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Abstract

For any two entire functions f, g defined on finite complex plane C, the ratios Aﬁ;—?fg) and % as
r — oo are called the growth of composite entire function fog with respect to f and g respectively in
terms of their maximum moduli. Several authors have worked about growth properties of functions
in different directions. In this paper, we have discussed about the comparative growth properties
of fog, fand g, and derived some results relating to the generalized order (a, #) after revised the
original definition introduced by Sheremeta, where o, § are slowly increasing continuous functions
defined on (—o0,+00). Under different conditions, we have found the limiting values of the ratios
formed from the left and right factors on the basis of their generalized order («, ) and generalized

lower order («, 3), and also established some inequalities in this regard.
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1. Introduction, Definitions and Notations

A function f which is analytic in the entire finite complex plane C, is called an entire function,

which may be represented by an everywhere convergent power series Y . a,z", e.g. sin z, cos z, exp z
n=0
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etc. Rolf Nevanlinna initiated the value distribution theory of entire functions in 1926, which is a
prominent branch of Complex Analysis and is the prime concern of our paper. We use the standard
notations and definitions of the theory of entire functions which are available in [10} 1T, 17, 19], thus
we do not explain those in details.

The ratio %f E:g as r — oo is called the growth of f with respect to ¢ in terms of their maximum
g

moduli, where the maximum modulus function M (r) of f on |z| = r is defined as M; = Hax] f(2)] It

can be also defined with maximum term function (1) = m§8<(|an|7‘") in place of maximum modulus.
n

The order of an entire function f which is generally used in computational purpose is defined in terms
of the growth of f with respect to the exponential function.

Juneja et al. [9] introduced the definitions of (p, ¢)-th order and (p, ¢)-th lower order of an entire
function, where p and ¢ always denote positive integers with p > ¢. These definitions extended the
generalized order pgﬂ and generalized lower order )\Ef] of an entire function considered in [12] for each
integer [ > 2. During the past decades, several authors made close investigations on the properties
of entire functions related to (p, ¢)-order in some different direction (e.g. see, [4l 5] @, [1§]).

Recently, Chyzhykov et al. [7] showed that both generalized order and (p, g)-order have the
disadvantage that they do not cover arbitrary growth (see [7, Example 1.4]). Considering this, let
L be a class of continuous non-negative on (—oo,+o00) function a such that a(x) = a(zg) > 0 for
r < xy with a(x) T 400 as © — 400 and a((1 + o(1))z) = (1 + o(1))a(x) as x — +oo. We say that
a€ Ll ifa € L and alcz) = (1 +o(1))a(x) as g < x — +oo for each ¢ € (0, +00), i.e., a is slowly
increasing function. Clearly L° C L. Moreover we assume that throughout the present paper «, oy,
as, B, 81 and 5 always denote the functions belonging to L° unless otherwise specifically stated.
The quantity ( )

, a(log My(r
el =B P B log )
introduced by Sheremeta {see, [16]} in 1967, which is called generalized order (a, ) of f. Some
studies are made on the properties of entire functions related to generalized order (o, ) in some
different direction during the past decades (e.g. see, [13]). For the purpose of further applications,
Biswas et al.[2, 3] rewrite the definition of the generalized order (o, ) of entire function in the
following way after giving a minor modification to the original definition (e.g. see, [16]).

(eeL,5eL)

Definition 1.1. [2,[3] The generalized order (c, B) and generalized lower order (cv, 3) of an entire
function f denoted by p(ap)|f] and Nl f] respectively are defined as:

Pap)f] = lim SUP% and Ao p)[f] = 1;2225%

.
Since for 0 <r < R,
psr) < My(r) < (R fef. [13]),
it is easy to see that
praslf) = tmsup ™ and (1) = iming “ L),

Here, in this paper, we investigate certain interesting results associated with the comparative
growth properties of composite entire functions using generalized order («, ) and generalized lower
order («, 3). In fact some works in this direction have already been explored in [1}, 2] 3].
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2. Known Results

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [§] Let f and g are any two entire functions with g(0) = 0. Also let b satisfy 0 < b < 1

and c(b) = (125)2. Then for all sufficiently large values of r,

My (e(b)My(br)) < Miyoq(r) < My(My(r)).

