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TWO COMMON FIXED POINT THEOREMS FOR COMPATIBLE
MAPPINGS

A. RAZANI' AND M. YAZDI?**

ABSTRACT. Recently, Zhang and Song [Q. Zhang, Y. Song, Fixed point theory
for generalized p-weak contractions, Appl. Math. Lett. 22(2009) 75-78] proved
a common fixed point theorem for two maps satisfying generalized p-weak con-
tractions. In this paper, we prove a common fixed point theorem for a family of
compatible maps. In fact, a new generalization of Zhang and Song’s theorem is
given.

1. INTRODUCTION AND PRELIMINARIES

Let X be a metric space. A map T : X — X is a contraction if there exists a
constant k € (0,1) such that d(Tz, Ty) < kd(x,y), for all z,y € X.
A map T: X — X is a p-weak contraction if there exists a function ¢ : [0, +00) —
[0, +00) such that ¢ is positive on (0, 400), ¢(0) = 0 and

d(Tz,Ty) < d(z,y) — ¢(d(z, y)). (1.1)
The concept of the weak contraction was defined by Alber and Guerre-Delabriere
[1] in 1997. Actually in [1], the authors defined such mappings for single-valued
maps on Hilbert spaces and proved the existence of fixed points. Rhoades [20]
showed that most results of [1] are still true for any Banach spaces. Also, Rhoades
[20] proved an interesting fixed point theorem which is one of generalizations of
the Banach contraction principle because it contains contractions as special cases

(o(t) = (1 - k)t).

Theorem 1.1. [20] Let (X,d) be a complete metric space and A be a p— weak
contraction on X. If ¢ is continuous and nondecreasing function, then A has a
unique fized point.

In fact, the weak contractions are also closely related to maps of Boyd and Wong’s
type [1] and Reich’s type [19]. Namely, if ¢ is a lower semi-continuous function
from the right, then ¥(t) =t — ¢(t) is an upper semi-continuous function from the
right and moreover, (1.1) turns into d(T'z, Ty) < ¢ (d(x,y)). Therefore, the p-weak

contraction with a function ¢ is of Boyd and Wong [1]. if we define K (t) = @ for
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t > 0 and K(0) =0, then (1.1) is replaced by d(Tz,Ty) < K(d(z,y))d(z,y). Thus
the p-weak contraction becomes a Reich type one.

During the last few decades, a number of hybrid contractive mapping results
have been obtained by many mathematical researchers. For example, Song [25, 20],
Al-Thagafi and Shahzad [2], Shahzad [21] and Hussain and Junck [I1] obtained
the common fixed pint theorems of f-contraction (T(d(Tz,Ty) < kd(fz, fy))),
generalized f-contraction

(T(d(Tx,Ty) < kmax{d(fz, fy),d(Tz, fx),d(Ty, fy), %[d(fx, Ty) +d(Tz, fy)]}))

and generalized (f, g)-contraction

(T(d(Tr, Ty) < kmax{d(fz, gy), d(Tw, f),d(Ty, gy), 5[d(fz, Ty) + d(Tw, gy)]})),

respectively.
Song [21] extended the above results to f-weak contraction (d(T'z, Ty) < d(fz, fy)—

e(d(fz, fy)))-
Recently, Zhang and Song [30] proved the following theorem.

Theorem 1.2. [30] Let (X, d) be a complete metric space and T,S : X — X two
mappings such that for all x,y € X,

where ¢ : [0,400) — [0, +00) is a lower semi-continuous function with o(t) > 0 for
t>0,0(0) =0 and

Sy 7o) + d(a, Sy},

Then, there exists a unique point u € X such that Tu = Su = u.

M (z,y) = max{d(z,y),d(Tx,x),d(Sy,y)

The object of this paper is to prove a common fixed point theorem for a family
of compatible maps in a metric space.

2. MAIN RESULT

In this section, we shall prove a common fixed point theorem for any even number
of compatible maps in a complete metric space. In fact, it is a generalization of Zhang
and Song’s common fixed point theorem (Theorem 1.2).

Let (X, d) be a metric space and T a self-mapping on X. In [7], Ciri¢ introduced
and investigated a class of self-mappings on X satisfying the following condition:

d(Tz,Ty) < kmax{d(z,y),d(z,Tx),d(y, Ty), %[d(x, Ty) +d(y, Tx)]}, (¢

where 0 < k < 1. In [¢] Ciri¢ proved the following common fixed point theorem.

