Int. J. Nonlinear Anal. Appl. 12 (202-) No. 2, 1719-1724

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2021.5311

Study of the rings in which each element express as the sum of an idempotent and pure

Akram S. Mohammed^a, Ibrahim S. Ahmed^{b,*}, Samah H. Asaad^b

^aCollege of Computer Science and Mathematics, Tikrit University, Tikrit, Salahaddin, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

This article aims to introduce the concept of p-clean rings as a generalization of some concepts such as clean rings and r-clean rings. As the first result, we prove that every clean ring is a p-clean ring and every r-clean ring is a p-clean ring. Furthermore, we give the relation between von Neumann local ring and p-clean ring. Finally, we investigate many properties of p-clean rings.

Keywords: ring, clean ring, r-clean ring, local ring and regular ring

1. Introduction

Goldman [7] studied the concept of unit element, where \mathcal{R} be a ring, then an element u in \mathcal{R} is called unit element if there exist v such that u v = v $u = 1_{\mathcal{R}}$. Let the set of unit elements in \mathcal{R} denoted by $U(\mathcal{R})$ that is $U(\mathcal{R}) = \{ u \in \mathcal{R} ; u \ v = v \ u = 1 , \text{ for some } v \in \mathcal{R} \}$. The concept of idempotent element was studied by de Melo Hernández [2], where an element e in \mathcal{R} is called idempotent element if $e^2 = e$, let $Id(\mathcal{R})$ be the set of idempotent elements in \mathcal{R} that is $Id(\mathcal{R}) = \{ e \in \mathcal{R} ; e^2 = e \}$. The notion of regular element was first introdoced by von Neumann in 1936, where an element r in \mathcal{R} is called regular element if there exist s in \mathcal{R} such that $r = r \ s \ r$, a ring \mathcal{R} is called regular ring if each element in \mathcal{R} is regular. Many other authors interested in studying regular rings, for example see [10] and [9]. Let the set of regular element in \mathcal{R} be denoted by $Reg(\mathcal{R})$ that is $Reg(\mathcal{R}) = \{ r \in \mathcal{R} ; r = r \ s \ r$, for some $s \in \mathcal{R} \}$. The concept of clean ring first introduced by Nicholson in 1977 [8], where the ring \mathcal{R} is called clean ring if for each $c \in \mathcal{R}$ there exist $e \in Id(\mathcal{R})$ and $u \in U(\mathcal{R})$ such that c = e + u. Many other authors interested in studying clean rings, for example see [5], [12]

Email addresses: akr_tel@tu.edu.iq (Akram S. Mohammed), ibrahim1992@tu.edu.iq (Ibrahim S. Ahmed), samah1989@tu.edu.iq (Samah H. Asaad)

Received: March 2021 Accepted: June 2021

^bCollege of Education-Tuzkhurmatu, Tikrit University, Tuzkhurmatu, Salahaddin, Iraq

^{*}Corresponding author

and [3]. Ashrafi and Nasibi [4] in 2013 introduced the concept of r – clean ring, where the ring \mathcal{R} is called r – clean ring if for each $c \in \mathcal{R}$ there exist $e \in \operatorname{Id}(\mathcal{R})$ and $r \in \operatorname{Reg}(\mathcal{R})$ such that c = e + r. Many authors have studied r – clean rings such as [1] and [13]. Let \mathcal{R} be a ring, then an element p in \mathcal{R} is called pure element if there exist q in \mathcal{R} such that p = pq [11] and the set of pure elements in \mathcal{R} write $\operatorname{Pu}(\mathcal{R}) = \{ p \in \mathcal{R} : p = pq , \text{ for some } q \in \mathcal{R} \}$. The concept of von Neumann local ring was studied by Anderson [2], where a ring \mathcal{R} is called von Neumann local ring if for each $r \in \mathcal{R}$ we have either $r \in \operatorname{Reg}(\mathcal{R})$ or $1 - r \in \operatorname{Reg}(\mathcal{R})$.

Definition 1.1. An element $c \in \mathcal{R}$ is called p – clean if there exist $e \in \operatorname{Id}(\mathcal{R})$ and $p \in \operatorname{Pu}(\mathcal{R})$ such that c = e + p.

