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Abstract
Machine learning is fast evolving, with numerous theoretical advances and applications in a variety
of domains. In reality, most machine learning algorithms are based on optimization issues. This
interaction is also explored in the special topic on machine learning and large-scale optimization.
Furthermore, machine learning optimization issues have several unique characteristics that are rarely
seen in other optimization contexts. Aside from that, the notions of classical optimization vs machine
learning will be discussed. Finally, this study will give an outline of these peculiar aspects of machine
learning optimization.
Keywords: machine learning, mathematical programming, optimization techniques.

1. Introduction

One of the most important advances in current computer science is the interaction between op-
timization and machine learning. The use of optimization formulations and methods in the creation
of algorithms to extract key knowledge from large amounts of data is proving to be crucial. Machine
learning, on the other hand, isn’t only a consumer of optimization technology; it’s also a constantly
expanding subject that generates new optimization concepts [7, 10, 11]. Our study represents the
current state of the art in the intersection of optimization and machine learning in a way that aca-
demics in both domains can understand. Because of their broad application and appealing theoretical
characteristics, optimization techniques have risen to prominence in machine learning. Because of the
rising complexity, size, and variety of today’s machine learning models, current assumptions must
be reexamined. It explains the resurrection of well-known frameworks like first-order techniques,
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stochastic approximations, convex relaxations, interior-point techniques, and proximal techniques in
new situations. Regularized optimization, resilient optimization, gradient and sub gradient methods,
splitting approaches, and second-order methods are among the newest topics covered. Many of these
approaches are based on other subjects, such as operations research, theoretical computer science,
and optimization subfields. As it stands now, the rudder is in the direction of closer relationship
between machine learning and various other areas, as well as within the improvement community
as a whole. Machine learning is the study of algorithms that learn from data rather than explicitly
declaring the code to do a task [3, 6]. Algorithms can learn on their own without the need for
human interaction thanks to machine learning. Machine learning algorithms are divided into various
categories based on the type of problem to be solved. The following are the three primary types:

1. We use supervised machine learning techniques to construct a model that predicts labels based
on characteristics given labeled data.

2. Unsupervised machine learning algorithms: Unsupervised machine learning algorithms do not
have a goal value. Assume you need to organize the hypothetical spacecraft into groups based
on their characteristics; you’ll use a clustering technique to accomplish so. To find patterns
in the dataset, unsupervised machine learning is performed. We don’t know which cluster is
whose, but we do know that all the spacecraft in one cluster look same; the right picture in
Figure 1 illustrates this.

Figure 1: Examples of supervised machine learning (left) and unsupervised machine learning (right)

3. Reinforcement machine learning algorithms learn from their surroundings; if they perform well,
they are rewarded.

2. Models and data

Data is used in machine learning models. They work with well-defined datasets, which are homo-
geneous collections of data points (for example, observations, photographs, or measurements) relevant
to a certain situation, to make associations, uncover links, uncover trends, produce new samples, and
more (For example, room temperature sampled every 5 minutes, or the weights of a group of indi-
viduals) Unfortunately, machine learning models’ assumptions or conditions are not always obvious,
and a protracted training procedure might end in a full validation failure. A model may be thought
of as a gray box (the simplicity of many popular techniques ensures some transparency), where a
vector input X retrieved from a dataset is turned into a vector output Y :

The model has been represented in the preceding diagram by a function that is dependent on a
set of parameters provided by the vector. The dataset is made up of data taken from a real-world



Training analysis of optimization models...; 12 (2021) No. 2, 1453-1461 1455

Figure 2: a generic model parameterized and its relationship with the real world

scenario, and the model’s outputs must match the nature of the actual connections. In logic and
probabilistic situations, where inferred circumstances must resemble natural ones, these requirements
are quite strong [3, 10, 11].

3. Optimization in machine learning

The objective function of an optimization problem is described from where of a collection of
variables defined as variables for optimization. Actually, an optimization aims to determine the
variable that maximize or minimize the objective function. In machine learning, it’s customary
to employ a reduction version of the objective function, and a loss function is the corresponding
objective function. Now we’ll look at several well-known optimization functions that are specified by
the variable [5, 6, 8, 9].

