain

G
(
d(Aw,Bx2n), d(PFw, T Ix2n), d(Aw,PFw), d(Bx2n, T Ix2n), d(Aw, T Ix2n), d(Bx2n,PFw)

)
≥ 0.
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Taking limit as n → +∞, we obtain,

G
(
d(Aw,w), d(PFw,w), d(Aw,PFw), d(w,w), d(Aw,w), d(w,PFw)

)
≥ 0

G
(
0, d(PFw,Aw), d(Aw,PFw), 0, 0, d(Aw,PFw)

)
≥ 0.

By virtue of (G2b), we obtain

0 ≥ F
(
d(PFw,Aw), φ(d(PFw,Aw))

)
≥ d(PFw,Aw)

yields that PFw = Aw.
Also from (iii), (A,PF) is SB- compatible, then

lim
n→∞

ABx2n = lim
n→∞

PFBx2n = Bw.

We claim that Bw = w, otherwise by condition (ii), we obtain

G
(
d(ABx2n,Bx2n), d(PFBx2n, T Ix2n), d(ABx2n,PFBx2n), d(Bx2n, T Ix2n), d(ABx2n, T Ix2n),

d(Bx2n,PFBx2n)
)
≥ 0.

Letting limit as n → +∞, we obtain

G
(
d(Bw,w), d(Bw,w), d(Bw,Bw), d(w,w), d(Bw,w), d(w,Bw)

)
≥ 0

G
(
d(Bw,w), d(Bw,w), 0, 0, d(Bw,w), d(Bw,w)

)
≥ 0.

This is a contradiction to (G3) for Bw ̸= w and hence Bw = w.
Now, we show that T Iw = Bw. From condition (ii), we obtain

G
(
d(Ax2n+1,Bw), d(PFx2n+1, T Iw), d(Ax2n+1,PFx2n+1), d(Bw, T Iw), d(Ax2n+1, T Iw),

d(Bw,PFx2n+1)
)
≥ 0.

Letting limit as n → +∞, we obtain

G
(
d(w,Bw), d(w, T Iw), d(w,w), d(Bw, T Iw), d(w, T Iw), d(Bw,w)

)
≥ 0

G
(
0, d(Bw, T Iw), 0, d(Bw, T Iw), d(Bw, T Iw), 0

)
≥ 0

By virtue of (G2a), we obtain

0 ≥ F
(
d(Bw, T Iw), φ(d(Bw, TIw))

)
≥ d(Bw, T Iw)

yields T Iw = Bw. Thus Aw = Bw = PFw = T Iw = w.
Further, suppose that (A,F), (P ,F), (B, I), and (T , I) are commuting at common fixed points

of A,B,PF and T I. From the pairs (A,F) and (P ,F), we obtain

AFw = FAw = Fw and PFFw = FPFw = Fw,where PFw = w.
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We show Fw = w. For this, from condition (ii), we obtain

G
(
d(AFw,Bw), d(PFFw, T Iw), d(AFw,PFFw), d(Bw, T Iw), d(AFw, T Iw),

d(Bw,PFFw)
)
≥ 0

G
(
d(Fw,w), d(Fw,w), d(Fw,Fw), d(w,w), d(Fw,w), d(w,Fw)

)
≥ 0

G
(
d(Fw,w), d(Fw,w), 0, 0, d(Fw,w), d(Fw,w)

)
≥ 0.

This is a contradiction to (G3) for Fw ̸= w and hence Fw = w. Consequently PFw = w yields
Sw = w. Therefore Fw = Pw = w. Also from the pairs (B, I) and (T , I), we obtain

BIw = IBw = Iw and T IIw = IT Iw = Iw, where T Iw = Bw = w.

Now, we show Iw = w. Let on contrary, then by condition (ii), we obtain

G
(
d(Aw,BIw), d(PFw, T IIw), d(Aw,PFw), d(BIw, T IIw), d(Aw, T IIw),

d(BIw,PFw)
)
≥ 0

G
(
d(w, Iw), d(w, Iw), d(w,w), d(Iw, Iw), d(w, Iw), d(It, t)

)
≥ 0

G
(
d(w, Iw), d(w, Iw), 0, 0, d(w, Iw), d(Iw,w)

)
≥ 0.

