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Abstract

In this paper, the invariant subspace method is generalized and improved and is then used to have an
exact solution for a wide class of the linear/ non-linear mixed fractional partial differential equations
(FPDEs); with constant, non-constant coefficients. Some examples are given here to illustrate the
efficiency of this method.
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1. Introduction

In the last decades shown that derivatives and integrals of arbitrary order are very convenient
for describing properties of real materials. The new fractional- order models are more satisfying the
former integer-order ones. In fact, a natural phenomenon may depend not only on the time instant
but also on the previous time history, which can be modelled by fractional calculus. So motivated
by this reasons, it is important to find efficient methods for solving fractional partial differential
equations (FPDEs).

Recently, investigations have shown that a new method based on the invariant subspace provides
an effective tool to find the exact solution of FDEs. This method was initially proposed by Galak-
tionov and Svirshchevskii [3, 13, 4]. The invariant subspace method was developed by Later Gazizov
and Kasatkin [5], Harris and Garra [6, 7], Sahadevan and Bakkyaraj [11], and Ouhadan and El Kinani
[9]. In [12], Sahadevan and Prakash showed how the invariant subspace method could be extended
to time fractional partial differential equations (FPDEs), ∂αu

∂ tα
= F [u] and could construct their
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exact solutions. Where F [.] is a nonlinear differential operator, ∂α

∂ tα
(.) is a fractional time derivative

in the Caputo sense.
In [1], S. Choudhary and V. Daftardar-Gejji developed the invariant subspace method for deriving

exact solutions of partial differential equations with fractional space and time derivatives.

n∑
j=0

λj
∂α+j

∂ tα+j
u(x, t) = N

(
x, u,

∂β

∂xβ
,
∂β+1

∂xβ+1
, . . . ,

∂β+m

∂xβ+m

)
.

All fractional partial derivatives are in Caputo sense, and N [u] is a linear - nonlinear operator and
α, β ∈ (0, 1], m, n ∈ N.

In [14], K.V. Zhukovsky used the inverse differential operational method to obtain solutions for
differential equations with mixed derivatives of physical problems. In [8], Jun Jiang, Yuqiang Feng
and Shougui Li develop the invariant subspace method for finding exact solutions to some nonlinear
partial differential equations with fractional-order mixed partial derivatives (including both fractional
space derivatives and time derivatives).

n∑
j=0

λj
∂α+j

∂ tα+j
u(x, t) = N

(
x, u,

∂β

∂xβ
,
∂β+1

∂xβ+1
, . . . ,

∂β+m

∂xβ+m

)
+ µ

∂α

∂tα

( ∂β

∂xβ
u
)

(1.1)

a < α ≤ a+ 1, b < β ≤ b+ 1, a, b ∈ N, λj, µ ∈ R.

In this paper, motivated by the above results, we improve this method by extension it to another
forms through argue different cases of (1.1).
Also, we are going to argue the case λi is a function of t.

By invariant subspace method, the FPDEs are reduced to the systems of FDEs that can be
solved by familiar analytical methods. This paper is as follows, in section 2 the preliminaries and
notations are given. In Section 3, we develop the invariant subspace method for solving fractional
space and time derivative nonlinear partial differential equations with fractional-order mixed deriva-
tives. In Section 4, illustrative examples are given to explain the applicability of the method. Finally
in Section 5, we give conclusions.

2. Preliminaries

In this section, we give some important definitions and notation which are needed in our work.

Definition 2.1. [10] The Riemann–Liouville fractional integral of order α for a function f is
defined as

Jαf(t) =
1

Γ(α)

∫ t

0

(t− x)α−1f(x) dx α, t > 0

The R− L fractional integral operator has the following properties:

� Jα is a linear operator.

� J0 = I.

� limα→0 Jα = J0.

