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Abstract

In this paper, the invariant subspace method is generalized and improved and is then used to have an
exact solution for a wide class of the linear/ non-linear mixed fractional partial differential equations
(FPDEs); with constant, non-constant coefficients. Some examples are given here to illustrate the
efficiency of this method.

Keywords: Caputo fractional derivative, Mittag—Leffler function, Laplace transform, invariant
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1. Introduction

In the last decades shown that derivatives and integrals of arbitrary order are very convenient
for describing properties of real materials. The new fractional- order models are more satisfying the
former integer-order ones. In fact, a natural phenomenon may depend not only on the time instant
but also on the previous time history, which can be modelled by fractional calculus. So motivated
by this reasons, it is important to find efficient methods for solving fractional partial differential
equations (FPDESs).

Recently, investigations have shown that a new method based on the invariant subspace provides
an effective tool to find the exact solution of FDEs. This method was initially proposed by Galak-
tionov and Svirshchevskii [3], [I3],[4]. The invariant subspace method was developed by Later Gazizov
and Kasatkin [5], Harris and Garra [6l,[7], Sahadevan and Bakkyaraj [11], and Ouhadan and El Kinani
[9]. In [12], Sahadevan and Prakash showed how the invariant subspace method could be extended

to time fractional partial differential equations (FPDEs), 9% = F[u] and could construct their
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exact solutions. Where F[] is a nonlinear differential operator, 2= (.) is a fractional time derivative
in the Caputo sense.
In [I], S. Choudhary and V. Daftardar-Gejji developed the invariant subspace method for deriving

exact solutions of partial differential equations with fractional space and time derivatives.

n Ha+i g8  §bs+1 HB+m
Z)\jmu(%ﬂ = N($=“7 9P Gro axﬁ+m)'

j=0
All fractional partial derivatives are in Caputo sense, and N[u] is a linear - nonlinear operator and
a,f €(0,1], m,n € N.

In [14], K.V. Zhukovsky used the inverse differential operational method to obtain solutions for
differential equations with mixed derivatives of physical problems. In [8], Jun Jiang, Yuqiang Feng
and Shougui Li develop the invariant subspace method for finding exact solutions to some nonlinear
partial differential equations with fractional-order mixed partial derivatives (including both fractional
space derivatives and time derivatives).

n ooti 36 5,8+1 aﬂ+m o« 3,8
2N gt =N (“”” U OB G 8x5+m> o (W“)

J=0

(1.1)

a<a<a+l1l, b<p<b+1, abeN, N, p€ER

In this paper, motivated by the above results, we improve this method by extension it to another
forms through argue different cases of (1.1)).

Also, we are going to argue the case \; is a function of .

By invariant subspace method, the FPDFEs are reduced to the systems of FDFEs that can be
solved by familiar analytical methods. This paper is as follows, in section 2 the preliminaries and
notations are given. In Section 3, we develop the invariant subspace method for solving fractional
space and time derivative nonlinear partial differential equations with fractional-order mixed deriva-
tives. In Section 4, illustrative examples are given to explain the applicability of the method. Finally
in Section 5, we give conclusions.

2. Preliminaries

In this section, we give some important definitions and notation which are needed in our work.

Definition 2.1. [10] The Riemann—Liouville fractional integral of order « for a function f is
defined as

Jof(t) = L )/O(t—x)a_lf(x) dx a, t>0

()
The R — L fractional integral operator has the following properties:
e J¢ is a linear operator.

o JV=1.

o lim, o Jo = J°

e Has semigroup property; i.e J* J¢ = J# Jo = Jo+b,
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Definition 2.2. [10] The Caputo fractional derivative of positive order o for a function f is defined
as

£ ()
o“ F(n a) fo (t—z)n—otl n 7£ (07
gl () =T7°D"f() =
f (n)(w) n=auwo
Some properties of fractional Caputo derivative and fractional R — L integral are:

o Jotf = LUED _qats 50 B> —1, t>0

I (1+a+p)
(l(j_gﬂ))tﬁa n—l<a<n, f>n—-1 geR
oj%tﬁz
0 n—l<a<n, f<n—-1 geN

o 3 (R 10) = 10 = U5 5700

0
. %(;—ff(t)>:%<%f(t)>:%f(t) provided f@ =0 i=0,1,....n—1, a+f8<
n

Definition 2.3. [10] A two parameters Mittag-Leffler function is defined as:
o0 k

Bop(z) = %ﬁ a, B €C, R(a), R(B) >0

Remark 2.4. A Mittag-Leffler function has an interesting properties [10)]:
* Ly 1(7) = Eo(z)

o Ey(x)=¢€"

o Fio(x) =xe”

o Fyi(—2?) =cosx
o F;(x?) =coshz

o  Fyy(—2?) =sinx
o x [y(z?) =sinhz

Remark 2.5. Fractional Caputo derivatives of Mittag-Leffler are given as [2]:

(n) k+n)lz
[ ] EO&,,B< ) Zk 0 k'F((ak+om+ﬁ) n < N

) ﬁ(Ea(ata)> = aF,(at®) a>0, a €R

dte
o L <th B, )(ato‘)) =t B (at®) > 0.