Theorem 2.1. Let (X,d) be a complete metric space and let {T,}acs be a family
of self-mappings on X. If there exists a fized B € J such that for each o € J and
all v,y € X

1
d(Toz$a Tﬁy) <A max{d(:v, y), d(l’, Tax)a d<y7 Tﬁy)v é[d(xa T,By) + d(y’ Ta$)]}>

where A = N«) € (0,1), then all T,, have a unique common fized point in X.
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The class of mappings satisfying the contractive definition of type of (c), as well
as its generalization, has proved useful in fixed and common fixed point theory (see

[3, 18, 23]).

Definition 2.2. [13] Self-maps A and S of a metric space (X,d) are said to be
compatible if d(ASp,, SAp,) — 0 whenever {p,} is a sequence in X such that
Ap,, Sp, — u, for some u € X, as n — oo.

Definition 2.3. [15] Self-maps A and S of a metric space (X, d) are said to be
weakly compatible if they commute at their coincidence points; i.e. if Ap = Sp for
some p € X, then ASp = SAp.

This concept is most general among all the commutativity concepts in this field, as
every pair of weakly commuting self-maps is compatible and each pair of compatible
self-maps is weakly compatible, but the reverse is not true always. Many authors
have proved common fixed point theorems for a variety of commuting self-mappings
on usual metric, as well as on different kinds of generalized metric spaces(|[3, 5,

IO, 122, 23], [27]-[29]).

Y

Theorem 2.4. [22] Let A,B,S,T,L and M be self-maps of a complete metric space
(X, d), satisfying the conditions:

(1) L(X) € ST(X), M(X) C AB(X);

(2) AB= BA,ST =TS,LB=BL,MT =TM;

(3) For all x,y € X and for some k € (0,1),

d(Lz, My) < kmax{d(Lz, ABzx),d(My, STy),d(ABz, STy),
sld(Lx, STy) + d(My, ABx)]};

(4) The pair (L, AB) is compatible and the pair (M, ST) is weakly compatible;
(5) Either AB or L is continuous.
Then, A, B, S, T, L and M have a unique common fized point.

Define ® = {p : [0,+00) — [0,+00)} where each ¢ € ® satisfies the following
conditions:
(a) ¢ is lower semi-continuous on [0, +00),
(b) ¢ is non-decreasing,
(¢) ¢(0) =0, and
(d) ¢(t) > 0 for each t > 0.
Now, we prove our main result.

Theorem 2.5. Let P, Py, -+, Py,, Qo and Q)1 be self-maps on a complete metric
space (X,d), satisfying conditions:
(1) Qo(X) C PiPs, -+ Pop 1(X), Q1(X) C PPy, - - Pop(X);
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(2)
Py(Py - Poy)
PyPy(Fe - -+ Pan)

(Py-- Pap) P,
(P Pay) P2 Py,

PQ' "P2n—2(P2n)
Qo(Py- -+ Pay)
Qo(Fs -+ Pay)

(PZn)PQ o PQn—Qa
(Py- - Pan)Qo,
(Ps - -+ Pan)Qo,

QOPQn: P2nQ07
P (Ps-- Py q)= (P3---Paopq)Pr,
P P;(Ps--- Py, 1) (Ps -+ Pop_1)P P,

Pl e P2n73(P2n71)
Ql(PB o 'P2n—1)
QI(P5 o 'P2n—1)

(P2n71)P1 e P2n737
(Ps- -+ Pop_1)Q1,
(P5 - Pypq)@Q1,

Q1P 1= Pop1Q1;
(8) Py Py, or Qo is continuous;
(4) The pair (Qo, Py - -+ Py,) is compatible and the pair (Q1, Py -+ Py, 1) is weakly
compatible;
(5) There ezists ¢ € ® such that

d(Qou, Q1v) < M(u,v) — p(M(u,v)),Vu,v € X,
where
M(U, U) = max{d(P2P4 s PQnU, qu), d(Plpg s Pgn_ﬂ), Ql’U),
d(PyPy - - Pyyu, PPy - -+ Poy,_q0),
%[d(P1P3 o Pop 10, Qou) + d(PoPy - - - Pogu, Qqv)]}

forallu,v € X. Then Py, Py, -+, Py,, Qo and Q1 have a unique common fized point
mn X.

