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Abstract

The main purpose of this paper is to study and investigate some results of right Γ-n-derivation on
prime Γ-near-ring G which force G to be a commutative ring.
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1. Introduction

Throughout this paper, a Γ- near ring is a triple (G,+,Γ), where (i) (G,+) is a (not necessarily
abelian) group; (ii) Γ is a non-empty set of binary operations on G such that for each γ ∈ Γ, (G,+, γ)
is a left near-ring (iii) sγ(rµc) = (sγr)µc , for all s, r, c ∈ G and γ, µ ∈ Γ [5, 7, 8]. And G will denote
a zero–symmetric left Γ- near ring with multiplicative center Z(G). For a Γ-near-ring G, the set
G0 = {s ∈ G : 0ρs = 0,∀ρ ∈ Γ} is called zero symmetric part of G. If G = G0, then G is called zero
symmetric [8, 9]. A Γ-near-ring G is said to be prime Γ-near-ring if sΓGΓr = 0 implies s = 0 or
r = 0, for every s, r ∈ G and it said to be semiprime if sΓGΓs = 0 implies s = 0 for every s ∈ G
[7, 8]. The other commutators are; [s, r]ρ = sρr–rρs and (s, r) = s+r–s–r denote the additive-group
commutator [1, 9]. Γ-near-ring G is called commutative if (G,+) is abelian [2, 3].

An additive mapping h : G×G× · · · ×G −→ G is said to be Γ-n-derivation if the relations

h(x1γx
′

1, x2, . . . , xn) = h(x1, x2, . . . , xn)γx
′

1 + x1γh(x
′

1, x2, . . . , xn)

h(x1, x2γx
′

2, . . . , xn) = h(x1, x2, . . . , xn)γx
′

2 + x2γh(x1, x
′

2, . . . , xn)

...

h(x1, x2, . . . , xnγx
′

n) = h(x1, x2, . . . , xn)γx
′

n + xnγh(x1, x2, . . . , xn′)

Hold for all x1, x
′
1, x2, x

′
2, . . . , xn, x

′
n ∈ G.
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An n-additive mapping h : G×G× · · · ×G︸ ︷︷ ︸
n−times

−→ G is said to be right Γ-n-derivation if the

relations

h(x1γx
′

1, x2, . . . , xn) = h(x1, x2, . . . , xn)γx
′

1 + h(x
′

1, x2, . . . , xn)γx1

h(x1, x2γx
′

2, . . . , xn) = h(x1, x2, . . . , xn)γx
′

2 + h(x1, x
′

2, . . . , xn)γx2

...

h(x1, x2, . . . , xnγx
′

n) = h(x1, x2, . . . , xn)γx
′

n + h(x1, x2, . . . , xn′)γxn

Hold for all x1, x
′
1, x2, x

′
2, . . . , xn, x

′
n ∈ G and γ ∈ Γ

In this work, we defined the concept Γ-n-derivation and right Γ-n-derivation. Also we investigate
the commutativity of addition and multiplaction of Γ-near-rings satisfying certainidentities involving
right Γ-n-derivation. And the purpose of this paper is to study and generalize some results of
[1, 2, 3, 4, 5] on commutativity of prime Γ–near-ring on which admits suitably constrained right
Γ-n-derivations.

2. Preliminary results

We begin with the following lemmas which are essential for developing the proofs of our main
results
Lemma 2.1.[5, 8] . Let G be a prime Γ- near ring. there exists a element u of Z(G) such that
u+ u ∈ Z(G), then (G,+) is abelian.
Lemma 2.2. LetG be a Γ-near-ring admitting right Γ- n-derivation h, then for every s1, s

′
1, . . . , sn, r ∈

G and γ, β ∈ Γ,
{h(s1, s2, . . . , sn)γs

′
1 + h(s

′
1, s2, . . . , sn)γs1}βr = h(s1, s2, . . . , sn)γs

′
1βr + h(s

′
1, s2, . . . , sn)γs1βr

Proof . Assume that

h((s1γs
′

1)βr, s2, . . . , sn) = h(s1γs
′

1, s2, . . . , sn)βr + h(r, s2, . . . , sn)β(s1γs
′

1)

= (h(s1, s2, . . . , sn)γs
′

1 + h(s
′

1, s2, . . . , sn)γs1)βr + h(r, s2, . . . , sn)β(s1γs
′

1).