3.1. Univariate optimization
Consider the following single-variable objective function f(l):

f(l) = l2 − 2l + 3

This objective function is an upright parabola with the formula f(l) = (l − 2)2 + 2. Figure 3 (shows
the objective function, which clearly reaches at l = 1, when the nonnegative term (1− 2)2 decreases
to 0, it reaches its lowest value. At its smallest value, the rate of change of f(l) with respect to l is
zero. Because the tangent to the plot at that point is horizontal. The first derivative of the function
f(l) with respect to l may also be computed and set to 0 to determine the best value:

f
′
(l) =

df(l)

dm
= 2l − 2 = 0

As a result, we arrive at l = 1 as the best value.

3.2. Bivariate optimization
According to the diversity of the different problems and phenomena in which we live, the need

for univariate optimization is almost non-existent. We’ll look at the circumstance of a two-variable
optimization function to show the difference between the concept of optimization for two variables
and another for one variable.. Bivariate optimization is a strategy that bridges the complexity gap
between single-variable and multivariable optimization [5, 8]. For clarification, by Figure 3 we’ll look
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Figure 3: single global minimum f(x) = x2 − 2x+ 3

at bivariate extensions of the univariate optimization functions. Also, by Figure 4 we can generate
bivariate functions by merging two copies of the univariate function .

h(x, y) = f(l) + f(m) = l2 +m2 − 3l − 2m+ 6

H(x, y) = h(l) + h(m) =
[
l2 +m2/3

]
−
[
l3 +m3/2

]
− l2 −m2 + 5

It’s worth noting these functions have been simplified and are organized in a unique way ; also we
can separate it. In reality, a “gradient” is a set of partial derivatives in a vector as we know it by
definition. In Figure 4, the function’s gradient h(l,m) may be calculated according to the following
formula:

▽h(l,m) =
[
∂g(l,m)

∂l
∂g(l,m)
∂m

]T
=

[
2l − 2
2m− 2

]
To indicate a function’s gradient, the notation ▽ is put in front of it. Because we have two op-
timization variables, l and m, the gradient is a column vector with two components in this case.
The objective function’s partial derivative concerning one of the two variables is represented by each
component of the 2-dimensional vector. Setting the gradient h(l,m) to zero is the easiest way to
solve the optimization issue,

Figure 4: Global minimum and global maximum
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resulting in the solution [1,m] = [1, 1]. Clear that global minimum of h(l,m) as follow

h(l,m) = f(l) + f(m) = l2 +m2 − 3l − 2m+ 6

3.3. Multivariate optimization
A wide parameter space and numerous optimization variables characterize the majority of machine

learning issues. “The variables in the optimization problem are variables that are utilized to build
a prediction function for the visible and hidden characteristics of the machine learning issue. In a
linear regression problem, the optimization variables w1, w2, . . . , wd are used to predict the dependent
variable m from the independent variables l1, . . . , ld, for example:

m =
d∑

i=1

wi li

Now , we’ll assuming optimization variables can be represented by w1...wd, The other variables, such
as l and m, represent real data set values (Through the concept of optimization are constant). This is
the main point of machine learning. Besides, the differences between observed and expected values of
certain properties, such as the variable m given above, are frequently penalized by objective functions
[1, 5, 8]. In machine learning, Loss functions are a popular term for such objective functions. As a
result, we’ll frequently use the phrase ”loss function” instead of ”objective function.” The loss function
will be assumed to be a function of a vector of several optimization variables w =

[
w1 . . . wd

]T
.

Setting the gradient vector to zero is the easiest way to get a solution of the optimization problem
directly, resulting in the following set of d conditions:

∂J(w̄)

∂wi

= 0, ∀ i ∈ {1, 2, . . . , d}

The parameters w1 . . . wd may be determined by solving a system of d equations based on these
circumstances. In univariate optimization, this is similar to determining if a critical point ”zero-
gradient point” is a maximum, minimum, or inflection point..The second-order condition kicks in at
this point. Remember that the criteria for f(w) to be a minimum in single-variable optimization is
> 0. The Hessian matrix is used to expand this notion in multivariate optimization [2, 9].