Proof. Let g € X, from condition (1) there exist x1,zo € X such that Qozg =
PPy Py, 121 =yo and Q121 = PPy - -+ Py,xo = y;. Inductively we can construct
sequences {z,} and {y,} in X:

QoTar = P1Ps -+ Pop_1Top 41 = Yo
and
O Zok1 = PoPy -+ - Popopyo = Yort1,
for k € N.
Putting v = x, = To, v = g1 = Tomt1, G1 = PoPy -+ Py, and
Gy = PP -+ Py, in condition (5), we have

d(Qox%; Q1$2m+1) M(l’%, $2m+1) - SD(M(JU%, x2m+l))

M(l'zk, 372m+1)

maX{d(Glx%a Q(ﬂ?zk% d(G2$2m+1, Q1l’2m+1)7
d(G1JJ2k7 G2$2m+1)7

Hd(Gazamr, Qomar) + d(Grzak, Q12m+1)]}

[ IAIA
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ie.,
d(y%a y2m+1) < max{d(y%—la ka)y d(?sz, y2m+1), d(yzk—h y2m)7
%[d(mea yzk) + d(y%fl, y2m+1)]}-
Thus

1
d(?/pa yq+1) < maX{d(prly yp)a d(yqv qu)a d<yp717 Z/q)a E[d(yqv yp) + d<yp717 yq+1)]}'
If ¢ = p, then

%[d(yp—lv Yp) + A(Yp, Yps1)]
max{d(Yp—1,Yp)> A(Yp; Yp+1) }-

Thus (Yp, Yp+1) < d(yp—1,Yy,) as the inequality d(y,,Yp+1) > d(yp—1,y,) implies
M (xp, p11) = d(Yp, Yp+1) and furthermore,

%[d(yp’ yp) + d(yp—la yp—i—l)] S
<

A(Yp, Yp41) < d(Yp, Yps1) = £(d(Yp, Yp1))-
So ¢(d(Yp, Yp+1)) = 0. This is a contradiction. Hence

d(yor, Yor+1) < M (Tor, Tor+1) < d(Yor, Y2r—1).
Similarly,
d(Yar+1, Yort2) < M (Zops1, Torr2) < d(Yor, Yort1)-
Therefore, for all n € N | even or odd,

d(yna yn+1> < M(xm xn+1> < d(ynfla yn)

Thus {d(Yn,yns1)} is a decreasing and bounded below sequence. So, there exists

r > 0 such that
Hm d(Yn, Yps1) = lim M (2, Tpi1) = 7.
n—oo

n—00

Then ( by semi-continuity of ¢ )
QO(T) S lim inf @(M<xn7 In—i—l))'
n—oo
We claim that » = 0. We know

d(yna yn+1) < M(l‘n, anrl) - ¢<M<$m $n+1))'

So
r <r—lminf (M (z,, xpe1)) < 17— (1),

n—oo

i.e., p(r) < 0. Thus ¢(r) = 0 by the property of the function ¢ and furthermore,
lim d(yn, Yni1) = 0.
n—oo
Next, we show that {y,} is a cauchy sequence. Let

Cn = SUP{d(y]ayk) : k7.] Z n}

Then {C,} is decreasing. If lim, o, C,, = 0, then we are done. Assume that
lim, ., C, = C > 0. Choose ¢ < % small enough and select N such that for all
n >N,

A(Yn,Yns1) < e and C, < C+e.
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By the definition of Cy,1, there exist m,n > N + 1 such that d(y,,y,) > C, —e >
C — e. Replace y,,, by yma1 if necessary. We may assume that m is even, n is odd
and d(Ym, yn) > C — 2e. Then d(ym—1,Yn—1) > C — 4 and

d(yma yn) < M<5Uma xn) - W(M(xma xn))
S max{d(ym*b ym>> d(ynfly yn>> d(qu, ynfcl),
HdWn-1.Ym) + dWm-1,y0)]} — ©(5)-
ie.,
C
C —2e < d(Ym, yn) < max{e, &, d(Ym-1,Yn-1),Cn} — 90(5)
So

0—25<CN—<,0(§)§C—|—5—<,0(§).

This is impossible if ¢ be small enough. Thus, we must have ¢ = 0. Therefore, the
sequence {y,} is a cauchy sequence. Since X is complete, there exists some z € X
such that y,, — z. Also, for it’s subsequence we have