Also

h(s1γ(s
′

1βr), s2, . . . , sn) = h(s1, s2, . . . , sn)γs
′

1βr + h(s
′

1βr, s2, . . . , sn)γs1

= h(s1, s2, . . . , sn)γs
′

1βr + (h(s
′

1, s2, . . . , sn)βr + h(r, s2, . . . , sn)βs
′

1)γs1

= h(s1, s2, . . . , sn)γs
′

1βr + h(s
′

1, s2, . . . , sn)βrγs1 + h(r, s2, . . . , sn)βs
′

1γs1

Combining the above two relations, we get

(h(s1, s2, . . . , sn)γs
′

1 + h(s
′

1, s2, . . . , sn)γs1)βr = h(s1, s2, . . . , sn)γs
′

1βr + h(s
′

1, s2, . . . , sn)γs1βr

�
Lemma 2.3.2.3 Let G be a prime Γ- near-ring admitting a nonzero right Γ-n-derivation h of G and
a ∈ G. If h(G,G, ..., G)γa = {0}, then a = 0.
Proof . Suppose that h(x1, x2, . . . , xn)γa = 0, for all x1, x2, . . . , xn ∈ G and γ ∈ Γ .

Putting x1βs instead of x1 where s ∈ G and β ∈ Γ in pervious equation we get h(x1βs, x2, . . . , xn)γa =
0. So we get h(s, x2, . . . , xn)ΓGΓa = {0}. Since h 6= 0 and G is a prime Γ-near-ring, we conclude
that a = 0. �
Lemma 2.4. Let G be a prime Γ-near-ring and let h be a nonzero right Γ-derivation of G and
a ∈ G. If h(G)γa = {0}, then a = 0.
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3. Main results

Theorem 3.1. Let G be a prime Γ-near-ring and h be a nonzero right Γ-n-derivation of G. If
h(G,G, . . . , G) ⊆ Z, then G is a commutative ring.
Proof . Sinceh(G,G, . . . , G) ⊆ Zand h is a nonzero right Γ-n-derivation, there exist nonzero ele-
ments x1, x2, . . . , xn ∈ G, such that h(x1, x2, . . . , xn) ∈ Z \ {0}. We have h(x1 + x1, x2, . . . , xn) =
h(x1, x2, . . . , xn) + h(x1, x2, . . . , xn) ∈ Z. By Lemma 2.1 we obtain that (G,+) is abelian.

By hypothesis we get h(y1, y2, . . . , yn)γy = yγh(y1, y2, . . . , yn), for all y, y1, y2, . . . , yn ∈ G and
γ ∈ Γ. Now replacing y1 by y1βs where s ∈ Gin previous equation, we get

(h(y1, y2, . . . , yn)βs+ h(s, y2, . . . , yn)βy1)γy = yγ(h(y1, y2, . . . , yn)βs+ h(s, y2, ., yn)βy1) (1)

By definition of h we get h(y1βy
′
1, y2, . . . , yn) = h(y1, y2, . . . , yn)βy

′
1 + h(y

′
1, y2, . . . , yn)βy1 (2).

Thus h(y
′
1βy1, y2, . . . , yn) = h(y

′
1, y2, . . . , yn)βy1 + h(y1, y2, . . . , yn)βy

′
1 (3).

Since (G,+) is abelian, from equation (2) and (3) we conclude that

h(y1βy
′
1, y2, . . . , yn) = h(y

′
1βy1, y2, . . . , yn)

for all y1, y
′
1, y2, . . . , yn ∈ G and β ∈ Γ.

So we get h([y1, y
′
1]β, y2, . . . , yn) = 0 for all y1, y

′
1, y2, . . . , yn ∈ G and β ∈ Γ.

Replacing y
′
1 by y1γy

′
1 in previous equation and using it again, we get h(y1, y2, . . . , yn)ΓGΓ[y1, y

′
1]β =

{0} for all y1, y
′
1, y2, . . . , yn ∈ G.

Primeness of G implies that for each y1 ∈ G. either h(y1, y2, . . . , yn) = 0 for all y2, . . . , yn ∈ G or
y1 ∈ Z. If h(y1, y2, . . . , yn) = 0, then equation (1) takes the form h(y

′
1, y2, . . . , yn)ΓGΓ[y, y1]β = {0}.