This is contradiction of (G3) for Iw ̸= w and hence Iw = w. Consequently T Iw = w yields T w = w.
Therefore T w = Iw = w. Thus, A, B, S, T , F and I have a common fixed point in X.
For the uniqueness, suppose w∗ ∈ X is an another fixed point of A,B,P , T ,F , I such that w ̸= w∗.
By condition (ii), we obtain

G
(
d(Aw,Bw∗), d(PFw, T Iw∗), d(Aw,PFw), d(Bw∗, T Iw∗), d(Aw, T Iw∗),

d(Bw∗,PFw)
)
≥ 0

G
(
d(w,w∗), d(w,w∗), 0, 0, d(w,w∗), d(w,w∗)

)
≥ 0.

This is a contradiction to (G3) for w ̸= w∗ and hence w = w∗. □

Corollary 2.2. Let (X, d) be a complete metric space and A,B,P , T : X → X be self mappings that
satisfy the conditions:
(i) A and B are surjective;
(ii) there exists G ∈ GC such that

G
(
d(Ax,By), d(Px, T y), d(Ax,Px), d(By, T y), d(Ax, T y), d(By,Px)

)
≥ 0

for all x, y ∈ X;
(iii) (B, T ) is SA-compatible and (A,P) is SB-compatible.
Then A,B,P and T have a unique common fixed point in X.

Proof . Follows from Theorem 2.1 by taking F = I = IX (an identity mapping of X). □
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Theorem 2.3. Let (X, d) be a complete metric space. Suppose A,B,P , T : X → X be self mappings
that satisfy the conditions:
(i) A and B are surjective;
(ii) there exists G ∈ GC such that

G
(
d(Ax,By), d(Px, T y), d(Ax,Px), d(By, T y), d(Ax, T y), d(By,Px)

)
≥ 0

for all x, y ∈ X;
(iii) (A,P) is SA-compatible and (B, T ) is SB-compatible. Then A, B, P and T have a unique

common fixed point in X.

Proof . As in Theorem 2.1, for any x0 ∈ X we define two sequences {xn} and {yn} in X such that
y2n = Ax2n+1 = T x2n and y2n+1 = Bx2n+2 = Px2n+1, where n ∈ N. Following the same step as
in Theorem 2.1, one can show that {yn} is a Cauchy sequence in X. The sequence {yn} converges
to a point w ∈ X as (X, d) is complete. Consequently, all the sub sequences {Ax2n+1}, {Bx2n+2},
{Px2n+1} and {T x2n} converge to w ∈ X.
Form (iii), (A,P) is SA-compatible, then

lim
n→∞

AAx2n+1 = lim
n→∞

PAx2n+1 = Aw.

We show that Aw = w. From condition (ii), we obtain

G
(
d(AAx2n+1,Bx2n+2), d(PAx2n+1, T x2n+2), d(AAx2n+1,PAx2n+1), d(Bx2n+2, T x2n+2),

d(AAx2n+1, T x2n+2), d(Bx2n+2,PAx2n+1)
)
≥ 0.

Letting limit as n → +∞, we obtain

G
(
d(Aw,w), d(Aw,w), d(Aw,Aw), d(w,w), d(Aw,w), d(w,Aw)

)
≥ 0

G
(
d(Aw,w), d(Aw,w), 0, 0, d(Aw,w), d(w,Aw)

)
≥ 0.

This is a contradiction to (G3) for Aw ̸= w and hence Aw = w. Now we claim that Sw = Aw,
otherwise from condition (ii), we obtain

G
(
d(Aw,Bx2n), d(Pw, T x2n), d(Aw,Pw), d(Bx2n, T x2n), d(Aw, T x2n), d(Bx2n,Pw)

)
≥ 0.

Letting limit as n → +∞, we obtain

G
(
d(Aw,w), d(Pw,w), d(Aw,Pw), d(w,w), d(Aw,w), d(w,Sw)

)
≥ 0

G
(
0, d(Pw,Aw), d(Aw,Pw), 0, 0, d(Aw,Pw)

)
≥ 0.

This is a contradiction to (G2b) for Pw ̸= Aw and hence Pw = Aw = w.Also, from (iii), (B, T )
is SB-compatible, then

lim
n→∞

BBx2n+2 = lim
n→∞

T Bx2n+2 = Bw.
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We show that Bw = w, otherwise by condition (ii), we obtain

G
(
d(Aw,BBx2n+2), d(Pw, T Bx2n+2), d(Aw,Pw), d(BBx2n+2, T Bx2n+2), d(Aw, T Bx2n+2),

d(BBx2n+2,Pw)
)
≥ 0.

Letting limit as n → +∞, we obtain

G
(
d(w,Bw), d(w,Bw), d(w,w), d(Bw,Bw), d(w,Bw), d(Bw,w)

)
≥ 0

G
(
d(w,Bw), d(w,Bw), 0, 0, d(w,Bw), d(Bw,w)

)
≥ 0.