QoTor — 2, PoPy -+ Popwor, — 2

and
O Topy1 — 2, PLPs -+ Pop_1Top 1 — 2.
Case 1. PP, -+ P, is continuous.
Define Gy = PyPy - -+ Py,. Since G is continuous, G?zq;, — G12 and G1Qorop —
G1z. Also, as (Qo, G1) is compatible, this implies that QoGixor — G12.
(a) Putting u = P2P4 e Pgn.’I?Qk = G1$2k,?} = T2k+1 and Gg = P1P3 s Pgn_l n
condition (5), we have

d(QOGII%a Q1I2k+1) M(G1$2k7 I2k+1) - @(M(Glxzk, 962k+1))
maX{d(G12x2ka Q0G1332k), d(G2x2k+17 Q1x2k+1)7
d(G%SC%, G2x2k+1)7
Ld(Gazopr1, QoGraar) + d(Giwar, Q1ax+1)]}

2
—o(M(G12ok, Topr1))-
Letting k — oo (taking lower limit), we get

d(Gyz,2) < max{d(Gz,Gz),d(z,2),d(z,G1z2), 5[d(G1z, z) + d(G1 2, 2)]}
—liminf, . (M (G122, Tori1))
< d(Ghz,2) — p(d(Ghz,2)).
So Gz =2z. Thus BP,-- P,z = 2.
(b) Puttlng u = 2,0 = I2k+1,G1 = P2P4"'P2n and G2 = P1P3"'P2n_1 in
condition (5), we have

d(QOZ, Q1$2k+1) M(Z, $2k+1) - SO(M(Zy 372k+1))

max{d(Glz, QOZ), d(G2$2k+17 Q1l’2k+1), d(G127 G2902k+1)7
Hd(Googir, Qoz) + d(Grz, Qo)) — (M (2, Togi1)).

Letting k — oo (taking lower limit), we get
d(QOZa Z) S max{d(z, QOZ)J d(zv Z)7 d(z7 Z)? %d(z, QOZ)}
—p(M(z, Qo).
So d(Qoz,z) < d(z,Q0z) — @(M(z,Qz)). Hence Qoz = z. Therefore Qpz =
BPy-- - Pyz = z.

A

[ IA



TWO COMMON FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS 13

(C) Puttingu:P4~--P2nZ,v:x2k+1,G1 :P2P4"'P2n and GQ :P1P3"'P2n_1
in condition (5) and using the condition Py(Py -+ - Payp) = (Py- -+ Py,) P> and
Qo(P4 s Pgn) = (P4 tee P2n)Qo in condition (2), we get

d(QoPy- -+ Ponz, Qiopy1) < M(Py--- Popz,xop11) — (M (Py -+ Popz, Top 1))
= max{d(G1 Py Pz, GoTopi1), d(GoZopy1, Q1T2k41),
d(G1P4'"PQnZaQOP4"'P2n)7
%[d(G2$2k+17 QoPy- - Popz) +d(G 1Py - Payz,
Q1$2k+1)}} - SO(M(P4 o Popz, $2k+1))-

Letting k — oo, (taking lower limit) we get

d(Py- - Popz,2) < max{d(Py- - Pz, Py Pon2),d(2,2),d(Py- - Poyz, 2),
5ld(z, Py Ponz) + d(Py - - Poyz, 2)]}
—QD(M(P4 "PQTLZ, Z))

Hence, it follows that Py --- Ps,z = 2. Then Py(Py -+ Py,)z = Poz = z. Continuing
this procedure, we obtain Qpz = Poz = Pz = -+ = P,z = 2.

(d) As Qo(X) C PPy Pop_1(X), there exists v € X such that PPy -+ Py, v =
Qoz = z. Putting u = 29, Gy = P3Py Py, and Gy = P P3 - - P, 1 in condition
(5), we have

d(Qowar, Q1v) < M (2o, v) — (M (22k,v))
= max{d(Gla:‘gk, Qol'gk), d(GQ’U, Q1U>, d(Glek, GQ’U),
Ld(Gav, Qowar) + d(Graar, Quv)]} — o(M (2, v)).

Letting k — oo, (taking lower limit) we get
d(z,Qv) < max{d(z, z),d(z, Qv),d(z,2), 1[d(z, z) + d(z, Qv)]}
_90<d(27 le)>‘
So Qv = z. Hence PiP3--+ Py, v = Qv =2z As (Q, PLPs- - Py, 1) is weakly
compatible, we have

P1P3"'P2n—1Q1v:Q1P1P3"'P2n—1v~

Thus P1P3 s Pgn,lz = le.
(e) Puttlng U= o,V = 2, G1 = P2P4 cee Pgn and GQ = P1P3 cee PQn_l in condition
(5), we have

d(Qozar, Q12) < M (29k, 2) — (M (225, 2))
= max{d(Glek, Qol'gk), d(GQZ, le), d(Glxgk, GQZ),
Hd(Gaz, Quzar) + d(Graak, Q12)]} — (M (wax, 2)).