� Has semigroup property; i.e Jα Jβ = Jβ Jα = Jα+β.
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Definition 2.2. [10] The Caputo fractional derivative of positive order α for a function f is defined
as

∂α

∂tα
f(t) = Jn−αDnf(t) =


1

Γ(n−α)

∫ t

0
f (n)(x)

(t−x)n−α+1 n ̸= α

f (n)(x) n = α

Some properties of fractional Caputo derivative and fractional R− L integral are:

� Jαtβ = Γ(1+β)
Γ(1+α+β)

tα+β α > 0, β > −1, t > 0

�
dα

dtα
tβ =


Γ(1+β)

Γ(1+β−α)
tβ−α n− 1 < α < n, β > n− 1, β ∈ R

0 n− 1 < α < n, β ≤ n− 1, β ∈ N

�
∂α

∂ tα

(
Jα
)
= I

� Jα
(

∂α

∂ tα
f(t)

)
= f(t)−

∑n−1
i=0

ti

i!
f (i)(0)

�
∂α

∂ tα

(
∂β

∂ tβ
f(t)

)
= ∂β

∂ tβ

(
∂α

∂ tα
f(t)

)
= ∂α+β

∂ tα+β f(t) provided f (i) = 0, i = 0, 1, . . . , n− 1, α + β ≤
n, n ∈ N

Definition 2.3. [10] A two parameters Mittag-Leffler function is defined as:

Eα,β(x) =
∞∑
k=0

xk

Γ(αk + β)
α, β ∈ C, R(α), R(β) > 0

Remark 2.4. A Mittag-Leffler function has an interesting properties [10]:
� Eα, 1(x) = Eα(x)

� E1, 1(x) = ex

� E2,1(x
2) = cosh x

� x E2,2(x
2) = sinhx

� E1,0(x) = xex

� E2,1(−x2) = cos x

� x E2,2(−x2) = sinx

Remark 2.5. Fractional Caputo derivatives of Mittag-Leffler are given as [2]:

� E
(n)
α,β(x) =

∑∞
k=0

(k+n)!xk

k!Γ(αk+αn+β)
n ∈ N

�
dα

dtα

(
Eα(at

α)
)
= aEα(at

α) α > 0, a ∈ R

�
dγ

dtγ

(
tβ−1Eα,β)(at

α)
)
= tβ−γ−1Eα,β−γ(at

α) γ > 0.

If the Lapalce transform of the function f(t) exist, then the Laplace transform of the α − th order
Caputo derivative is given by [2] :

L(Dα
t f(t)) = sα

[
F (s)−

n−1∑
i=0

s−n−1f (n)(0)

]
n ∈ N, n− 1 < α < n, R(s) > 0

where L(f(t)) = F (s) =
∫∞
0
e−st f(t) dt.

Some important Laplace transformation of Mittag-Leffler function which are need are:
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1. L{tαn+β−1E
(n)
α,β(±atα)} = n!sα−β

(sα∓a)n+1 n ∈ N, R(s) > |a|1/a

2. L
{
tα−γ−1

∑∞
n=0

∑∞
k=0

(−bn) (−a)k (n+k
k )

Γ[k(α−β)+(n+1)α−γ]
tk(α−β)+nα

}
= sγ

sα+a sβ+b

We call the finite dimension linear space In over R which spanned by n linearly independent
functions ϕi(x), i = 0, 1, . . . , n − 1, is invariant with respect to a differential operator M if M[u] ∈
In, ∀u ∈ In

3. The fractional mixed partial differential equations

In this section we have generalized the invariant subspace method which states in [8] by given the
cases of improvements to this method through adding new operators under some specific assumptions,
such as the subspace has a base of Mittag-Leffler functions are finite members.

Case one

m1∑
j=0

λj
∂α+j

∂tα+j
u = N [u] + µ1

∂α

∂tα

( ∂β

∂xβ
u
)
+ µ2

∂β

∂xβ

( ∂α
∂tα

u
)

(3.1)

where

u = u(x, t), N [u] = N
(
x, u,

∂β

∂xβ
u,

∂1+β

∂x1+β
u, . . . ,

∂m2+β

∂xm2+β
u
)

a− 1 < α < a, b− 1 < β < b, a, b ∈ N, λj, µ1, µ2 ∈ R

Theorem 3.1. Suppose In+1 = L{ϕ0(x), ϕ1(x), . . . , ϕn(x)} is a finite- dimensional linear space,

and it is invariant with respect to the operators N [u], ∂β

∂xβ u and ∂α

∂tα
u then FPDE (3.1) has an exact

solution as follows:

u(x, t) =
n∑

i=0

ki(t)ϕi(x) (3.2)

where {ki(t)} satisfies the following FDEs :

m1∑
j=0

λj
dα+j

dtα+j
ki(t)− µ1

dαψn+1+i

dtα
− µ2 ψ2n+2+i = ψi, i = 0, . . . , n (3.3)

where {ψ0, ψ1, . . . , ψn}, {ψn+1, ψn+2, . . . , ψ2n+1}, {ψ2n+2, ψ2n+3, . . . , ψ3n+2} are the expansion coeffi-

cients of N [u], ∂β

∂xβ u,
∂α

∂tα
u respectively with respect to {ϕ0(x), ϕ1(x), . . . , ϕn(x)}.