If the Lapalce transform of the function f(t) exist, then the Laplace transform of the o — th order
Caputo derivative is given by [2] :

n—1
LD f(t)) = - Z s () neN, n—l<a<n, R(s)>0

where L(f(t)) = [T e f(t)

Some 1mportant Laplace transformatlon of Mittag-LefHler function which are need are:
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L L{tem B (at)} = (20 n €N, R(s) > |a]'/

(sFa)ntl
a— (=b") ()" (n+k) k(o na s
2. ['{t LDy Pr 0 Tlk(a—B)+(n+Da— ﬂt( S ~ sfasPib

We call the finite dimension linear space I, over R which spanned by n linearly independent
functions ¢;(z), ¢ = 0,1,...,n — 1, is invariant with respect to a differential operator M if M[u| €
I,, Yu € I,

3. The fractional mixed partial differential equations

In this section we have generalized the invariant subspace method which states in [§] by given the
cases of improvements to this method through adding new operators under some specific assumptions,
such as the subspace has a base of Mittag-Leffler functions are finite members.

Case one
mi 8a+j 8 818 a aa
jzo/\jg)taﬂ‘u:N[ ]+'ulata<aggﬁu> Ty <8t0‘ ) (8:1)
where 5 gub Gma+B
w= (et Nl =N o5t ot ot

a—1<a<a, b—=1<pB<b ab €N, N\, 1, po €R

Theorem 3.1. Suppose I,.1 = L{¢po(x),d1(x),...,dn(x)} s a finite- dz’mensz’onal linear space,
==u then FPDE has an exact

and it is invariant with respect to the operators N [u], aa[;u and
solution as follows:

Bta

n

u(a,t) =Y ki(t)gi(x) (3.2)

i=0
where {k;(t)} satisfies the following FDFESs :

mi da+J da¢n+1+i '

jzo )\jmki(t) - NIT — fo Yonyayi = Vi, 1=0,...,n (3-3)

where {Yo, VY1, .., U}, {Uns1sUngas oo Yontr ) {Yonsa, Yonsss - oo, Ysnta} are the expansion coeffi-
cients of Nlul, gx—iu, gtau respectwely with respect to {po(x), d1(x), ..., dn(z)}.
Proof . By the linearity of Caputo fractional derivative, equation is as follows:

o 0ot o 0t & dti ke (t
2 gt = 2 N 2 kil ZA Z s ote)
7=0 7=0 =0 = (34)

- dot ke (t
- Z Z td+] ’(x)

i=0 j7=0
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As I,41 is an invariant space under the operators N [u], %u, and (f;’tau there exist 3n + 3 functions
Vo, V155 Uns Ungts Unga, s Vanga; Yonsas Yongs, - Yanga all of ko(t), ki(t), ..., ku(t) such that

N(kat)@(x)) =2 s 6o (35)

o’
8x5 Z wn+1+1 ¢z (36)

(67

0
%u Zz, t Z¢2n+2+z ¢’L( ) (37)

where {o,¥1, ..., Yn}, {¢n+1>¢n+2,---,¢2n+1} {V2n+2, Yonss, .. Yansa} are the expansion coeffi-
cients of the operators Nu], ﬁﬂu and 2u respectively with respect to {¢o(z), d1(z), ..., dn(x)}.

By equations (3.2 (m (-) (@) and (-)

M Hm?ﬁ(ﬁfw) +M2§ﬂ ()

- sz ¢z + M1 ot (an-i—l-i-z ¢z( )) + :u2 <Z¢2n+2+l ¢Z( ))
B
= ZZ:; Vi ¢i(T) + < ; %wmlﬂ' ¢z<$)> + po ( ZZ:; Vont2ti %%(@)
= (Z Ui oy %1/}71—&-1—&-1' + 412 Y Yonpari )Cbz'(l‘)
=0 =0 =0

By our assumption and properties of Mittag-Leffler function, we get ;fc—@ﬁgbi(x) = ¢i(z).
So, equation reads

atj n n o n
Z [Z A d tdliﬂ ] oi(z) = (Z Vi A+ Z jﬁd@ﬂﬂ + p2 Z Yontati >¢z($)
i=0 =0 i=0