Letting k — oo, (taking lower limit) we get

d(z,0Q12) < max{d(z’z)vd(le)le)’d(Z)le)7%[d(leu z) +d(z,Q12)]}
—p(d(Q12, 2)).
Therefore )1z = z. Hence PIP3 -+ Py, 12 = Q12 = 2.

(f) Putting w = 2ok, v = P3- -+ Pay_12,G1 = PoyPy -+ Py, and Gy = PiPs -+ Py
in condition (5) and using the conditions Py (Ps--- Pap—1) = (Ps--- Py,—1) P and
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Qi1(Ps--- Py, q) = (P3-- Py, 1)@ in condition (2), we get

d(@of@k, O Fs - 'Pzn—lz) < M(lﬂzk, Ps- - P2n—12) - SO(M(IE%, Py P2n—12))
= maX{d(GﬂQk, Qo@k), d(Glmzk, GoPs--- P2n712),
d(G2P3 Py 12,1 P - P2n712)7
Hd(GoPy - -+ Pay_12, Qomor) + d(Graay,
O Ps- - PQn—1Z)]
—QD(M(I’Q]C, P3 e P2n_1z)).

Letting k — oo, (taking lower limit) we get

d(Za P3--- P2nflz) < max{d(P3 o Pop 2, Py P2n712)7 d(Za P3--- P2n712)7
d(Z, 2)7 %[d(Pfi U P2n—1Z7 Z) + d(Z7 P3 U PQn—lz)]}
—QO(d(Z, P3 cee Pgn_12’>).

So P3--+ Py, 1z = z. Therefore P/(Ps--- P, 12) = Pz = z. Continuing this
procedure, we have

Qz=Pz=PFPz=---= Py 12=12.
Thus, we have proved
QOZ:lezplz:PQZ:“‘:Panlz:PQnZ:Z.

Case 2. Qg is continuous.
Since Q) is continuous, Q3wor — Qoz. As (Qo, PoPy- -+ P,) is compatible, we
have
PyPy -+ Py Qoo — Qoz.

(g) Putting u = Qoxok, v = Topt1,G1 = PoPy- - Py, and Gy = PP+ Pa,_4 in
condition (5), we have

d(Qfwon, Q1Zop1) < M(QoTok, Tog+1) — (M (QoZak, Tart1))
= max{d(G1QoTax, Q%xzk), d(Goopi1, Q1T2k41),
d(GlQox%GﬂQkH)a
Hd(Gozapir, Q3war) + d(G10Qowak, Q1Tor41)]}
— (M (QoTak, Tort1))-

Letting k — oo, (taking lower limit) we get

d(Qoz, z) < max{d(Qoz, Qoz),d(z,2),d(Qoz, 2), 3d(z, Qvz) + d(Qoz, 2)]}
—(d(Qoz, 2)).

Therefore Qpz = z. Now using step (d), (e), (f) and continuing step (f) gives us
QIZ:P12:P32:"':P2”_1Z:Z

(h) As Q1(X) C PyPy- -+ Pop(X), there exists w € X such that PPy - Py,w =
le = Z. Puttlng uUu=w,v = x?k—i—laGl = P2P4"'P2n and G2 = P1P3"'P2n_1 in
condition (5), we have

d(QOUJ, Q1$2k+1> M(wa x2k+1) - SO(M@Ua 33'2k+1))
max{d(le, Qow), d(G2$2k+17 Q1372k+1)7 d(GlUJ, G2$2k+1)7
%[d(Gﬂ%H, Qow) + d(Grw, Q1x9x11)]}

—p(M(w, z9541)).

I IA
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Letting k — oo, (taking lower limit) we get

d(Qow, z) < max{d(z, Qow),d(z, 2),d(z, z), %[d(z, Qow) +d(z, 2)]}
_SO(M(Za QOw))

So Qow = z. Hence Q()U} = P2P4---P2nw = z. As (Qo,P2P4"'P2n) is Weakly
compatible, we have

Q0P2P4"'P2nw:P2P4"'P2nQ0w-

Hence Qoz = PyPy - - Py,z = z. Similarly to in step (c) it can be shown that
Qoz = Pz =+ = P,z = z. Thus, we have proved that

Qoz:le:Plz:sz:---:PQn_lz:Pan:z.

To prove the uniqueness property of z, let 2z’ be another common fixed point of
the aforementioned maps; then

/ / / / /
Q()Z :QlZ :Plzlz.PQZ :"':P2n_1ZIZP2nZ =2Z.