Since h 6= 0, primeness of G implies that y1 ∈ Z. Hence we find that G = Z, we conclude that G is
a commutative ring. �
Corollary 3.2. Let G be a prime Γ- near-ring and h be a nonzero right Γ-derivation of G. If
h(G) ⊆ Z, then G is a commutative ring.
Theorem 3.3. Let G be a prime Γ-near-ring then G admit no nonzero right Γ-n-derivation h such
that x1γh(y1, y2, . . . , yn) = h(x1, x2, . . . , xn)γy1, for all x1, x2, . . . , xn, y1, y2, . . . , yn ∈ G and γ ∈ Γ,
then h = 0.
Proof . Assume that there is a nonzero right Γ-n-derivation h of G such that x1γh(y1, y2, . . . , yn) =
h(x1, x2, . . . , xn)γy1, for all x1, x2, . . . , xn, y1, y2, . . . , yn ∈ G and γ ∈ Γ (4).

Substituting y1βz1 for y1, where z1 ∈ G in equation (4), we get

x1γh(y1βz1, y2, . . . , yn) = h(x1, x2, . . . , xn)γy1βz1.

Thus, x1γh(y1, y2, . . . , yn)βz1 + x1γh(z1, y2, . . . , yn)βy1 = h(x1, x2, . . . , xn)γy1βz1.
Using equation (4) in previous equation we get x1γh(z1, y2, . . . , yn)βy1 = 0.
By primeness of G implies that h(z1, y2, . . . , yn)βy1 = 0. Now replacing y1 by y1γh(z1, y2, . . . , yn)

in previous equation we get h(z1, y2, . . . , yn)ΓGΓh(z1, y2, . . . , yn) = {0}.Since G is prime Γ-near-ring
implies that h = 0. �
Corollary 3.4. Let G be a prime Γ-near-ring and h be a right Γ-derivation such that xγh(y) =
h(x)γy for all x, y ∈ G and γ ∈ Γ, then h = 0.
Theorem 3.5. Let G be a prime Γ- near-ring admitting a nonzero right Γ-n-derivation h on G. If
h([x, y]γ, x2, . . . , xn) = 0 for all x, y, x2, . . . , xn ∈ G and γ ∈ Γ then G is a commutative ring.
Proof . By hypothesis, we have h([x, y]γ, x2, . . . , xn) = 0 for all x, y, x2, . . . , xn ∈ G and γ ∈
Γ. Replace y by xβy in previous equation and using it again we get h(x, x2, . . . , xn)β[x, y]γ =
0. Replacing y by yµz in pervious equation , we get h(x, x2, . . . , xn)µ[x, z]γ = 0 Hence we get
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h(x, x2, . . . , xn)ΓGΓ[x, z]γ = {0}. For each fixed x ∈ G, primeness of G yields either x ∈ Z or
h(x, x2, . . . , xn) = 0for all x2, . . . , xnG (5).

If first case holds then
h(xγt, x2, . . . , xn) = h(tγx, x2, . . . , xn), for all t, x2, . . . , xn ∈ G and γ ∈ Γ.
h(x, x2, . . . , xn)γt+ h(t, x2, . . . , xn)γx = h(t, x2, . . . , xn)γx+ h(x, x2, . . . , xn)γt.
Its mean h(x, x2, . . . , xn) ∈ Z. And second case implies h(x, x2, ..., xn) = 0 that is h(x, x2, . . . , xn) =

0 ∈ Z. Including both the cases we get h(x, x2, . . . , xn) ∈ Z for all x, x2, . . . , xn ∈ G. That is
h(G,G, . . . , G) ⊆ Z, Hence, by Theorem 3.1 then G is a commutative ring. �
Corollary 3.6. Let G be a prime Γ-near-ring admitting a right Γ-derivations h, If h([x, y]Γ) = 0 for
all x, y ∈ G, then G is a commutative ring.
Theorem 3.7. Let G be a prime Γ-near-ring and h be a no nonzero right Γ-n-derivation on G such
that h((x ◦ y)γ, x2, . . . , xn) = 0 for all x, y, x2, . . . , xn ∈ G and γ ∈ Γ then G is commutative ring.
Proof . Assume that h((x ◦ y)γ, x2, . . . , xn) = 0 for all x, y, x2, . . . , xn ∈ G and γ ∈ Γ (6).