This is a contradiction to (G3) for Bw ̸= w and hence Bw = w. Again by condition (ii), we obtain

G
(
d(Aw,Bw), d(Pw, T w), d(Aw,Pw), d(Bw, T w), d(Aw, T w), d(Bw,Pw)

)
≥ 0

G
(
0, d(w, T w), 0, d(w, T w), d(w, T w), 0

)
≥ 0.

By (G2a), we obtain that 0 ≥ F
(
d(w, T w), φ(d(w, T w))

)
≥ d(Pw,w) yields T w = w. Conse-

quently Bw = T w = w. Thus Aw = Bw = Pw = T w = w. Uniqueness of common fixed point can
be proved as in Theorem 2.1. □

Example 2.4. Let X = [0, 12] with usual metric d(x, y) = |x− y|. Define A,B,P , T : X → X as:

Ax =

{
2x, 0 ≤ x < 6

x, 6 ≤ x ≤ 12
; Bx =


2x, 0 ≤ x < 6
x+6
2
, 6 ≤ x < 12

12, x = 12

;

Px =


x
2
, 0 ≤ x < 6

6, x = 6

0, 6 < x ≤ 12

; T x =


x
2
, 0 ≤ x < 6

6, x = 6

3, 6 < x ≤ 12.

Clearly, A and B are surjective. Let {xn} be a sequence in X, where xn = 6+ 1
n
> 6, for all n ∈ N

such that xn → 6 as n → +∞. Then, limn→+∞ AAxn = limn→+∞ PAxn = Aw, where Axn → 6 = w
as n → +∞. Further, limn→+∞ BBxn = limn→+∞ T Bxn = Bw, where Bxn → 6 = w as n → +∞.
Therefore, the pairs (A,P) and (B, T ) are respectively SA- and SB-compatible. Setting F (s, t) = hs

and G(t1, t2, ..., t6) = 1− t2(h+1)
max{t1, t2, t3, t4, t5+t6} , where h ∈ (1,∞). Then F ∈ Cinv and G ∈ GC. Taking

with h = 1
2
, we have the following cases:

Case-1: For all x, y ∈ [0, 6), we obtain

(h+ 1)d(Px, T y) =(h+ 1)|Px− T y| = (h+ 1)

2
|x− y|

=
3

2
|x− y| ≤ 2|x− y| = |Ax− By|

≤max
(
d(Ax,By), d(Px, T y), d(Ax,Px), d(By, T y), d(Ax, T y) + d(By,Px)

)
.
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Case-2: For all x ∈ [0, 6) and y = 6, we obtain

(h+ 1)d(Px, T y) =(h+ 1)|Px− T 6| = 3

2
|x− 6|

≤2|x− 6| = |Ax− By|

≤max
(
d(Ax,By), d(Px, T y), d(Ax,Px), d(By, T y), d(Ax, T y) + d(By,Px)

)
.

Case-3: For all x ∈ [0, 6) and y ∈ (6, 12), we obtain
0 < 3|x

2
− 3| ≤ 9, 3 ≤ |2x− 3| < 9 and 3 < |y+6

2
− x

2
| < 9. Consequently, we obtain

3|x
2
− 3| ≤9 = 3 + 3 ≤ |2x− 3|+ |y + 6

2
− x

2
|

Furthermore, we obtain

(h+ 1)d(Px, T y) =(h+ 1)|Px− T y| = 3|x
2
− 3|

≤|2x− 3|+ |y + 6

2
− x

2
|

=d(Ax, T y) + d(By,Px)

≤max
(
d(Ax,By), d(Px, T y), d(Ax,Px), d(By, T y), d(Ax, T y) + d(By,Px)

)
.

Case-4: For all x ∈ [0, 6) and y = 12, we obtain

(h+ 1)d(Px, T y) =3|x
2
− 3| = 3

2
|x− 6|

≤2|x− 6| = |2x− 12| = |Ax− By|

≤max
(
d(Ax,By), d(Px, T y), d(Ax,Px), d(By, T y), d(Ax, T y) + d(By,Px)

)
.

Case-5: For all x ∈ (6, 12) and y = 12, we obtain

(h+ 1)d(Px, T y) =3|0− 3| = 9

≤max(|x− 12|, 3, |x|, 9, |x− 3|+ 12)

=max
(
d(Ax,By), d(Px, T y), d(Ax,Px), d(By, T y), d(Ax, T y) + d(By,Px)

)
.