=0 jO

a+, @
Z (Z : tjdlj-] — U — %@Dn—i—l—i—i - M2¢2”+2+i> QSZ(x) =0

=0 7=0
Since  ¢;(x) are linearly independent, we obtain the following FDFE's :

da—i—jk d%
Z )\jdtTj() = U1 die 1/Jn+1+z + ﬂ2¢2n+2+1 + ¢Z

=0

0

Example 3.2. Consider the following nonlinear fractional mixzed partial differential equation:

fu_2< ;jﬁu_“2>+%<aa_jﬂu>+%<%u) 0<a<l 1<pg<2 (3.8)
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Let I, = {1, Ez(2#)} is invariant subspace under the operators N[u] = 2(u%u — u2>,f[u] =

%“ and glu] = %u as, f u € I, then

N[u] = N[a + bEs(z°)] = 2<a + bEﬁ(x5)> (bEB(x5)> - Q(a + bEB(x5)>2
= —2a* — 2abEs(2") € I,

flu) = b By(a®) €1,

glul =0 € L.

Then according to Theorem (3.1) and equation ({3.3]), we obtain the following solved F'DFEs:

dOé dOt
— = —9k? — — =
T ko(t) kg (t) + (0) + g ko(t) ko(t) =0
(6% doé (6% (0%

ki(t) + 2ko(Oki() = Sk () + Sohi(t) = k() =0 = k() =«

dte dte dte

Hence, (3.8)) has the exact solution
u(w,t) = ko(t) + k1 (t)Es(2”) = a Ez(2”)

It is obovious that, when o = 1,8 = 2, the standard equation B.8) @ = 2u(u’ — u) + (u") + (¢ )
has the exact solution u(z,t) = acosh x.

Case two

o 0t o PN 0°
> g = N0+ (g + g () (39)
o° orB om2+8
where u=u(x,t), Nu]= N(x, Uy 5gth Gt Wu)

a—1l<a<a b-1<pB<b ab &N, N\, 1, po €R

Theorem 3.3. Suppose I,,11 = L{¢o(x), p1(2),...,¢n(x)} is a finite- dimensional linear space,
and it is invariant with respect to the operators N[ul, ai—’;u then FPDE has an ezact solution
as follows:

u(a,t) =Y ki(t)gi(x) (3.10)
i=0
where {k;(t)} satisfies the following FDFESs :
— , d“Uny14i Y1t :

where {1o, V1, ..., Un}, and {Yni1, Ynaa, .. ons1 )}, are the expansion coefficients of Nlul, %u,
respectively with respect to  {¢o(x), p1(x), ..., dn(x)}.
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Proof . By the linearity of Caputo fractional derivative, the left hand side of equation is as
follows:

A M geti dotik (t - A k(t
ZAjWUZZ)\jataHZ ZA Z dtdﬂ il ZZ dtd“ ix)

j=0 j=0 i=0 i=0 j=0
(3.12)

As I,y1 is an invariant space under the operators Nu], gc—iu, there exist 2n + 2 functions

1/10, ¢1, s 7wn; wn+1>¢n+27 s aw2n+l all Oka(t)v kl(t)ﬂ ) kn(t) such that

N = N( X klt)oa) = 3 wr oila) (3.13)
B n
sut) = Y bu 4(2) (314

=0

where {o, V1, ..., ¥n} and {tpi1, Vnia, - .., Yons1}, are the expansion coefficients of Nu], and %u
respectively with respect to {po(x), p1(), ..., on(x)}.

Substitute equations (-) and w m (m)
o 0P o’
Nl =+ (ﬂ% +is) (55)
= ; Vi ¢i(x) + Nl% ( ; Uni14i ¢z($)) + Mzw ( ; Uny14i ¢z($)>
n n o n ﬁ
= Z Vi $i(x) + < Z Cci%iﬂnﬂﬂ‘ ¢z($>) + H2 ( Z %wnﬂﬂ' ¢1($)>
i=0 i=0 i=0

n n [} " B
= (Z Vi 4 Z %'@bn-&-l-&-i + p2 Z %%ﬁlﬂ') ¢i(7)
i=0 i=0 =0

So, equation reads

Z [ZA tdﬂ ] = (Zl/)z +Mlzdta¢n+1+z +M2Zdtﬁ¢n+1+z>¢z( )