Replace y by xβy in equation (6) we get h((x ◦ (xγy))γ, x2, . . . , xn) = 0 Which implies that
h(x, x2, . . . , xn)β(x ◦ y) γ + h((x ◦y)γ, x2, . . . , xn)βx = 0.

Using equation (6) in previous equation we get h(x, x2, . . . , xn)β(x ◦ y)γ = 0.

h(x, x2, . . . , xn)βyγx = −h(x, x2, . . . , xn)βxγy (7)

Replacing y by yµz, where z ∈ G, we get h(x, x2, . . . , xn)βyµzγx = −h(x, x2, . . . , xn)βxγyµz.
Now substituting the values from equation (7) in the preceding relation we get

h(x, x2, . . . , xn)βyµzγx = −h(x, x2, . . . , xn)βyγyxµz

Hence we get h(x, x2, ..., xn)ΓGΓ[x, z]γ = {0}. Since G is a prime Γ-near-ring we get either x ∈ Z or
h(x, x2, . . . , xn) = 0 for all x2, . . . , xn ∈ G , for each fixed x ∈ G.

Which is identical with the equation (5) in Theorem 3.5 Now arguing in the same way in the
Theorem 3.5 .We conclude that G is a commutative ring. �
Corollary 3.8. Let G be a prime Γ-near-ring and let h be a no nonzero right Γ-derivation on G
such that h(x ◦ y)γ = 0 for all x, y ∈ G and γ ∈ Γ then G is a commutative ring.
Theorem 3.9. Let G be a prime Γ-near-ring admitting a right Γ-n-derivation h of G. If

[h(x, x2, . . . , xn), y]γ ∈ Z for all x, y, x2, . . . , xnG and γ ∈ Γ and cγxβy = cβxγy for all c, x, y ∈ G
and γ, β ∈ Γ, then G is a commutative ring.
Proof . Assume that [h(x, x2, . . . , xn), y]γ ∈ Z for all x, y, x2, . . . , xn ∈ G and γ ∈ Γ (8).

Therefore, [[h(x, x2, . . . , xn), y]γ, t]β = 0 for all x, y, t, x2, . . . , xn ∈ G and γ, β ∈ Γ (9).
Replacing y by h(x, x2, . . . , xn)µy in equation (9) , we get

[h(x, x2, . . . , xn)µ[h(x, x2, . . . , xn), y]γ, t]β = 0 (10)

In view of equation (8), equation (10) assures that

[h(x, x2, . . . , xn), y]γΓGΓ[h(x, x2, . . . , xn), t]β = {0}
Primeness of G implies that [h(x, x2, . . . , xn), y]γ = 0 for all x, y, x2, . . . , xn ∈ G.

Hence h(G,G, . . . , G) ⊆ Zand application of Theorem 3.1 assures that G is a commutative ring.
�

Corollary 3.10. Let G be a prime Γ-near-ring and let h be a right Γ-n-derivation of G. If [h(x), y]γ ∈
Z for all x, y ∈ G, then G is a commutative ring.
Theorem 3.11. Let G be a prime Γ-near-ring, h1 and h2 be any two nonzero right Γ-n-derivations.
If [h1(G,G, . . . , G), h2(G,G, . . . , G)]γ = {0} then (G,+) is abelian.
Proof . Assume that [h1(G,G, . . . , G), h2(G,G, . . . , G)]γ = {0}.

If both z and z + z commute element wise with h2(G,G, . . . , G), then
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zγh2(x1, x2, . . . , xn) = h2(x1, x2, . . . , xn)γz (11)

And (z + z)γh2(x1, x2, . . . , xn) = h2(x1, x2, . . . , xn)γ(z + z) (12).
Substituting x1 + x

′
1 instead of x1 in equation (12), we get

(z + z) γh2(x1 + x
′
1, x2, . . . , xn) = h2(x1 + x

′
1, x2, . . . , xnγ(z + z)

From equation (11) and (12) the previous equation can be reduced to

zγh2(x1 + x
′
1 − x1 − x

′
1, x2, . . . , xn) = 0. (i.e.) zγh2((x1, x

′
1), x2, . . . , xn) = 0

Putting z = h1(y1, y2, . . . , yn), we get h1(y1, y2, . . . , yn)γh2((x1, x
′
1), x2, . . . , xn) = 0.