Definition 1.2. Let \mathcal{R} be a ring. Then \mathcal{R} is called p – clean ring if each element in \mathcal{R} express as the sum of an idempotent and pure.

Example 1.3. The ring $(Z_6, +_6, ..._6)$ is a p – clean ring.

Example 1.4. The ring $(\mathbb{Z}_{+},+)$, .) is a p-clean ring.

Proposition 1.5. Every clean ring is a p – clean ring.

Proof. Let \mathcal{R} be a clean ring and $c \in \mathcal{R}$. Then c = e + u. Where $e \in \mathrm{Id}(\mathcal{R})$ and $u \in \mathrm{U}(\mathcal{R})$. To proof c is p – clean, it remains only to prove that u is a pure element. Since $u \in \mathrm{U}(\mathcal{R})$, then there is $v \in \mathcal{R}$ such that u = v = v = 1, hence $v \in \mathcal{R}$.

Now, u = u. 1, implies that u is a pure element. And hence $u \in Pu(\mathcal{R})$, thus c is p – clean.

Therefore \mathcal{R} is a p – clean ring.

The converse of above proposition is true. \square

Example 1.6. The ring $(\mathbb{Z}_+,+_+,_-)$ is a p-clean ring. But not clean (because, not each element in \mathbb{Z}_+ is unite).

Theorem 1.7. Let \mathcal{R} be a ring and $\operatorname{Id}(\mathcal{R}) = \{0, 1\}$. Then \mathcal{R} is p – clean ring if and only if it is clean ring.

Proof. Every clean ring is a p – clean ring by proposition 5. Conversely Let \mathcal{R} be a p – clean ring and $c \in \mathcal{R}$. Then c is p – clean, then there exists $e \in \operatorname{Id}(\mathcal{R})$ and $p \in \operatorname{Pu}(\mathcal{R})$ such that c = e + p. If p = 0, then c = e = (1 - e) + (2e - 1). $(1 - e)^2 = 1 - 2e + e^2 = 1 - 2e^2 + e^2 = 1 - e^2 = 1 - e$ and hence $1 - e \in \operatorname{Id}(\mathcal{R})$. Now, since $(2e - 1)^2 = 4e^2 - 4e + 1 = 4e - 4e + 1 = 1$, then $(2e - 1) \in \operatorname{U}(\mathcal{R})$ and hence c is clean element, thus \mathcal{R} is clean ring. So, assume that $p \neq 0$. Since $p \in \operatorname{Pu}(\mathcal{R})$, then there is $d \in \mathcal{R}$ such that p = pd. Consider d = qp, then p = pqp. Now, $(pq)^2 = (pq)(pq) = (pqp)q = pq$ which is implies that $p \in \operatorname{Id}(\mathcal{R})$, hence by hypothesis either pq = 0 or pq = 1. If pq = 0, then p = 0 which is contradiction, thus pq = 1. On the other hand, $(qp)^2 = (qp)(qp) = q(pqp) = qp$ which is implies that $p \in \operatorname{Id}(\mathcal{R})$, hence by hypothesis either $p \in \operatorname{Id}(\mathcal{R})$. This implies that $p \in \operatorname{Id}(\mathcal{R})$ is a clean ring. $p \in \operatorname{Id}(\mathcal{R})$ is a clean ring. $p \in \operatorname{Id}(\mathcal{R})$. This implies that $p \in \operatorname{Id}(\mathcal{R})$ is a clean ring. $p \in \operatorname{Id}(\mathcal{R})$.

Theorem 1.8. Let \mathcal{R} be a ring and $\operatorname{Id}(\mathcal{R}) = \{0, 1\}$. Then \mathcal{R} is p – clean ring if and only if it is a von Neumann local ring.