=0 Lj=0
d°‘+J/<: d?
; (JZO dtdﬂ - — Nl%wn+l+i - NZﬁwnJrlH)@'(aj) =0
Since ¢i(x) are linearly independent, we obtain the following FDEs :
Aok (t) d” d?
Z )\jw - Mlﬁwn-l—l—i-i - M2ﬁ¢n+1+i =1

j=0

O

Example 3.4. Consider the following fractional partial mized derivatives:

%u:aa—;(aa—;u)—(%+g—;)(;—;u) D<a<l, 1<f<2 (3.15)
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Consider I, = {1, Eg(x?)} is invariant subspace under the operators N [u], %u as:

ok 1 9P o° [ o° d°
— — B — BY) — B
Nl = 55 (55%) = 57 L{)xﬁ CRE ))] = g (aBale”)) —aBsla’) €l
0P 5
W'LL = ClEﬁ<ZC ) € IQ
So, according Theorem (3.3]), we have the following FDFEs :
@ (t) =0 (3.16a)
dte N '
d” d” d?
- = —— - — 3.16b
T halt) = S ka(t) o (6) 4 k(1) (3.16b)
Equation (3.16a)) yields ko(¢) = a, and substitute in equation ([3.16b))
d° d* : :
Wkl (t) + Q%kl (t) = ki(t) By fractional Laplace transformation
b b ,
s lF(s) 2 %} + 25 {F@) - -] = F(s)  wherek (0)=b, k(0)=c
s s s

(8'8 + 25 — 1>F(s) = bsP7 4 csP 7 4 2bs0 7!

bsP1 4+ csP2 4+ 2ps>1

F(s) —
(5) sP+ 252 — 1

Applying the inverse Laplace transformation and by properies of Laplace transform for the Mittag-
Leffler function which states in section(2), we have

ki(t)=A+ B+ C,

where

IR (=2)*("") nBh(F—c
A_bzzr[k(ﬁ—a)mﬁﬂ]tﬁ o

B=ct i i (_Q)k(nzk) tnﬁ'i'k(ﬁ—a)
- n=0 k=0 Lk —a)+ns+2]
C =2 i i (_Q)k (":’“) fnB+k(B—a)
TR —a)+ (n+ 1) +1—q

Thus, the exact solution of equation (3.15)) is
u(@, ) = ko(t) + ky (£) Eg(2%) = [a + (A + B+ (J)] Es(2°)

However, if we put a = 1, and g = 2, then we have

b+c _,

7 e~ sinh(v/2 t)] cosh x

u(x,t) = |a+betcosh(vV2t) +
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Case three

In the next theorem, we argue a new form of the invariant subspace method where the coefficients
in the left hand side of Eq. (1.1]) is a function.

aa+g o° 981 (9ﬂ+m> o < o8 > (3‘17)

ZA Gt = N(ew g oo o) g (5

Theorem 3.5. Suppose I,,.1 = L{¢o(x), d1(x),...,dn(x)} is a finite- dimensional linear space,
and it is invariant with respect to the operators Nlu| and %u then FPDE has an ezact

solution as follows:
= ki(t)gi(x) (3.18)
=0

Where {k;(t)} satisfies the following system of F'DEs with variable coefficients:

mi

da+j dawn 7 .
Z)\](t)WkZ@) —/,LT:H_ :wi, z:(),...,n (319)

J=0

where {Yo, Y1, ..., Un}, {Wni1, Ynaos ..., ons1} are the expansion coefficients of Nlul, aajﬁu re-
spectively with respect to {po(x), p1(x), ..., dn(z)}
Proof . By the linearity of Caputo fractional derivative, equation is as follows:

o oot 9ot & Ak (t)
2 M0 g3 = L M0 g 2 0 Z Ml W“W)
J= 1= 1= _

(3.20)

n

2 daﬂk
> (0 gty )

i=0 j=0

As Iy1 is an invariant space under the operators Nul, %u there exist 2n + 2 functions
wo; 77D17 T 7wn; wﬁrfl? wn+27 e 7w2n+1 all Oka(t)v kl(ﬂu ) kn(t) such that

N(Z k,-(t)@(x)) ="t 6ule) (3.21)

0" -
wu(x,t) = Z¢n+1+i ¢i(z) (3.22)

1=0

where {o, V1, ..., Un}t, {Uni1, Unia,s ..., Yanys1 fare the expansion coefficients of Nul, %u respec-

tively with respect to {¢o(x), p1(x),. .., ¢n(x)}. Thus
aa
N[]—i—uata(aﬁ ) Z% ¢i(x +,uata(z¢n+1+z ¢i(x ))
— Z% ¢i(x) + '“Z %¢n+1+z‘ ¢i(x)
=0 1=0