Proof . By the linearity of Caputo fractional derivative, equation (3.1) is as follows:

m1∑
j=0

λj
∂α+j

∂tα+j
u =

m1∑
j=0

λj
∂α+j

∂tα+j

n∑
i=0

ki(t)ϕi(x) =

m1∑
j=0

λj

n∑
i=0

dα+jki(t)

dtd+j
ϕi(x)

=
n∑

i=0

m1∑
j=0

λj
dα+jki(t)

dtd+j
ϕi(x)

(3.4)
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As In+1 is an invariant space under the operators N [u], ∂β

∂xβ u, and ∂α

∂tα
u there exist 3n+3 functions

ψ0, ψ1, . . . , ψn; ψn+1, ψn+2, . . . , ψ2n+1; ψ2n+2, ψ2n+3, . . . , ψ3n+2 all of k0(t), k1(t), . . . , kn(t) such that

N
( n∑

i=0

ki(t)ϕi(x)
)
=

n∑
i=0

ψi ϕi(x) (3.5)

∂β

∂xβ
u(x, t) =

n∑
i=0

ψn+1+i ϕi(x) (3.6)

∂α

∂tα
u(x, t) =

n∑
i=0

ψ2n+2+i ϕi(x) (3.7)

where {ψ0, ψ1, . . . , ψn}, {ψn+1, ψn+2, . . . , ψ2n+1}, {ψ2n+2, ψ2n+3, . . . , ψ3n+2} are the expansion coeffi-

cients of the operators N [u], ∂β

∂xβ u and ∂α

∂tα
u respectively with respect to {ϕ0(x), ϕ1(x), . . . , ϕn(x)}.

By equations (3.2), (3.5) , (3.6), and (3.7)

N [u] + µ1
∂α

∂tα

( ∂β

∂xβ
u
)
+ µ2

∂β

∂xβ

( ∂α
∂tα

u
)

=
n∑

i=0

ψi ϕi(x) + µ1
∂α

∂tα

( n∑
i=0

ψn+1+i ϕi(x)
)
+ µ2

∂β

∂xβ

( n∑
i=0

ψ2n+2+i ϕi(x)
)

=
n∑

i=0

ψi ϕi(x) + µ1

( n∑
i=0

dα

dtα
ψn+1+i ϕi(x)

)
+ µ2

( n∑
i=0

ψ2n+2+i
dβ

dxβ
ϕi(x)

)
=

( n∑
i=0

ψi + µ1

n∑
i=0

dα

dtα
ψn+1+i + µ2

n∑
i=0

ψ2n+2+i

)
ϕi(x)

By our assumption and properties of Mittag-Leffler function, we get dβ

dxβϕi(x) = ϕi(x).
So, equation (3.1) reads

n∑
i=0

[
m1∑
j=0

λj
dα+jki(t)

dtd+j

]
ϕi(x) =

( n∑
i=0

ψi + µ1

n∑
i=0

dα

dtα
ψn+1+i + µ2

n∑
i=0

ψ2n+2+i

)
ϕi(x)

n∑
i=0

( m1∑
j=0

λj
dα+jki(t)

dtd+j
− ψi − µ1

dα

dtα
ψn+1+i − µ2ψ2n+2+i

)
ϕi(x) = 0

Since ϕi(x) are linearly independent, we obtain the following FDEs :

m1∑
j=0

λj
dα+jki(t)

dtd+j
= µ1

dα

dtα
ψn+1+i + µ2ψ2n+2+i + ψi

□

Example 3.2. Consider the following nonlinear fractional mixed partial differential equation:

∂α

∂tα
u = 2

(
u

∂β

∂xβ
u − u2

)
+
∂α

∂tα

( ∂β

∂xβ
u
)
+

∂β

∂xβ

( ∂α
∂tα

u
)