Proof. Let \mathcal{R} be a ring and $\operatorname{Id}(\mathcal{R}) = \{0, 1\}$. Assume \mathcal{R} is p – clean ring, then by Theorem 7 we get \mathcal{R} is clean ring. Let $c \in \mathcal{R}$ we have c is the sum of an idempotent and unit, that is there exists $e \in \operatorname{Id}(\mathcal{R})$ and $u \in \operatorname{U}(\mathcal{R})$ such that c = e + u, but the unit element is a regular element which is implies that $u \in \operatorname{Reg}(\mathcal{R})$. by hypothesis e = 0 or 1. If e = 0, then c = e + u = u, hence $c \in \operatorname{Reg}(\mathcal{R})$. If e = 1, then c = 1 + u and u = 1 - c, hence $1 - c \in \operatorname{Reg}(\mathcal{R})$. Therefore \mathcal{R} is a von Neumann local ring.

Conversely, let \mathcal{R} be a von Neumann–local ring and $c \in \mathcal{R}$. Then either $c \in \text{Reg}(\mathcal{R})$ or $1 - c \in \text{Reg}(\mathcal{R})$, if $c \in \text{Reg}(\mathcal{R})$, put c = 0 + c, then to prove c is a p-clean, it remains only to prove that c is a pure element, since $c \in \text{Reg}(\mathcal{R})$ then there is $d \in \mathcal{R}$ such that c = cdc. Consider q = dc, then c = cq, hence $c \in \text{Pu}(\mathcal{R})$. If $1 - c \in \text{Reg}(\mathcal{R})$, put c = 1 + (1 - c). Since every regular element is pure, then $(1 - c) \in \text{Pu}(\mathcal{R})$. Hence c is a p-clean. Therefore \mathcal{R} is a p-clean ring. \square

Proposition 1.9. Every r – clean ring is a p – clean ring .

Proof. Let \mathcal{R} be a r – clean ring and let $c \in \mathcal{R}$. Then c = e + r. Where $e \in \operatorname{Id}(\mathcal{R})$ and $r \in \operatorname{Reg}(\mathcal{R})$. To proof c is p – clean element in \mathcal{R} , it is suffices we prove that r is pure element, Since $r \in \operatorname{Reg}(\mathcal{R})$, then there is $s \in \mathcal{R}$ such that r = r s r. Consider q = s r, then $q \in \mathcal{R}$. Hence r = r q, thus r is a pure element, consequentially c is p – clean element. Therefore \mathcal{R} is a p – clean ring. The converse of above proposition is not true. \square

Example 1.10. The ring $(\mathbb{Z}_+,+_+,_-)$ is a p - clean ring. But not r - clean ring.

Proposition 1.11. Every pure element of a ring \mathcal{R} is a p – clean.

Proof. The proof follows from the definition of p – clean element. \square

Proposition 1.12. Every idempotent element of a ring \mathcal{R} is a p – clean.

Proof. The proof follows from the definition of p – clean element. \square

Proposition 1.13. Let \mathcal{R} be a ring and $c \in \mathcal{R}$. If c is p – clean, then $\forall n \in \mathbb{Z}^+$, c^n is p – clean.

Proof. Let \mathcal{R} be a ring and $c \in \mathcal{R}$. Assume that c is p – clean, then there exists $e \in \operatorname{Id}(\mathcal{R})$ and $p \in \operatorname{Pu}(\mathcal{R})$ such that c = e + p. Now $c^n = (e + p)^n = e^n + p^n$, we must prove $e^n \in \operatorname{Id}(\mathcal{R})$ and $p^n \in \operatorname{Pu}(\mathcal{R})$. Since $e \in \operatorname{Id}(\mathcal{R})$ then $e^2 = e$. Now $(e^n)^2 = (e^2)^n = (e)^n$, hence $e^n \in \operatorname{Id}(\mathcal{R})$. Since $p \in \operatorname{Pu}(\mathcal{R})$, then there is $p \in \mathcal{R}$ such that p = pp. Hence $p^n = (pq)^n = p^n q^n$. Since $p \in \mathcal{R}$, then $p^n \in \mathcal{R} \ \forall n \in \mathbb{Z}^+$ thus $p^n \in \operatorname{Pu}(\mathcal{R})$. Therefore, $p \in \mathcal{R}$ is a p – clean ring. $p \in \mathcal{R}$

Proposition 1.14. Let \mathcal{R} be a ring and $c \in \mathcal{R}$. Then c is p – clean if and only if 1 - c is p – clean.