In addition if b = %, then for all sufficiently large values of r,

Moy (1) > M; <%Mg (g)) .

Lemma 2.2. [T]|] Let f and g be entire functions. Then for every § > 1 and 0 < r < R,

) R
urnr) < 5205 (e ().

Lemma 2.3. [T} If f and g are any two entire functions. Then for all sufficiently large values of

r?
(r) > 1 1 <r)

3. Main Results

In this section we present the main results of the paper.

Theorem 3.1. Let f and g be any two entire functions such that p(a, p)[9] < Mar,s)lf] < Plar,slf] <
+00.

(7) If either (1(r) = Bexp(as(r)) where B is any positive constant or Ein % = +o0, then

11y (35 (08 1))

At explon (M (B (log )

(i) If ao(By ' (r)) € L, then

. exp(aa (B (an (Myog (B3 (log))))))

AT ep@M (G g r)))

Proof . Since p(as,6.,)[9] < Aa1,81)[f] we can find £(> 0) is such a way that

p(azﬁz)[g] +e< >\(a1,51)[f] —¢&. (3'1)

From of Lemma [2.1], we obtain for all sufficiently large positive numbers of r that

a1 (Myog(B; ' (10g7))) < (plas,o0)[f] +€)Br(My(By ' (logr))). (3.2)
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Now the following three cases may arise .
Case L. Let () = Bexp(as(r)) where B is any positive constant. Then from (3.2)) for all sufficiently
large positive numbers of r, we have

1(Myoq(B " (log 1)) < Blpiar o) [f] + €) exp(az(My (8, (log))))

iy 01 (Myeg(B5(1087))) < Blpay o [f] + £)rlasmlolso), (3.3)
Case II. Let lim %(igr)) = +o00. For all sufficiently large positive numbers of r, we get from 1)

ro+too M1

a1(Mog(By (108 7)) < (par,on)[f] + )riPiez sl ), (3-4)

Case III. Let ay(B;*(r)) € L°. Then we get from (3.2)), for all sufficiently large positive numbers of
r?

az (87 (an (Myog (B3 (log 7))))) < (1+ o(1))aa(My(5y " (log 7))

i.e., exp(aa(By (a1(Mfog(By  (logr)))))) < rtHoi) s mm)lalte), (3.5)

Also from the definition of A, g,)[f], for all sufficiently large positive numbers of r,
exp(an (Mg (B; ' (log)))) = rPermll==), (3.6)
Now combining of Case I and we get for all sufficiently large positive numbers of r,
on(Myog (851108 1)))  _ Blp(ar.alf] + e)rtPiea st
explar(M; (4 (log 1)) REDRRIGES |
Hence from and , we have

a1 (Myog(By *(logr)))
im — =
rovteoexp(an (My (8 (logr))))
Similar conclusion can also be derived from (3.4)) of Case II and ({3.6)).

Hence the first part of the theorem is completed.
Further combining (3.5)) of Case III and ({3.6) we obtain for all sufficiently large positive numbers

of r that
exp(0g (B (0n(Myog (7 (l0g7)))))) _ ro e s+
exp(ai (M (81 (log7)))) T rGensli=
Therefore in view of we get from above that
o explas(r s (Mg (55 08 ) _
r oo exp(an (M (81 (log))))

Hence the second part of the theorem follows from above.
Thus the theorem follows. [J

(3.7)

(3.8)

Theorem 3.2. Let f and g be any two entire functions such that Aa, 5,)[9] < Mg lf] < playpolf] <

+00.

(1) If either 1(r) = Bexp(asz(r)) where B is any positive constant or ll)I_El % = +o0, then

— ar(Myog (B ' (logr)))

P (o (M (B (log )
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(i1) If o (By(r)) € LO, then

lim infexp(a2(/31_1(al (Mfog(BQ_I (logr))))))
r—-H00 exp(on (My(B; ' (log))))

The proof of Theorem [3.2]is omitted as it can be carried out in the line of Theorem [3.1]

=0.