0 < α < 1, 1 < β ≤ 2. (3.8)



1692 Mohammed, Shather

Let I2 = {1, Eβ(x
β)} is invariant subspace under the operators N [u] = 2

(
u ∂β

∂xβ u − u2
)
, f [u] =

∂β

∂xβ u and g[u] = ∂α

∂tα
u as, f u ∈ I2, then

N [u] = N [a+ bEβ(x
β)] = 2

(
a+ bEβ(x

β)
)(
bEβ(x

β)
)
− 2

(
a+ bEβ(x

β)
)2

= −2a2 − 2abEβ(x
β) ∈ I2

f [u] = b Eβ(x
β) ∈ I2

g[u] = 0 ∈ I2.

Then according to Theorem (3.1) and equation (3.3), we obtain the following solved FDEs:

dα

dtα
k0(t) = −2k20(t) + (0) +

dα

dtα
k0(t) =⇒ k0(t) = 0

dα

dtα
k1(t) + 2k0(t)k1(t) =

dα

dtα
k1(t) +

dα

dtα
k1(t) =⇒ dα

dtα
k1(t) = 0 =⇒ k1(t) = a.

Hence, (3.8) has the exact solution

u(x, t) = k0(t) + k1(t)Eβ(x
β) = a Eβ(x

β)

It is obovious that, when α = 1, β = 2, the standard equation (3.8) u̇ = 2u(u
′′ − u) + ˙(u′′) + (u̇ )

′′

has the exact solution u(x, t) = a coshx.

Case two

m1∑
j=0

∂α+j

∂tα+j
u = N [u] +

(
µ1
∂α

∂tα
+ µ2

∂β

∂tβ

)( ∂β

∂xβ
u
)

(3.9)

where u = u(x, t), N [u] = N
(
x, u,

∂β

∂xβ
u,

∂1+β

∂x1+β
u, . . . ,

∂m2+β

∂xm2+β
u
)

a− 1 < α < a, b− 1 < β < b, a, b ∈ N, λj, µ1, µ2 ∈ R

Theorem 3.3. Suppose In+1 = L{ϕ0(x), ϕ1(x), . . . , ϕn(x)} is a finite- dimensional linear space,

and it is invariant with respect to the operators N [u], ∂β

∂xβ u then FPDE (3.9) has an exact solution
as follows:

u(x, t) =
n∑

i=0

ki(t)ϕi(x) (3.10)

where {ki(t)} satisfies the following FDEs :

m1∑
j=0

λj
dα+j

dtα+j
ki(t)− µ1

dαψn+1+i

dtα
− µ2

dβψn+1+i

dtβ
= ψi, i = 0, . . . , n (3.11)

where {ψ0, ψ1, . . . , ψn}, and {ψn+1, ψn+2, . . . , ψ2n+1}, are the expansion coefficients of N [u], ∂β

∂xβ u,
respectively with respect to {ϕ0(x), ϕ1(x), . . . , ϕn(x)}.
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Proof . By the linearity of Caputo fractional derivative, the left hand side of equation (3.1) is as
follows:

m1∑
j=0

λj
∂α+j

∂tα+j
u =

m1∑
j=0

λj
∂α+j

∂tα+j

n∑
i=0

ki(t)ϕi(x) =

m1∑
j=0

λj

n∑
i=0

dα+jki(t)

dtd+j
ϕi(x) =

n∑
i=0

m1∑
j=0

λj
dα+jki(t)

dtd+j
ϕi(x)

(3.12)

As In+1 is an invariant space under the operators N [u], ∂β

∂xβ u, there exist 2n+ 2 functions
ψ0, ψ1, . . . , ψn; ψn+1, ψn+2, . . . , ψ2n+1 all of k0(t), k1(t), . . . , kn(t) such that

N [u] = N
( n∑

i=0

ki(t)ϕi(x)
)
=

n∑
i=0

ψi ϕi(x) (3.13)

∂β

∂xβ
u(x, t) =

n∑
i=0

ψn+1+i ϕi(x) (3.14)

where {ψ0, ψ1, . . . , ψn} and {ψn+1, ψn+2, . . . , ψ2n+1}, are the expansion coefficients of N [u], and ∂β