Putting u = z,v = 2/,G; = PP, -+ Pa, and Gy = Py P3--- Py, ; in condition (5),
we have

d(Qoz,@12") < M(z,2) —p(M(z, 7))
= max{d(Giz,Qz),d(G22',Q12'),d(G:1z,Gs2’),
$d(G27', Quz) + d(Ghz, Q12")]} — p(M(z,2")).

Then d(z,7') < d(z,2") — p(d(z,2")). So z =z’ and this shows that z is a unique
common fixed point of the maps. OJ

Remark 2.6. Theorem 1.2 is a special case of Theorem 2.5 with Qg = S, Q1 =T
and P; = I(identity map) for all 1 < i < 2n. Also, Theorem 2.5 is a generalization
of Theorem 2.4 with ¢(t) = (1 — k)t.

Theorem 2.7. Let (X,d) be a complete metric space and let {Ty}acs and {P;}2"
be two families of self-mappings on X. Suppose, there exists a fived B € J such that
(1) Ta(X> g P2P4, s Pgn(X> fOT each o € J and Tg(X) Q P1P3, s 'Pgn_l(X),'

(2)
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Py(Py- Pop) = (Py--- Pon) P,
PyPy(Fo -+ Pon) = (Po- -+ Pan) P21y,

PQ"'P2n72(P2n): (PZn)PQ"'Pan%
Tﬁ(p4...p2n) = (P4~~-P2n)Tﬁ,
TB(P6"'P2n): (PG"'P%)TL%

TBP2n :PQnT,Ba
Pi(Ps-+Pop) = (P3-+- Pan1)Py,
P1P3(P5"'P2n71): (P5"'P2n71)P1P37

Pro Poy 3(Pon1) = (Pon—1)Pr--- Paps,
To(Py-+ Pop1) = (P53 Pon1)Ta,
To(Ps-+ Pop1) = (F5+ Pan1)Ta,

TaP2n71 = P2n71Ta7 (VO& € J)a
(8) Py Py, or Ts is continuous;
(4) The pair (T, Py --- Py,) is compatible and the pairs (Tp, Py -+ Py,_1) are weakly
compatible;
(5) There ezists ¢ € ® such that
d(Tpu, Tyv) < M(u,v) — o(M(u,v)), for all u,v € X and for all o € J, where

M(u,v) = max{d(PyPy--- Poyyu,Tpu),d(P,Ps- - Py,_10,T,v),
d(P2P4'"PZnU/aPlPS"'PanlU)a
%[d(Plpg, s Pgn_ll), Tgu) —|— d(PQ s Pgnu, Tal))]}

Then, all P; and T, have a unique common fixed point in X.

Proof. Let T, be a fixed element of {T,}ses. By Theorem 2.5 with Qy = T}
and Q; = T,, it follows that there exists some z € X such that Tz = T,z =
PPy Py, 1z2=PP--- P,z =z Let a € J be arbitrary. Then from condition

(5),
d(Tpz, Toz) < max{d(PoPy--- Ponz,Tpz),d(P1Ps- - Poy_12,T42),
A(PaPy -+ Popz, PPy Pyp12),
%[d(Plpg cee Pgn_lz, T@Z) + d(P2 s PQnZ, TQZ>]} - gO(M(Z, Z))
So d(z,Ty2z) < d(z,Thz) — ¢(d(z,T42)). Thus T,z = z for each a € J. Since
condition (5) implies the uniqueness of the common fixed point, Theorem 2.7 is
proved. 0

Remark 2.8. Theorem 2.1 is a special case of Theorem 2.7 with P, = I (identity
map), for all 1 <i < 2n and ¢(t) = (1 — M)t

Now, we prove a common fixed point for any number of mappings.

Corollary 2.9. Let Py, Py, Py, -+ , P, be self-maps on a complete metric space (X, d)
satisfying conditions:

(1) Po(X) C PP, Po(X);
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(2)

P (Py---P,) (Py--- P,) Py,
P Py(Ps---P,) = (Ps---P,)P P,

Pl"'Pn—l(Pn): (Pn)PIPn—h

(8) There exists ¢ € ® such that
d(Pyu,v) < M(u,v) — @(M(u,v)), for all u,v € X where

M(u,v) = max{d(u, Pou),d(P\Py--- P,v,v),
d(u, PPy -+ Pyv), 3[d(P1 P - - - Pyv, Pou) + d(u, v)]}.

Then, Py, P1, Py, -, P, have a unique common fixed point in X.
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