Theorem 3.3. Let f and g be any two entire functions such that 0 < A, g)lf] < Plassylf] <
)‘(062752)[9] < Fo0.
(i) If either By (r) = Bexp(as(r)) where B is any positive constant or lim 2220 — o then

r—4oo A1)
i 0 (Myeg(55 logr)))
r=eexplar (M (1 (log 1))
(i) If as(B7 () € L°, then
fi CP(2(B (01 (Myoy (B3 logT))) _

r—>+00 exp(aq (M (81 (log))))

Proof . Let us choose 0 < € < A, 5,)[f]. Now for all sufficiently large positive numbers of r we get
from Lemma 2.1] that

(M55 o)) > (1 o(0) O] - 9 (34, (Z0ED) ) (3

Now the following three cases may arise.
Case I. Let f(r) = Bexp(az(r)) where B is any positive constant. Then from (3.9)) we obtain for
all sufficiently large positive numbers of r that

a1(Myog(By ' (log 7)) 2 B(1+ 0(1))(Aay ) [f] — )rt o) Rezsn0179), (3.10)

Case II. Let 1i£rn ex‘f’;ﬁig’")) = 0. Now from 1’ it follows that for all sufficiently large positive
400

numbers of r,
a1 (Myog(B5 ' (10g7))) > (1 + 0(1))(Aay ) [f] — )t ez o=9), (3.11)

Case III. Let ay(8;*(r)) € L°. Then from (3.9)), for all sufficiently large positive numbers of 7,

(B (o1 (Myog(By ' (log 7)) = (1+ 0(1))ay (Mg (@))

e, exp(as(Br (an(Myog (B3 (logr)))))) = ritFe)Peanplol=<), (3.12)
Again from the definition of p(a, g,)[f] we get for all sufficiently large positive numbers of r that

exp(an (Mg (B; ' (log)))) < rPersnli*2), (3.13)

Now combining (3.10) of Case I and (3.13]) we get for all sufficiently large positive numbers of r

that
01 (Myey (B (108 7)) B+ 0(1) Aoy [f] = e)rHo0 ez ool

exp(aq (Ms(By  (logr)))) — r(Play o) [F1+€)
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Since pay,p) [ f] < Aas,82)[9], it follows from above that

- ay (Myoy (85 ' (log 7))
r—+ooexp(ay (Mf (51_1 (log))))

Similar conclusion can also be derived from (3.11]) of Case II and (3.13).

Therefore the first part of the theorem is proved.

Again combining (3.12]) of Case IIT and ([3.13)) we obtain for all sufficiently large positive numbers
of r that

= +00.

eXP(CYQ(@fl(Oél(Mfog(ﬁz_l(log7”)))))) > r(+oW)Aay,p5)l91—¢)
explaa(My(B ' (logr)))) T el
iy XP(a2(B1 (01 (Myey (B3 (log 1))
r—+oo exp(an (M (87 (logr))))

Therefore the second part of the theorem follows from above.
Hence the theorem follows. [J

1.€.,

= +OO,

Theorem 3.4. Let f and g be any two entire functions such that 0 < A, g,)[f] < Aas,8)[g] < +00.

(i) If either 51(r) = Bexp(az(r)) where B is any positive constant or li{rn ex%(a( gr) =0, then
r——+400

i s 1 (Mrea (01 1o 1))

o (o My (B og )

(i3) If (B (r)) € LO, then

lim sup exp(az (81 (1 (Myoe(5y ' (log7))))))
r—400 eXp(Ofl(Mf<61_1(10g T))))

The proof of Theorem [3.4] is omitted as it can be carried out in the line of Theorem [3.3]

= 400.