∂xβ u
respectively with respect to {ϕ0(x), ϕ1(x), . . . , ϕn(x)}.
Substitute equations (3.12), (3.13) and (3.14) in (3.9)

N [u] +
(
µ1
∂α

∂tα
+ µ2

∂β

∂tβ

)( ∂β

∂xβ
u
)

=
n∑

i=0

ψi ϕi(x) + µ1
∂α

∂tα

( n∑
i=0

ψn+1+i ϕi(x)
)
+ µ2

∂β

∂tβ

( n∑
i=0

ψn+1+i ϕi(x)
)

=
n∑

i=0

ψi ϕi(x) + µ1

( n∑
i=0

dα

dtα
ψn+1+i ϕi(x)

)
+ µ2

( n∑
i=0

dβ

dtβ
ψn+1+i ϕi(x)

)
=

( n∑
i=0

ψi + µ1

n∑
i=0

dα

dtα
ψn+1+i + µ2

n∑
i=0

dβ

dtβ
ψn+1+i

)
ϕi(x)

So, equation (3.1) reads

n∑
i=0

[
m1∑
j=0

λj
dα+jki(t)

dtd+j

]
ϕi(x) =

( n∑
i=0

ψi + µ1

n∑
i=0

dα

dtα
ψn+1+i + µ2

n∑
i=0

dβ

dtβ
ψn+1+i

)
ϕi(x)

n∑
i=0

( m1∑
j=0

λj
dα+jki(t)

dtd+j
− ψi − µ1

dα

dtα
ψn+1+i − µ2

dβ

dtβ
ψn+1+i

)
ϕi(x) = 0

Since ϕi(x) are linearly independent, we obtain the following FDEs :

m1∑
j=0

λj
dα+jki(t)

dtα+j
− µ1

dα

dtα
ψn+1+i − µ2

dβ

dtβ
ψn+1+i = ψi

□

Example 3.4. Consider the following fractional partial mixed derivatives:

∂α

∂tα
u =

∂β

∂xβ

( ∂β

∂xβ
u
)
−

( ∂α
∂tα

+
∂β

∂tβ

)( ∂β

∂xβ
u
)

0 < α ≤ 1, 1 < β ≤ 2 (3.15)
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Consider I2 = {1, Eβ(x
β)} is invariant subspace under the operators N [u], ∂β

∂xβ u as:

N [u] =
∂β

∂xβ

( ∂β

∂xβ
u
)
=

∂β

∂xβ

[
∂β

∂xβ

(
c0 + c1Eβ(x

β)
)]

=
∂β

∂xβ

(
c1Eβ(x

β)
)
= c1Eβ(x

β) ∈ I2

∂β

∂xβ
u = c1Eβ(x

β) ∈ I2

So, according Theorem (3.3), we have the following FDEs :

dα

dtα
k0(t) = 0 (3.16a)

dα

dtα
k1(t) = − dα

dtα
k1(t)−

dβ

dtβ
k1(t) + k1(t) (3.16b)

Equation (3.16a) yields k0(t) = a, and substitute in equation (3.16b)

dβ

dtβ
k1(t) + 2

dα

dtα
k1(t) = k1(t) By fractional Laplace transformation

sβ
[
F (s)− b

s
− c

s2

]
+ 2sα

[
F (s)− b

s

]
= F (s) where k1(0) = b, ḱ1(0) = c(

sβ + 2sα − 1
)
F (s) = bsβ−1 + csβ−2 + 2bsα−1

F (s) =
bsβ−1 + csβ−2 + 2bsα−1

sβ + 2sα − 1

Applying the inverse Laplace transformation and by properies of Laplace transform for the Mittag-
Leffler function which states in section(2), we have

k1(t) = A+B + C,

where

A = b

∞∑
n=0

∞∑
k=0

(−2)k
(
n+k
k

)
Γ [k(β − α) + nβ + 1]

tnβ+k(β−α)

B = c t

∞∑
n=0

∞∑
k=0

(−2)k
(
n+k
k

)
Γ [k(β − α) + nβ + 2]

tnβ+k(β−α)

C = 2b tβ−α

∞∑
n=0

∞∑
k=0

(−2)k
(
n+k
k

)
Γ [k(β − α) + (n+ 1)β + 1− α]

tnβ+k(β−α)