Combining all cases for all x, y ∈ X, we obtain

(h+ 1)d(Px, T y) ≤max
(
d(Ax,By), d(Px, T y), d(Ax,Px), d(By, T y),

d(Ax, T y) + d(By,Px)
)
= Q(x, y)(say)

=⇒ G(d(Ax,By), d(Px, T y), d(Ax,Px), d(By, T y), d(Ax, T y) + d(By,Px))

=1− (h+ 1)d(Px, T y)

Q(x, y)
≥ 0.

where, Q(x, y) ̸= 0. Thus all the conditions of Theorem 2.3 are satisfied and hence, x = 6 is a unique
common fixed point of A,B,P and T .
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Theorem 2.5. Let (X, d) be a complete metric space. Suppose A,B,P , T : X → X be self mappings
that satisfy the conditions:
(i) A and B are surjective;
(ii) there exists G ∈ GC such that

G
(
d(Ax,By), d(Px, T y), d(Ax,Px), d(By, T y), d(Ax, T y), d(By,Px)

)
≥ 0

for all x, y ∈ X. If either one of the following holds:
(a) (A,P) is SB-compatible and (A,P) is weakly compatible;
(b) (B, T ) is SA-compatible and (B, T ) is weakly compatible.
Then A, B, P and T have a unique common fixed point in X.

Proof . As in Theorem 2.1, for any x0 ∈ X we define two sequences {xn} and {yn} in X such that
y2n = Ax2n+1 = T x2n and y2n+1 = Bx2n+2 = Sx2n+1, where n ∈ N. Following the same step as
in Theorem 2.1, one can show that {yn} is a Cauchy sequence in X. The sequence {yn} converges
to a point w ∈ X as (X, d) is complete. Consequently all the sub sequences {Ax2n+1}, {Bx2n+2},
{Px2n+1} and {T x2n} converge to w ∈ X.
To prove A,B,P and T have a common fixed point, it arises the following two cases:
Case (i): Form (a), (A,P) is SB-compatible, then

lim
n→∞

ABx2n+2 = lim
n→∞

PBx2n+2 = Bw.

From condition (ii), we obtain

G
(
d(ABx2n+2,Bx2n+2), d(PBx2n+2, T x2n+2), d(ABx2n+2,PBx2n+2),

d(Bx2n+2, T x2n+2), d(ABx2n+2, T x2n+2), d(Bx2n+2,PBx2n+2)
)
≥ 0.

Letting limit as n → +∞, we obtain

G
(
d(Bw,w), d(Bw,w), d(Bw,Bw), d(w,w), d(Bw,w), d(w,Bw)

)
≥ 0

G
(
d(Bw,w), d(Bw,w), 0, 0, d(Bw,w), d(w,Bw)

)
≥ 0.

This is a contradiction to (G3) for Bw ̸= w and hence Bw = w. Now we claim that T w = Bw,
otherwise from condition (ii), we obtain

G
(
d(Ax2n,Bw), d(Px2n, T w), d(Ax2n,Px2n), d(Bw, T w), d(Ax2n, T w), d(Bw,Px2n)

)
≥ 0

Letting limit as n → +∞, we obtain

G
(
d(w,Bw), d(w, T w), d(w,w), d(Bw, T w), d(w, T w), d(Bw,w)

)
≥ 0

G
(
0, d(Bw, T w), 0, d(Bw, T w), d(Bw, T w), 0

)
≥ 0.

This is a contradiction to (G2a) for Bw ̸= T w and hence Bw = T w = w. Since A is surjective
and Bw = w, then there exists u ∈ X such that Bw = Au = w. We claim that Au = Pu. For this,
from condition (ii), we obtain

G
(
d(Au,Bw), d(Pu, T w), d(Au,Pu), d(Bw, T w), d(Au, T w), d(Bw,Pu)

)
≥ 0

G
(
0, d(Au,Pu), d(Au,Pu), 0, 0, d(Au,Pu)

)
≥ 0.
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By virtue of (G2b), we obtain that 0 ≥ F
(
d(Au,Pu), φ(d(Au,Pu))

)
≥ d(Au,Pu) yields Au =

Pu = w. Suppose the pair (A,P) is weakly compatible, then APu = PAu i.e., Aw = Pw. We show
that Aw = w, otherwise from condition (ii), we obtain

G
(
d(Aw,Bx2n), d(Pw, T x2n), d(Aw,Pw), d(Bx2n, T x2n), d(Aw, T x2n), d(Bx2n,Pw)

)
≥ 0.