By Lemma 2.3 we conclude that h2((x1, x
′
1), x2, . . . , xn) = 0 (13).

Since we know that for each w ∈ G,

wγ(x1, x
′
1) = wγ(x1 + x

′
1 − x1 − x

′
1) = wγx1 + wγx

′
1 − wγx1 − wγx

′
1 = (wγx1, wγx

′
1)

Which is again an additive commutator. Putting wγ(x1, x
′
1) instead of (x1, x

′
1) in equation (13) we

get h2(wγ(x1, x
′
1), x2, . . . , xn) = 0, for all w, x1, x

′
1, x2, . . . , xn ∈ G and γ ∈ Γ. i.e.;

h2(w, x2, . . . , xn)γ(x1, x
′
1) + h2((x1, x

′
1), x2, . . . , xn)γw = 0

Using equation (13) in previous equation yields h2(w, x2, . . . , xn)γ(x1, x
′
1) = 0.

Using Lemma 2.3 we conclude that (x1, x
′
1) = 0. Hence (G,+) is abelain. �

Corollary 3.12. Let G be a prime Γ-near-ring and h1, h2 be any two nonzero right Γ-derivations.
If [h1(G), h2(G)]γ = {0} then (G,+) is abelian.
Theorem 3.13. Let G be a prime Γ-near-ring and h1 and h2 be any two nonzero right Γ-n-
derivations. If h1(x1, x2, . . . ., xn)γh2(y1, y2, . . . , yn) + h2(x1, x2, . . . , xn)γh1(y1, y2, . . . , yn) = 0 for all
x1, x2, . . . , xn, y1, y2, . . . , yn ∈ G and γ ∈ Γ, then (G,+) is abelian.

Proof . By our hypothesis we have

h1(x1, x2, . . . , xn)γh2(y1, y2, . . . , yn) + h2(x1, x2, . . . , xn)γh1(y1, y2, . . . , yn) = 0 (14)

Substituting y1 + y
′
1 instead of y1 in equation (14) we get

h1(x1, x2, . . . , xn)γh2(y1 + y
′
1, y2, . . . , yn) + h2(x1, x2, . . . , xn)γh1(y1 + y

′
1, y2, . . . , yn) = 0, for all

x1, x2, . . . , xn, y1, y
′
1, y2, . . . , yn ∈ G and γ ∈ Γ

.Therefore

h1(x1, x2, . . . , xn)γh2(y1, y2, . . . , yn) + h1(x1, x2, . . . , xn)γh2(y
′
1, y2, . . . , yn) +

h2(x1, x2, . . . , xn)γh1(y1, y2, . . . , yn) + h2(x1, x2, . . . , xn)γh1(y
′
1, y2, . . . , yn) = 0

Using equation (14) again in preceding equation, we get

h1(x1, x2, . . . , xn)γh2(y1, y2, . . . , yn) + h1(x1, x2, . . . , xn)γh2(y
′
1, y2, . . . , yn) +

h1(x1, x2, . . . , xn)γh2(−y1, y2, . . . , yn) + h1(x1, x2, . . . , xn)γh2(−y′
1, y2, . . . , yn) = 0

Which means that h1(x1, x2, . . . , xn)γh2((y1, y
′
1), y2, . . . , yn) = 0.

By Lemma 2.3 we obtain h2((y1, y
′
1), y2, ..., yn) = 0 , for all y1, y

′
1, y2, . . . , yn ∈ G and γ ∈ Γ. Now

putting wγ(y1, y
′
1) instead of (y1, y

′
1), where w ∈ G in previous equation and using it again, we get

h2(w, y2, . . . , yn)γ(y1, y
′
1) = 0, for all w, y1, y

′
1, y2, . . . , yn ∈ G and γ ∈ Γ. Using Lemma 2.3 as used in

the Theorem 3.11 we conclude that (G,+) is abelain. �
Corollary 3.14. Let G be a prime Γ-near-ring and h1, h2 be any two nonzero right Γ-derivations.
If h1(x)γh2(y) + h2(x)γh1(y) = 0,for all x, y ∈ G, then (G,+) is abelian.
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