Thus, the exact solution of equation (3.15) is

u(x, t) = k0(t) + k1(t)Eβ(x
β) =

[
a+

(
A+B + C

)]
Eβ(x

β)

However, if we put α = 1, and β = 2, then we have

u(x, t) =

[
a+ b e−t cosh(

√
2 t) +

b+ c√
2
e−t sinh(

√
2 t)

]
coshx
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Case three

In the next theorem, we argue a new form of the invariant subspace method where the coefficients
in the left hand side of Eq. (1.1) is a function.

n∑
j=0

λj(t)
∂α+j

∂ tα+j
u(x, t) = N

(
x, u,

∂β

∂xβ
,
∂β+1

∂xβ+1
, . . . ,

∂β+m

∂xβ+m

)
+ µ

∂α

∂tα

( ∂β

∂xβ
u
)

(3.17)

Theorem 3.5. Suppose In+1 = L{ϕ0(x), ϕ1(x), . . . , ϕn(x)} is a finite- dimensional linear space,

and it is invariant with respect to the operators N [u] and ∂β

∂xβ u then FPDE (3.17) has an exact
solution as follows:

u(x, t) =
n∑

i=0

ki(t)ϕi(x) (3.18)

Where {ki(t)} satisfies the following system of FDEs with variable coefficients:

m1∑
j=0

λj(t)
dα+j

dtα+j
ki(t)− µ

dαψn+1+i

dtα
= ψi, i = 0, . . . , n (3.19)

where {ψ0, ψ1, . . . , ψn}, {ψn+1, ψn+2, . . . , ψ2n+1} are the expansion coefficients of N [u], ∂β

∂xβ u re-
spectively with respect to {ϕ0(x), ϕ1(x), . . . , ϕn(x)}
Proof . By the linearity of Caputo fractional derivative, equation (3.17) is as follows:

m1∑
j=0

λj(t)
∂α+j

∂tα+j
u =

m1∑
j=0

λj(t)
∂α+j

∂tα+j

n∑
i=0

ki(t)ϕi(x) =

m1∑
j=0

λj(t)
n∑

i=0

dα+jki(t)

dtd+j
ϕi(x)

=
n∑

i=0

m1∑
j=0

λj(t)
dα+jki(t)

dtd+j
ϕi(x)

(3.20)

As In+1 is an invariant space under the operators N [u], ∂β

∂xβ u there exist 2n+ 2 functions
ψ0, ψ1, . . . , ψn; ψn+1, ψn+2, . . . , ψ2n+1 all of k0(t), k1(t), . . . , kn(t) such that

N
( n∑

i=0

ki(t)ϕi(x)
)
=

n∑
i=0

ψi ϕi(x) (3.21)

∂β

∂xβ
u(x, t) =

n∑
i=0

ψn+1+i ϕi(x) (3.22)

where {ψ0, ψ1, . . . , ψn}, {ψn+1, ψn+2, . . . , ψ2n+1}are the expansion coefficients of N [u], ∂β

∂xβ u respec-
tively with respect to {ϕ0(x), ϕ1(x), . . . , ϕn(x)}. Thus

N [u] + µ
∂α

∂tα

( ∂β

∂xβ
u
)
=

n∑
i=0

ψi ϕi(x) + µ
∂α

∂tα

( n∑
i=0

ψn+1+i ϕi(x)
)

=
n∑

i=0

ψi ϕi(x) + µ

n∑
i=0

dα

dtα
ψn+1+i ϕi(x)

=
( n∑

i=0

ψi + µ
n∑

i=0

dα

dtα
ψn+1+i

)
ϕi(x)
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So, (3.17) reads

n∑
i=0

[
m1∑
j=0

λj(t)
dα+jki(t)

dtd+j

]
ϕi(x) =

( n∑
i=0

ψi + µ

n∑
i=0

dα

dtα
ψn+1+i

)
ϕi(x)

n∑
i=0

( m1∑
j=0

λj(t)
dα+jki(t)

dtd+j
− ψi − µ

dα

dtα
ψn+1+i

)
ϕi(x) = 0

Since ϕi(x) are linearly independent, we obtain the following FDEs :

m1∑
j=0

λj(t)
dα+jki(t)

dtd+j
− µ

dα

dtα
ψn+1+i = ψi

□

Example 3.6. Consider the following fractional partial differential equation

tαDα
t u = Γ(1 + α)