4. Hyperparameters as a model ML optimization techniques

Now we will present parameters and hyperparameters as model ML optimization strategies, but
first we must grasp the distinction between parameters and hyperparameters of a model [4, 9, 10, 12]:

4.1. Model parameters
These are the entities that have been learnt from the training data during training. The designer

does not establish them manually. The weights and biases are the model parameters for deep neural
networks..
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4.2. Model hyperparameters
These are the parameters that control how the model parameters are determined during training.

- Heuristics are usually used to configure them manually. During the cross-validation step, they are
fine-tuned (discussed later). Learning rate, number of layers, number of units in each layer, and
many other factors are examples.

Figure 5: Parameters and hyperparameters of the model

Hyperparameter optimization is required to fine-tune the model. We can reduce error and develop
the most accurate model by finding the best combination of their values.

4.3. Hyperparameter tuning technique
Multiple trials are done in a single training job to perform hyperparameter optimization. Each

trial is a complete run of your training program, with values for your selected hyperparameters
set within the constraints you define. The Cloud ML Engine training service maintains note of
each trial’s outcomes and adjusts for future trials. When the work is completed, you will receive a
summary of all the trials as well as the most effective value configuration based on the criteria you
select.

5. Top optimization techniques in machine learning

Let’s take a look at some of the strategies for optimizing your model’s hyperparameters.

5.1. Exhaustive search
It’s the most basic of all the search strategies. The optimum of a function is bracketed by

computing the values of the function at a number of evenly spaced locations, as shown in the diagram
below (Figure 6). Typically, the search starts with a lower limit on the variable and compares three
successive function values at a time, based on the premise that the function is unimodal. The search
is either discontinued or continued based on the results of the comparison by changing one of the
three points with a new point[2, 3].

Figure 6: The exhaustive search method in simple case
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Then, to minimize the error, we utilize gradient descent, which is the most frequent approach
for model optimization. You must loop over the training dataset while re-adjusting the model to
complete gradient descent. Our objective is to reduce the cost function since this ensures that the
model has the minimum possible error and improves its accuracy.

Figure 7: Gradient descent

You can see a graphical illustration of how the gradient descent process travels through variable
space in the graph above. To get started, pick a random point on the graph and choose a direction at
random. If you see that the mistake is growing, you’ve gone in the incorrect way. The optimization
is complete when you can no longer improve (lower the error) and you have found a local minimum.
A step-by-step description of how gradient descent works may be seen in the video below. In gra-
dient descent, you take the same-sized steps ahead. If you set a learning rate that is too high, the
algorithm will hop about in circles instead of coming closer to the correct answer. If it’s too tiny, the
computation will begin to resemble an exhaustive search, which is inefficient. As a result, you must
pick your learning pace wisely. Gradient descent, when done correctly, becomes a computationally
efficient and relatively rapid approach of model optimization[8, 9, 11].

Figure 8: Small learning rate vs big learning rate

Another way to ML optimization is genetic algorithms. The underlying premise of these algo-
rithms’ reasoning is an effort to apply evolutionary theory to machine learning. Assume you have
a collection of random algorithms at your disposal. This is the demographic you’ll be dealing with.
Some models with preset hyperparameters are better adjusted than others among several models.
Let’s go look for them! To begin, you must determine the correctness of each model. Then you just
keep the ones that turned out the best. To produce a second generation of models, construct some
offspring with comparable hyperparameters to the best models. We will continue this procedure
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many times until only the finest models remain at the end. Genetic algorithms aid in avoiding local
minima and peaks. They are frequently used in the optimization of neural network models.

Figure 9: an example of the work of Genetic algorithms

Figure 10: Optimization technique in our model

6. Conclusion

In this paper it is discussed several well-known optimization functions that are specified by
the variable. Actually, ML algorithms must discover good solutions to small groups of problems
with unique structures. Besides, models can be rewritten to allow for better algorithms as long as
generalization is enhanced or not jeopardized. Because of the inherent flaws in machine learning
models and the fact that erroneous answers are actively sought, high precision is not necessary.
ML algorithms, on the other hand, must discover good solutions to small groups of problems with
unique structures. Models can be rewritten to allow for better algorithms as long as generalization is
enhanced or not jeopardized. Because of the inherent flaws in machine learning models and the fact
that incorrect answers are actively sought as a type of regularization, high precision is not necessary.
Finally, the focus is on hyperparameter optimization in automated machine learning.
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