Proof. Let \mathcal{R} be a ring and $c \in \mathcal{R}$. Assume that c is p – clean, then there exists $e \in \operatorname{Id}(\mathcal{R})$ and $p \in \operatorname{Pu}(\mathcal{R})$ such that c = e + p. Now 1 - c = 1 - (e + p) = (1 - e) + (-p), we must prove $1 - e \in \operatorname{Id}(\mathcal{R})$ and $(-p) \in \operatorname{Pu}(\mathcal{R})$. Since $e \in \operatorname{Id}(\mathcal{R})$ then $e^2 = e$. Now $(1 - e)^2 = 1 - 2e + e^2 = 1 - 2e^2 + e^2 = 1 - e^2 = 1 - e$, hence $1 - e \in \operatorname{Id}(\mathcal{R})$. Since $p \in \operatorname{Pu}(\mathcal{R})$, then there is $q \in \mathcal{R}$ such that p = pq. Hence - - p = -pq = (-p)q, thus $(-p) \in \operatorname{Pu}(\mathcal{R})$ Therefore, (1 - c) is a p – clean ring. Conversely: let 1 - c is p – clean, then 1 - c = e + p where $e \in \operatorname{Id}(\mathcal{R})$ and $p \in \operatorname{Pu}(\mathcal{R})$. Now, c = 1 - (e + p) = (1 - e) + (-p), as a previous part we have $1 - e \in \operatorname{Id}(\mathcal{R})$ and $(-p) \in \operatorname{Pu}(\mathcal{R})$ which implies that c is the sum of an idempotent and pure. Therefore, c is a p – clean. \square

Proposition 1.15. Let \mathcal{R} be a ring and $c \in \mathcal{R}$. If c is p-clean, then $\forall n \in \mathbb{Z}^+$, $1-c^n$ is p-clean.

Proof. The proof follows from proposition 13 and proposition 14 \square

Proposition 1.16. Let \mathcal{R} be a p – clean ring and \mathcal{R}' be a ring. If $f: \mathcal{R} \to \mathcal{R}'$ is epimorphism, then \mathcal{R}' is a p – clean ring.

Proof. Let $c' \in \mathcal{R}'$. Since $f: \mathcal{R} \to \mathcal{R}'$ is epiomorphism, then $\in \mathcal{R}$ such that c' = f(c). But is a p – clean ring, then c = e + p where $e \in \operatorname{Id}(\mathcal{R})$ and $p \in \operatorname{Pu}(\mathcal{R})$ c' = f(c) = f(e + p) = f(e) + f(p) Now, we must prove $f(e) \in \operatorname{Id}(\mathcal{R})$ and $f(p) \in \operatorname{Pu}(\mathcal{R}')$. Since $e \in \operatorname{Id}(\mathcal{R})$ then $e^2 = e$. Hence $f(e) = f(e^2) = [f(e)]^2$, thus $f(e) \in \operatorname{Id}(\mathcal{R})$, since $p \in \operatorname{Pu}(\mathcal{R})$, then there is $q \in \mathcal{R}$ such that p = pq. Hence f(p) = f(pq) = f(p).f(q), but $q \in \mathcal{R}$, then $f(q) \in \mathcal{R}'$, which implies that $f(p) \in \operatorname{Pu}(\mathcal{R}')$, thus c' is the sum of an idempotent and pure. Therefore, \mathcal{R}' is a p – clean ring. \square

Proposition 1.17. Let I be an Ideal of a p – clean ring \mathcal{R} . Then $\frac{\mathcal{R}}{I}$ is a p – clean ring.