Theorem 3.5. Let f and g be any two entire functions such that 0 < Xay5))[f] < Par,plf] < +00
and 0 < /\(azﬂz)[g] < p(az,ﬂz)[g] < +o00.
(2) If B1(r) = ay(r), then

)\(aluﬁl)[f] : )‘(az,ﬂ2)[g] lim inf al(Mfog(r))
P lf = RS OLG ()
. p(a1,ﬂ1)[f] : )‘(a2752)[g]
S min {’““Qﬁ”[QL Newi ] }

and

)‘(a1ﬁ1)[f] : p(az,ﬂz)[g] } 1; O‘1<Mfog(r))
max {”‘”ﬁ”[g]’ Pl < S O (B (Ba())

Plar,s) LI Plass) 9]
N /\(061751) [f]
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(43) If Br(as (1)) € LY, then
)‘(al,ﬁl) [f]

< lim inf al(Mfog(r»
P(ai1,b1) [f]

r—+o00 (1 (Mf(Oég_l(BQ(r))))

<1

(4ii) If (B (7)) € LO, then

Aas 52)19] (B! (Oél(Mfog(T)))) o

al(Mfog(r)) < :0(041,,31)[.]0]
az ' (B2(r))  Aawsolf]

< limsup
T rooo an (M

< liminf <
P(aq,B1) [f] ot (Mf (51 T)))
ANa
mln{ ( 262)
e m)
A(
max{ (e 0)|
/\ (o1 ,31

(B (a1 (Myog(r))) _ Plazp)ld]
ar(Mp(BrH(Ba(r))) ™~ Ao [f]

lim sup
r—-+00

Proof . From the definitions of generalized order (a4, #1) and generalized lower order (aq, 1) of f,
we have for all sufficiently large positive numbers of r that

aq (Mf(r)) < (p(m ﬂl)[f] + 5)&1 (T)> (3-14)
ar(My(r)) = (Mg lfl = €)Bi(r). (3.15)
and also for a sequence of positive numbers of r tending to infinity, we get
al(Mf(r)) > (p(mﬁﬂ[f] - 5)ﬁ1(r)7 (3-16)
al(Mf<r>> < <)‘(041ﬂ1)[f] + 6)61(T>' (3'17)
Now in view of Lemma [2.1] for all sufficiently large positive numbers of r,
a1(Myog(r)) < (P(ar,pn) [f] + ) B1(My(r)), (3.18)
r
01(Myog(1)) = (1+0(1) N [f) = )81 (M, (5)) - (3.19)
and also for a sequence of positive numbers of r tending to infinity,
a1<Mfog(r)) < ()‘(ou,ﬂl)[f] + 5)61(M9(T))7 (320)
,
01 (Myog(1)) = (1+ 0(1) (pran 0 [f] = )81 (M, (5) ) (3.21)
Now the following two cases may arise:
Case I. Let 51(r) = as(r).
Then for all sufficiently large positive numbers of r, we get from (|3.18)),
a1 (Myog (1)) < (piar,sn)[f]+€)(pras,a) 9] + €)Ba(r), (3.22)
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and for a sequence of positive numbers of r tending to infinity that

a1(Myog (1)) < (p(arpnlf] +€) (Ao l9] + ) Ba(r). (3.23)
Also we obtain from ([3.20]) for a sequence of positive numbers of r tending to infinity that
a1 (Miog(r)) < (Mar,onlf] + ) (Pras,80) 9] +€)Ba(r). (3.24)
Further it follows from ({3.19)), for all sufficiently large positive numbers of r,
a1(Myog(r)) = (1+ 0(1))(Aarp [f] = €)(Naz.p2l9] — ) Ba(r), (3.25)
and for a sequence of positive numbers of r tending to infinity that
a1 (Myog(r)) = (14 0(1))(Aarp) lf] = €)(P(0n,8)[9] — €)Ba(r). (3.26)
Moreover, we obtain from (3.21))for a sequence of positive numbers of r tending to infinity that
a1(Myog(r)) = (1 + 0(1))(p(ar,p0)[f] = €)(Naz,e) [9] — €)Ba(r).- (3.27)