= E Vi +ME —dz¢n+1+z’ ¢i(x)
dt
i=0 i=0
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So, reads

n mi da+j/€i n n da
Z [Z A1) dtTj(t)] pi(z) = (Z Yi +p Z %?ﬂmlﬂ)@(ﬂf)
i=0 i=0 =0

my daJrjk?i(t) >

Since ¢;(x) are linearly independent, we obtain the following FDFE's :
S Aotk (t d°
Z )‘j(t)—( ) _ N%wn—klﬁ—i =

dtd+i
§=0

O

Example 3.6. Consider the following fractional partial differential equation

D% = T(1 + ) <2u - Dfu>, O<a, <1 (3.23)

Let I, = {1, E3(z?) be an invariant subspace under the operator N|[u] = I'(1 + «) (2u — Dfu) as for

welp, Nu=I(1+a) [2 co+ clEg(:cﬁ)) . cOEB(:z:ﬁ)} —T(1+a) (200 + clEﬁ(:cﬁ)) e I
So, according to Theorem (3.3)), we have the following F'DE system with variable coefficients:

«

to‘d?co(t) = 2I'(1 + «)co(t) (3.24a)
to‘j%cl t)=T1+ a)c(t) (3.24Db)

If we put ¢;(t) = bt” in (3.24b)), then

d* L (y + Dt~ bl(y+ 1Y
t*—ci(t) = = = bI'(1 t = t) = bt™.
dtac() M(l+vy—a) Ml+~y—a) (+a)f’ = a=7= al)

Also, we get ¢o(t) = 0 in ([3.24a)).
Consequently, the solution of (3.23)) is u(z,t) = co(t) + c1(t) Eg(aP) = bt Eg(z?).
which easy to check that it is exact.

Conclusion

The invariant subspace method has been known as a powerful tool for solving many space, time,
space-time and mixed non-linear fractional differential equations. In this paper, we have presented an
extension of this method to solve some of non-homogeneous, variable—coefficients fractional partial
differential equations with mixed Caputo derivatives.

All examples solved by using our new techniques gives an exact solutions for such problems.



Mixed fractional partial differential equations by the base method 12 (2021) No. 2, 1687-1697 1697

References

[1]

S. Choudhary and V. Daftardar-Gejji, Invariant subspace method: A tool for solving fractional partial differential
equations, Frac. Calc. Appl. Anal. 2 (2017) 477-493.

M. Eslami, B. F. Vajargah, M. Mirzazadeh and A. Biswas, Applications of first integral method to fractional
partial differential equations, Indian J. Phys. 2 (2014) 177-184.

V. A. Galaktionov, Invariant subspaces and new explicit solutions to evolution equations with quadratic non-
linearities, Proc. R. Soc. Edinb. Sect. A Math. 2 (1995) 225-246.

V. A. Galaktionov and S. R. Svirshchevskii, Ezact Solutions and Invariant Subspaces of nonlinear Partial Dif-
ferential Equations in Mechanics and Physics, Chapman and Hall/CRC, London, 2007.

R.K. Gazizov and A. A. Kasatkin, Construction of exact solutions for fractional order differential equations by
invariant subspace method, Comput. Math. Appl. 5 (2013) 576-584.

P. Artale Harris and R.Garra, Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace
method, arXiv preprint arXiv:1410.8085, (2013) 1-8.

P. Artale Harris and R.Garra, Nonlinear time-fractional dispersive equations, arXiv preprint arXiv:1410.8085,
(2014) 1-14.

J. Jiang, Y. Feng and S. Li, Ezact solutions to the fractional differential equations with mized partial derivatives,
Axioms, 1 (2018) 1-10.

A. Ouhadan and E.H. El Kinani, Invariant subspace method and fractional modified Kuramoto-Sivashinsky equa-
tion, arXiv preprint arXiv:1503.08789, (2015) 1-12.

1. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential
Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, New York, 1998.

R. Sahadevan and Thangarasu, Invariant subspace method and exact solutions of certain nonlinear time fractional
partial differential equations, Fract. Calc. Appl. Anal. 18 (2015) 146-162.

R. Sahadevan and P. Prakash, Ezact solution of certain time fractional nonlinear partial differential equations,
Nonlinear Dyn. 85 (2016) 659-673.

S.R. Svirshchevskii and R. Sergey, Invariant linear spaces and exact solutions of nonlinear evolution equations,
J. Nonlinear Math. Phys. 3 (1996) 146-169.

K.V. Zhukovsky, Operational solution for some types of second order differential equations and for relevant physical
problems, J. Math. Anal. 446 (2017) 628-647.



	Introduction
	Preliminaries
	The fractional mixed partial differential equations 