Proof. Let $e+I \in \frac{\mathcal{R}}{I}$. Then $c \in \mathcal{R}$, since \mathcal{R} is p- clean ring, there exists $e \in \mathrm{Id}\,(\mathcal{R})$ and $\mathrm{p} \in \mathrm{Pu}\,(\mathcal{R})$ such that c=e+p. Hence c+I=e+p+I=e+I+p+I, to prove c+I is a p- clean element in $\frac{\mathcal{R}}{I}$ we must prove that e+p is an idempotent element in $\frac{\mathcal{R}}{I}$ and p+I is a pure element in $\frac{\mathcal{R}}{I}$. Since $e \in \mathrm{Id}\,(\mathcal{R}), \, e^2=e$ and hence $e+I=e^2+I=e.e+I=(e+I)$. $(e+I)=(e+I)^2$, thus (e+I) is an idempotent element in $\frac{\mathcal{R}}{I}$. Since $\mathrm{p} \in \mathrm{Pu}\,(\mathcal{R})$, there is $\mathrm{q} \in \mathcal{R}$ such that $\mathrm{p} = \mathrm{pq}$. Now, $\mathrm{p} + \mathrm{I} = \mathrm{pq} + \mathrm{I} = (\mathrm{p} + \mathrm{I}) + (\mathrm{q} + \mathrm{I})$, which implies that $\mathrm{p} + \mathrm{I}$ is a pure element in $\frac{\mathcal{R}}{I}$, thus $c+\mathrm{I}$ is the sum of an idempotent and pure. Therefore, $\frac{\mathcal{R}}{I}$ is a p- clean ring. \square

Proposition 1.18. Let \mathcal{R}_k , (k = 1, 2, ..., n) be a p – clean ring. Then $\prod_{k=1}^n \mathcal{R}_k$ is a p – clean ring.

Proof. Let $(c_1, c_2, ..., c_n) \in \prod_{k=1}^n \mathcal{R}_k$. Then $c_k \in \mathcal{R}_k$, k = 1, 2, ..., n. Since \mathcal{R}_k is p – clean ring, there exists $e_k \in \operatorname{Id}(\mathcal{R}_k)$ and $p_k \in \operatorname{Pu}(\mathcal{R}_k)$ such that $c_k = e_k + p_k \ \forall k = 1, 2, ..., n$. Hence

$$(c_1, c_2, \dots, c_n) = (e_1 + p_1, e_2 + p_2, \dots, e_n + p_n)$$

= $(e_1, e_2, \dots, e_n) + (p_1, p_2, \dots, p_n).$

To prove (c_1, c_2, \ldots, c_n) is a p – clean element in $\prod_{k=1}^n \mathcal{R}_k$, we must prove that (e_1, e_2, \ldots, e_n) is an idempotent element in $\prod_{k=1}^n \mathcal{R}_k$ and (p_1, p_2, \ldots, p_n) is a pure element in $\prod_{k=1}^n \mathcal{R}_k$. Since $e_k \in \operatorname{Id}(\mathcal{R}_k)$, $e_k^2 = e_k$, for all k = 1, 2, ..., n, hence $(e_1, e_2, \ldots, e_n) = (e_1^2, e_2^2, \ldots, e_n^2)$ which is implies that $(e_1, e_2, \ldots, e_n) = (e_1, e_2, \ldots, e_n)$. $(e_1, e_2, \ldots, e_n) = (e_1, e_2, \ldots, e_n)^2$ and thus (e_1, e_2, \ldots, e_n) is an idempotent element in $\prod_{k=1}^n \mathcal{R}_k$. Since $p_k \in \operatorname{Pu}(\mathcal{R}_k) \ \forall k = 1, 2, ..., n$, there is $q_k \in \mathcal{R}_k$ such that $p_k = p_k q_k \ \forall k = 1, 2, ..., n$. Hence,

$$(p_1, p_2, \dots, p_n) = (p_1q_1, p_2q_2, \dots, p_nq_n)$$

= $(p_1, p_2, \dots, p_n) \cdot (q_1, q_2, \dots, q_n)$.

Since $q_k \in \mathcal{R}_k \ \forall k = 1, 2, ..., n$, then $(q_1, q_2, ..., q_n) \in \prod_{k=1}^n \mathcal{R}_k$, which implies that $(p_1, p_2, ..., p_n)$ is a pure element in $\prod_{k=1}^n \mathcal{R}_k$, thus $(c_1, c_2, ..., c_n)$ is the sum of an idempotent and pure. Therefore, $\prod_{k=1}^n \mathcal{R}_k$ is a p – clean ring. \square

Proposition 1.19. Let \mathcal{R} be an abelian ring and $c \in \mathcal{R}$ is p – clean. If $e \in \operatorname{Id}(\mathcal{R})$ and (-c) is a p – clean in \mathcal{R} , then (c+e) is a p – clean.