Therefore from (3.15)) and (3.22)), we have for all sufficiently large positive numbers of r that

o (Mfog(r)) < (p(alﬂl)[f] + 5)(p(042ﬁ2) [g] + €>ﬁ2<r)
ar (M (B (Ba(r)))) (Aar,an) [f] =€) Ba2(r)

, limsup Oél(Mfog(r)) < p(ahﬁl)[f] ' p(a2,ﬁ2)[g] ‘
rotoo a1 (My(Br (B2(r)))) Ao )]
Now from (3.16)) and (3.22 -7 it follows for a sequence of positive numbers of r tending to infinity

that
al(Mfog(r» < ( Pla1,81) f] ( P(az.B2) g] + E)ﬁg(T)
(

[f1+¢) [
an (Mr (B (B2(r)))) (P(an 80 [f] =€) Ba(r)

, liminf o1 (Myey (7))
T==00 Oél(Mf(51 (Ba(r

In the same way also from and (§ -,We obtain that

tim inf 1 Mrea () Pyl Man o]
r+o0 an (M (8 (Ba(1)))) Ao g f]

Similarly from (3.15)) and (3.24), we get that

(M)
AL, () S P9

Thus from (3.29), (3.30) and (3.31)), it follows that

lim nf— 1 WMream) min{ o Pleaplf] - Moz o)) }
rotoo an (M (B (Ba(r))) P9l =5 "

Further from ({3.14) and (3.25)), we have for all sufficiently large positive numbers of r that

ai (Mf09<r)) > (1+ O<1))()\(a1761)[f] - 5)()‘(02,52)[9] - 6)52(7“)
ar(My(Br " (B2(r)))) ~ (P80 [f] +€)Ba(r)

(3.28)

)))) < Plaz, ﬁQ)[g] (329)

(3.30)

(3.31)

(3.32)
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ai (Mfogon)) > A(al,ﬂl)[f] ’ )‘(aQ,ﬁz)[g] .

i.e., liminf & > (3.33)
rotoo an (M (BT (Ba(1)))) Plor.p) L]
Applying similar procedure, we obtain from (3.17) and (3.25)),
. a1 (Myog (1))
lim sup - > Nas.go) 9] (3.34)
oo an (My(By T (Ba(r)) ~ 7
From (1) and (3:28),
M ° A o " Ha
lim sup o ( flg(r)) > ( 1,51)[]0] P( 2152)[9]’ (3.35)
rtoo an(My(By (B2(r)))) Plar o) lf]
And from (3.14) and (3.27)),
: a1 (Myog(r))
lim sup - > A, B2)19]- (3.36
P Gy (B () = e )
Hence from ([3.34)), (3.35)) and (3.36)), it follows that
My, /\Oq 1 * Plaz,B2
lim sup a _flg(T)) > max{A(%@[g], (01,80 ] - Plac,p2) 1] } (3.37)
r—+00 Oél(Mf<ﬂ1 (62(7“)))) p(mﬁﬂ[f]

Therefore the first part of the theorem follows from ((3.28)), (3.32)), (3.33) and (3.37).

Case II. Let ,(ay'(r)) € L.

Then for all sufficiently large positive numbers of r, we have from (3.18)),

a1 (Mog(r)) < (o) [f]+€)B1(0g ((Praz,n 9] +€)Ba(r)))
e, o (Myog(r)) < (14 0(1))(prar s lf] + €)Bi(ag " (Ba(r))), (3.38)

And from (3.19)),
a1 (Myog(r)) > (14 0(1)) (Aar,60)[f] — €) Brlaz ' (Ba(r)))- (3.39)

Now from (3.15)) and (3.38]), we have for all sufficiently large positive numbers of  that

on(Mpog(r)) (14 0(1)(P(on ) [f] +2)Bi (a3 (B(r))
an(Mp(ay ' (Ba(r)))) (Massnlf] = €)B1(ay " (Ba(r)))