(
2u−Dβ

xu
)
, 0 < α, β ≤ 1 (3.23)

Let I2 = {1, Eβ(x
β) be an invariant subspace under the operator N [u] = Γ(1+α)

(
2u−Dβ

xu
)
as for

u ∈ I2, N [u] = Γ(1 + α)
[
2
(
c0 + c1Eβ(x

β)
)
− c0Eβ(x

β)
]
= Γ(1 + α)

(
2c0 + c1Eβ(x

β)
)

∈ I2

So, according to Theorem (3.3), we have the following FDE system with variable coefficients:

tα
dα

dtα
c0(t) = 2Γ(1 + α)c0(t) (3.24a)

tα
dα

dtα
c1(t) = Γ(1 + α)c1(t) (3.24b)

If we put c1(t) = btγ in (3.24b), then

tα
dα

dtα
c1(t) =

tαbΓ(γ + 1)tγ−α

Γ(1 + γ − α)
=

bΓ(γ + 1)tγ

Γ(1 + γ − α)
= bΓ(1 + α)tγ =⇒ α = γ =⇒ c1(t) = btα.

Also, we get c0(t) = 0 in (3.24a).
Consequently, the solution of (3.23) is u(x, t) = c0(t) + c1(t)Eβ(x

β) = btα Eβ(x
β).

which easy to check that it is exact.

Conclusion

The invariant subspace method has been known as a powerful tool for solving many space, time,
space-time and mixed non-linear fractional differential equations. In this paper, we have presented an
extension of this method to solve some of non-homogeneous, variable–coefficients fractional partial
differential equations with mixed Caputo derivatives.
All examples solved by using our new techniques gives an exact solutions for such problems.



Mixed fractional partial differential equations by the base method 12 (2021) No. 2, 1687-1697 1697

References

[1] S. Choudhary and V. Daftardar-Gejji, Invariant subspace method: A tool for solving fractional partial differential
equations, Frac. Calc. Appl. Anal. 2 (2017) 477–493.

[2] M. Eslami, B. F. Vajargah, M. Mirzazadeh and A. Biswas, Applications of first integral method to fractional
partial differential equations, Indian J. Phys. 2 (2014) 177–184.

[3] V. A. Galaktionov, Invariant subspaces and new explicit solutions to evolution equations with quadratic non-
linearities, Proc. R. Soc. Edinb. Sect. A Math. 2 (1995) 225–246.

[4] V. A. Galaktionov and S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of nonlinear Partial Dif-
ferential Equations in Mechanics and Physics, Chapman and Hall/CRC, London, 2007.

[5] R.K. Gazizov and A. A. Kasatkin, Construction of exact solutions for fractional order differential equations by
invariant subspace method, Comput. Math. Appl. 5 (2013) 576–584.

[6] P. Artale Harris and R.Garra, Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace
method, arXiv preprint arXiv:1410.8085, (2013) 1–8.

[7] P. Artale Harris and R.Garra, Nonlinear time-fractional dispersive equations, arXiv preprint arXiv:1410.8085,
(2014) 1–14.

[8] J. Jiang, Y. Feng and S. Li, Exact solutions to the fractional differential equations with mixed partial derivatives,
Axioms, 1 (2018) 1–10.

[9] A. Ouhadan and E.H. El Kinani, Invariant subspace method and fractional modified Kuramoto-Sivashinsky equa-
tion, arXiv preprint arXiv:1503.08789, (2015) 1–12.

[10] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential
Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, New York, 1998.

[11] R. Sahadevan and Thangarasu, Invariant subspace method and exact solutions of certain nonlinear time fractional
partial differential equations, Fract. Calc. Appl. Anal. 18 (2015) 146–162.

[12] R. Sahadevan and P. Prakash, Exact solution of certain time fractional nonlinear partial differential equations,
Nonlinear Dyn. 85 (2016) 659–673.

[13] S.R. Svirshchevskii and R. Sergey, Invariant linear spaces and exact solutions of nonlinear evolution equations,
J. Nonlinear Math. Phys. 3 (1996) 146–169.

[14] K.V. Zhukovsky, Operational solution for some types of second order differential equations and for relevant physical
problems, J. Math. Anal. 446 (2017) 628–647.


	Introduction
	Preliminaries
	The fractional mixed partial differential equations 