Proof. Let \mathcal{R} be an abelian ring and $c \in \mathcal{R}$ is p – clean. Then 1-c is p – clean by Proposition 14 Similarly as in Proposition 14, we can proof that (-c) is a p – clean in \mathcal{R} iff (1+c) is a p – clean element.

Now, let c = f + p where $f^2 = f$ and $p = pq \ 1 + c = g + w$ where $g^2 = g$ and w = wz.

$$c + e = c + ce - ce + e = (c + 1) e + c(1 - e)$$

$$= (g + w) e + (f + p)(1 - e) = ge + we + f(1 - e) + p(1 - e)$$

$$= ge + f(1 - e) + we + p(1 - e).$$

We note that

$$(ge + f (1 - e))^{2} = (ge + f (1 - e)).(ge + f (1 - e))$$

$$= (ge)^{2} + gef (1 - e) + f (1 - e) ge + (f (1 - e))^{2}$$

$$= ge + gef - ge^{2}f + fge - fe^{2}g + f(1 - e)$$

$$= ge + gef - gef + fge - feg + f(1 - e) = ge + f(1 - e).$$

Also, we + p(1 - e) is a p – clean element in \mathcal{R} (because we + p(1 - e) is a unit element)

$$(we + p(1 - e)).(w^{-1}we + p^{-1}p(1 - e)) = we + wep^{-1}p + p(1 - e)w^{-1}we + p(1 - e)$$
$$= we + wep^{-1}p - wep^{-1}pe + pw^{-1}we - pew^{-1}we + p(1 - e)$$
$$= we + p(1 - e).$$

Since, we + p(1 - e) is a p – clean element in \mathcal{R} , (c + e) is a p – clean.

2. Conclusion

Our aims in this work are to study the concepts of clean ring and r-clean ring which are stronger than of the concept p-clean ring. Furthermore, we give the relation between von Neumann local ring and p-clean ring and we prove that the finite direct product of p-clean rings is also p-clean ring. Finally, we studies many properties of p-clean rings.

References

- [1] A. Andari, The relationships between clean rings, r-clean rings, and f-clean rings, AIP Con. Proc. 2021(1) (2018) 1–4.
- [2] D. F. Anderson and A. Badawi, Von neumann regular and related elements in commutative rings, Algebra Colloq. 19(spec01) (2012) 1017–1040.
- [3] N. Ashrafi and E. Nasibi, Rings in which elements are the sum of an idempotent and a regular element, Bull. Iran. Math. Soc. 39(3) (2013) 579–588.
- [4] N. Ashrafi and E. Nasibi, r-CLEAN RINGS, Math. Rep. 15(65) (2013) 125–132.
- [5] W. Chen and S. Cui, On Clean Rings and Glean Elements, Southeast Asian Bull. Math. 32(5) (2008) 855–861.
- [6] F. D. de Melo Hernández, C. A. Hernández Melo and H. Tapia-Recillas, On idempotents of a class of commutative rings, Commun. Algebra 48(9) (2020) 4013–4026.
- [7] M. A. Goldman, Ring theory, Nature, 432(7018) (2004) 674-675.
- [8] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977) 269.
- [9] L. Vaš, *-clean rings; some clean and almost clean Baer *-rings and von Neumann algebras, J. Algebra 324(12) (2010) 3388–3400.
- [10] A. Wardayani, I. Kharismawati and I. Sihwaningrum, Regular rings and their properties, J. Phys: Conf. Ser. 1494(1) (2020).

- [11] A. Majidinya, A. Moussavi and K. Paykan, Rings in Which the Annihilator of an Ideal Is Pure, Algebra Colloq. 22(spec01) (2016) 947–968.
- [12] W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasgow Math. J. 46(2) (2004) 227–236.
- [13] G. Sharma and A. B. Singh, Strongly r-Clean Rings Introduction, Int. J. Math. Comput. Sci. 13(2) (2018) 207–214.