M ¢} a1,P1
i.e., limsup o ( flg(r)) < Plos,p )[f] .
rtoo a1 (Mp(az ' (B2(r)))) ~ Ao lf]
Again from (3.16]) and (3.38)), it follows for a sequence of positive numbers of r tending to infinity

that
on(Mpog(r)) (14 0(1)(P(on sy [f] + )81 (03 (B(r))
ar(My(ag ' (Ba(r)))) (Plar L] = €)Br(ag* (Ba(r)))

7.e., limin al(Mfog(r))
.., lrﬁJroofal(Mf(a;l(ﬁg(r)))) < 1. (3.41)

(3.40)
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Further from (3.14]) and (3.39), we have for all sufficiently large positive numbers of r that

on(Mpog(r)) (14 0(1)Aar s [f] = €)B1(as " (Ba(r))
ar (M (ag ' (B2(r)))) ~ (Ptar,a0[f] + €)Bi(az " (Ba(r)))

Mg, Aa
r+oo g (My(ag  (B2(r))) — Plaasnlf]
Also from (3.17)) and (3.39)), it follows for a sequence of positive numbers of r tending to infinity

(3.42)

that
on(Myop(r)) . (1+0(1) Ay [f] = €)Bi(az (Ba(r)))
ar(My(ay " (Ba(r)))) ~ Aaraolf] +2)Bi(ay " (B2(r)))
i.e., limsup 01 (Mo (1) > 1. (3.43)

rrroo 0 (My(ag ' (Ba(r)))) —
Hence the second part of the theorem follows from (3.40)), (3.41)), (3.42)) and (3.43).

Case III. Let ay(B8;'(r)) € L°.
Then we have from (3.18)) for all sufficiently large positive numbers of r that

a2 (Br (a1 (Myog (1)) < (14 0(1)) (Pl o) 9] + ) Ba(7), (3.44)

and for a sequence of positive numbers of r tending to infinity that

az (7 (a1 (Myog(r)))) < (14 0(1)(Naz ) 9] +€)Ba(7). (3.45)
Further, it follows from for all sufficiently large positive numbers of r that
az(Br (a1 (Mg (r)))) = (14 0(1)) (Naz,p0) l9] — €)Ba(r), (3.46)

and for a sequence of positive numbers of r tending to infinity that

az (B (a1 (Myog (1)) = (14 0(1))(p(as o) 9] — €)Ba(7). (3.47)

Now from (3.15)) and (3.44]), we have for all sufficiently large positive numbers of  that

(B (01 (Myog(r)))) _ (14 0(1))(Paz,519] + ) Ba(r)
ar(My (B (Ba(r))) (A lf] = €)Ba(r)

(o (M o
e ey 22U @00 1) _ prassls) 18
oo an(Mp(Br (B2(r)) A lf]
Also from ([3.16]) and ([3.44]) it follows for a sequence of positive numbers of r tending to infinity

that
aa(ByH(ar (Myog(1)))) _a +0(1)) (P(on.p0) 9] + €) Ba ()
ar(Mp(B(B(r)) T (pansnlf) — 2) oM

ol 2B (@1(Mog(r))) _ Plasisn)ld]
€., lim inf s (M, (3 (5a(r) < PTL (3.49)
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Similarly from (3.15)) and (3.45]), we obtain that
(B (01 (Myog(1)))) _ Aoz, 19

lim inf < . 3.50
e (M8 (Ba(r) At ] .
Thus from and it follows that
-1
i i @208 (01 (Mpeg(r)) {p<a2ﬁ2>[g1 Namﬂg]}, 351
e (M B0) T Wanslf] AansolF .