Letting limit as n → +∞, we obtain

G
(
d(Aw,w), d(Pw,w), d(Aw,Pw), d(w,w), d(Aw,w), d(w,Pw)

)
≥ 0

G
(
d(Aw,w), d(Aw,w), 0, 0, d(Aw,w), d(Aw,w)

)
≥ 0.

This is a contradiction to (G3) for Aw ̸= w and hence Aw = Pw = w. Therefore, Aw = Bw =
Pw = T w = w.
Case (ii): Form (b), (B, T ) is SA-compatible, then

lim
n→∞

BAx2n+1 = lim
n→∞

T Ax2n+1 = Aw.

From condition (ii), , we obtain

G
(
d(Ax2n+1,BAx2n+1), d(Px2n+1, T Ax2n+1), d(Ax2n+1,Px2n+1),

d(BAx2n+1, T Ax2n+1), d(Ax, T Ax2n+1), d(BAx2n+1,Px2n+1)
)
≥ 0.

Letting limit as n → +∞, we obtain

G
(
d(w,Aw), d(w,Aw), 0, 0, d(w,Aw), d(Aw,w)

)
≥ 0.

By (G3), we obtain Aw = w. Further from condition (ii), we obtain

G
(
d(Aw,Bx2n+2), d(Pw, T x2n+2), d(Aw,Pw), d(Bx2n+2, T x2n+2), d(Aw, T x2n+2),

d(Bx2n+2,Pw)
)
≥ 0.

Letting limit as n → +∞, we obtain

G
(
d(0, d(Pw,w), d(w,Pw), 0, 0, d(w,Pw)

)
≥ 0.

By G2b), we obtain that 0 ≥ F
(
d(Pw,w), φ(d(Pw,w))

)
≥ d(Pw,w) yields Pw = w. Therefore

Aw = Pw = w. Since B is surjective and Aw = w, there exists u ∈ X such that Aw = Bu = w. To
show Bu = T u, from condition (ii), we obtain

G
(
d(Aw,Bu), d(Pw, T u), d(Aw,Pw), d(Bu, T u), d(Aw, T u), d(Bu,Pw)

)
≥ 0

G
(
0, d(Bu, T u), 0, d(Bu, T u), d(Bu, T u), 0

)
≥ 0.
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By (G2a), we obtain that 0 ≥ F
(
d(Bu, T u), φ(d(Bu, T u)

)
≥ d(Bu, T u) yields Bu = T u. Since

(B, T ) is weakly compatible, BT u = T Bu i.e., Bw = T w. By condition (ii), we obtain

G
(
d(Aw,Bw), d(Pw, T w), d(Aw,Pw), d(Bw, T w), d(Aw, T w), d(Bw,Pw)

)
≥ 0

G
(
d(w,Bw), d(w,Bw), 0, 0, d(w,Bw), d(Bw,w)

)
≥ 0.

By (G3) it leads to obtain Bw = w and hence Bw = T w = w. Therefore, Aw = Bw = Pw =
T w = w. Thus we conclude from Case (i) and (ii) that A,B,P and T have a common fixed point
in X. Uniqueness of common fixed point can be proved as in Theorem 2.1. □
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[6] J. Daneš, Two fixed point theorems in topological and metric spaces, Bull. Aust. Math. Sic. 14 (1976) 259–265.
[7] A. Djoudi, A unique common fixed point for compatible mappings of type (B) satisfying an implicit relation,

Demonstratio Math. 36(3)(2003) 763–770.
[8] A. Djoudi, General fixed point theorems for weakly compatible maps, Demonstratio Math. 38(1) (2005) 197–205.
[9] G. Jungck, Commuting mappings and fixed points, Amer. Math. Month. 83 (1976) 261–263.
[10] G. Jungck, compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(4) (1986) 771–779.
[11] G. Jungck, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Japon.

36(2) (1993) 381–390.
[12] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl.

Math. 29(3) (1998) 227–238.
[13] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust.

Math. Soc. 30(1) (1981) 1–9.
[14] M. K. Jain, E. Karapinar, Haseen Aydi and R. P. Agarwal, ST -compatibility and fixed point theorems via inverse

C-class functions, Dyn. Syst. Appl. Accepted.
[15] H. K. Pathak, S. S. Chang and Y. J. Cho, Fixed point theorems for compatible mappings of type (P ), Indian J.

Math. 36(2) (1994) 151–166.
[16] H. K. Pathak, Y. J. Cho, S. M. Kang and B. Madharia, Compatible mappings of type (C) and common fixed point
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