Further from ({3.14) and (3.46)), we have for all sufficiently large positive numbers of r that

(B (a1 (Myoy(r))) o (14 0(1)(Nwz,)[9] = €)Ba(r)
ar(Mp(By (Ba(r)) (P(an o) [f] + ) Ba(r)

—1
Bl (T C))) B
oo Oél(Mf(Bl (52(T>>) p(ahﬁl)[f]
Also from (3.17)) and ) it follows for a sequence of positive numbers of r tending to infinity

that
az(ﬂfl(al(Mfog(T)))) o (14 0(1)Naz ) [9] = €)Ba(r)
ar(My (B (Ba(r))) (Aar,anlf] +€)Ba(r

. lim Supa/Q(ﬁl_l(al(Mfog(r)))) > (o2,82) [
r——+00 Ofl(Mf(ﬁl (B2(T))) )‘(041 B1) [
Similarly from (3.14)) and (3.47), we obtain that

-1
sy S20 @0 Oy 1) Prasslo]
r—+00 Oél(Mf(Bl (52(T>>) p(alﬁl)[f]
Thus from (3.53)) and (3.54)), it follows that
! (e} >\ (e (0%
limsup%(ﬂl (ngyf Q(T)))) > max{ ( 2752)[9] : P 27ﬁ2)[g] }
r—too an(Mp(By(B2(r))) Aer 81 Prar, s [f]
Thus the third part of the theorem follows from (3.48)), (3.51)), (3.52) and (3.55)). O

(3.52)

)
]] (3.53)

(3.54)

(3.55)

Theorem 3.6. Let f and g be any two entire functions such that 0 < A, ) [f] < praypnlf] < +00
and 0 < )\(a2752)[g] < p(az,ﬁb)[g] < +o0.
(1) If Br(r) = aa(r), then

/\(0417,31)[f] ’ )‘(Olz,ﬁQ)[g]
P(az,B2) [g]

o (Myey(r)
= 00,0

. Aal,l[f]'po‘2’2[g]
< min {p(ahﬁl)[f]’ : B))\( B)Eg]ﬂ)

and

a1,B1 A as.fo ‘ My,
max {)‘(al,ﬁl)[f]7 Plen,f )[f] (2,5 )[g] } < lim Supw
p(a2ﬁ2)[g] r—-+oo a2< g(T))

p(alﬁl)[f] ) p(az,ﬁz)[g]
)‘(042,52)[9]

IN
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(i3) If Bi(ay ' (1)) € LO, then

Massplf] lim inf a1 (Myo4())
Plasinlg]l = oo an(My (B (Br(eg  (B2(r))))))

2
- Parslf] Awisnlf]
S mln{ P(az,B2) [g]’ >‘(042,52)[g]
and
< p(ou,ﬁl)[f] )‘(ou,ﬁl)[f]} < 1 al(Mfog(T))
e {p<a2,ﬂ2>[g]’ Nanimldl | = 1o aa(My(By "(Br (0" (Ba(r))))
< p(a1,ﬁ1)[f] .
B )‘(&2,52)[9]

(i33) If an(B; (1)) € L, then

Nassnld] _ o coalB @ (Myeg(r) o (B (00 (Myey (1)) Pl

Plaz.62)19] r—-oo0 g (M,(r)) P00 g (My(r))  Nawslgl

The proof of Theorem [3.6]is omitted as it can be carried out in the line of Theorem [3.5

Remark 3.7. The same results of above theorems in terms of maximum terms of entire functions

can also be deduced with the help of Lemma|2.3 and Lemma[2.3
Conclusion

According to the Fundamental Theorem of Classical Algebra “If f(z) is a polynomial of
degree n with real or complex coefficients, then the equation f(z) = 0 has at least one root” is the
most well known value distribution theorem, and hence any such given polynomial can take any given
value, real or complex. In the value distribution theory, one studies how an entire function assumes
some values and, conversely, what is the influence in some specific manner of taking certain values
on a function. Also it deals with various aspects of the behavior of entire functions, one of which
is the study of their comparative growth. In this paper we deals with the extension of the works
on the growth properties of composite entire functions on the basis of their generalized order («, [3)
where o and [ are continuous non-negative functions on (—oo, +00). The technique used to define
generalized order («, ) and generalized lower order («, 5) is newly developed, so there are no works
in this regard. The concept of generalized order (¢, ) is more generalized concept and its related
work is very much significant in the study of growth properties of entire functions. This works will
be helpful for the future researchers.
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