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Abstract

The aim of this article is to study the dynamical behavior of an eco-epidemiological model. A prey-
predator model comprising infectious disease in prey species and stage structure in predator species
is suggested and studied. Presumed that the prey species growing logistically in the absence of
predator and the ferocity process happened by Lotka-Volterra functional response. The existence,
uniqueness, and boundedness of the solution of the model are investigated. The stability constraints
of all equilibrium points are determined. The constraints of persistence of the model are established.
The local bifurcation near every equilibrium point is analyzed. The global dynamics of the model
are investigated numerically and confronted with the obtained outcomes.
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1. Introduction

The eco-epidemiological model is important in both applied mathematics as well as theoretical
ecology. May and Anderson [13], were the former who connect epidemiology and ecology and sug-
gested a prey-predator model with infectious diseases in the prey species. Infectious diseases play
a role in eco-epidemiological models. As an outcome, several mathematical models have been ad-
vanced. Most papers have deal with prey-predator models with the disease in the prey see ([10], [17],
[18], [1]). Further, in present years, eco-epidemiological systems with the disease in predator have
become the most interesting part of research among all mathematical models ([15], [6], [2], [14]).
On the other hand, the effect of disease in both prey and predator species is considered too, see for
example [9, 3, 4, 11].
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In the naturalist world, the species have a lifetime history that contains at least two stages
immature and mature. All stages have different behavioral properties. Many researcher have studied
of stage-structured models[16, 20]. Naji and Majeed [16] proposed a time-delayed prey-predator
model involving stage-structure in the predator. Furthermore, Savitri and Abadi [19] proposed and
studied the dynamical behaviors of a prey-predator model with stage-structure for prey.

In this article, the dynamical behavior of a prey-predator model with infectious disease in prey
and stage-structured predator is proposed. Presume that the infectious disease for prey of type SI,
and the predator splits into two stages immature and mature. The individuals in the immature
stage cannot reproduce and hunt, they rely on their parents (mature). The stability analysis and
persistence of the suggested model are investigated in part (3). In part (4), we study the bifurcation
analysis are interested. Numerical analysis outcomes of the model are introduced in part (5). Finally,
in part (6) we ending with a concise discussion and conclusion.

2. Formulation of Mathematical Model

The dynamics of the prey-predator model involving disease and stage-structure in the prey and
predator, respectively is formulated mathematically. It is assumed that X(T ) represents the popula-
tion density of prey at time T and divides into two types: S(T ) and I(T ), where S(T ) represents the
susceptible prey at time T , I(T ) is the infected prey at time T . Let Y (T ) represents the population
density of predator at time T , which split into two stages: mature with density at time T represented
by Y 1 (T ) and immature with density at time T represented by Y 2 (T ). So, the formulation of the
model mathematically depended on the following hypotheses.

1. The prey growth logistically with intrinsic growth rate r > 0 and carrying capacity K > 0.

2. the susceptible prey S(T ) becomes infected by contact with infected prey according to infection
rate α > 0. Moreover, it is assumed that the disease causes death with a disease death rate
denoted by D1 > 0.

3. It’s assumed that the immature predator grows exponentially depending on their parents with
a growth rate γ > 0, whereas portion from it grow up to become mature with grown−up rate
µ > 0. Moreover both the populations facing natural death with death rates D2 > 0 and
D3 > 0 for Y 1 (T ) and Y 2 (T ) respectively.

4. It is assumed that Y1 (T ) feeding on S(T ) and I(T ) using Lotka-Volterra type with maximum
attack rates β1 > 0 and β2 > 0 respectively, and conversion rates e1, e2 ∈ (0, 1).

By the suppositions, the model is

dS

dT
= rS

(
1− S + I

K

)
− αSI − β1SY1,

dI

dT
= αSI − β2IY1 −D1I,

dY1
dT

= e1β1SY1 + e2β2IY1 + µY2 −D2Y1,

dY2
dT

= γY1 − µY2 −D3Y2.

(2.1)

The state space R4
+ = {(S, I, Y1, Y2) ∈ R4 : S ≥ 0, I ≥ 0, Y1 ≥ 0, Y2 ≥ 0}.
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Now, the system (2.1) contains 12 parameters. we simplify system (2.1) and reduced to 9 using
the dimensionless as following:

t = rT , S = sK , I = iK , Y1 =
r y1
β1

, Y2 =
r2 y2
µ β1

, α
1

=
α K

r
, β =

β2
β1
,

d1 =
D1

r
, θ1 =

e1 β1K

r
, θ2 =

e2 β2K

r
, d2 =

D2

r
, γ1 =

γ µ

r 2
, σ =

µ

r
, d3 =

D3

r

(2.2)

Now, the system (2.1) reduces to the dimensionless system as following:

ds

dt
= s (1− (s+ i))− α1si− sy1 = f1 (s, i, y1, y2) ,

di

dt
= α1si− βiy1 − d1i = f2 (s, i, y1, y2) ,

dy1
dt

= θ1sy1 + θ2iy1 + y2 − d2y1 = f3 (s, i, y1, y2) ,

dy2
dt

= γ1y1 − σy2 − d3y2 = f4 (s, i, y1, y2) .

(2.3)

Theorem 2.1. Every solutions of system (2.3) initiating in R4
+ are bounded if

d2 > γ1. (2.4)

Proof . Let ds
dt

≤ s (1− s).
By using the comparison theory,

s (t) ≤ 1

1 + ce−t
∀ t ≥ 0 , s (0) = s0 and c =

1

s0
− 1.

Hence, s (t) ≤ 1 , as t −→ ∞. Let

w (t) = s (t) + i (t) + y1 (t) + y2 (t) (2.5)

Now,
dw

dt
+ ρw ≤ 2 , where ρ = min {1, d1, d2 − γ1, (σ + d3)− 1}

Grownwall lemma [7] applied in above inequality and get

w (t) ≤ w0e
−ρt +

2

ρ

(
1− e−ρt

)
.

Hence, as t→ ∞, every solutions that initiate in R4
+ confined in region Ω,

Ω =

{
(s, i, y1, y2) ∈ R4

+ ;w ≤ 2

ρ

}
.

□
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3. Local Stability, Global stability and Persistence

in system (2.3), every equilibrium points (EP) are studied as follows

� The vanishing equilibrium point (VEP) , τ0 = (0, 0, 0, 0) exists.

� The axial equilibrium point (AEP ), τ1 = (1, 0, 0, 0) exists.

� The predator free equilibrium point (PFEP ), τ2 = (s, i, 0, 0) =
(

d1
α1
,
(

α1−d1
α1(1+α1)

)
, 0, 0

)
, exists

iff the next condition holds.
d1 < α1 (3.1)

� The disease free equilibrium point (DFEP ),

τ3 = (ŝ, 0, ŷ1, ŷ2) =

(
d2 (σ + d3 − γ1)

θ1 (σ + d3)
, 0,

(σ + d3) (θ1 − d2) + γ1
θ1 (σ + d3)

,
γ1 ((σ + d3) (θ1 − d2) + γ1)

θ1 (σ + d3)
2

)
,

exists iff the next condition holds

γ1
(σ + d3)

< d2 <
θ1 (σ + d3) + γ1

(σ + d3)
. (3.2)

� The positive equilibrium point (PEP ), τ4 = (s∗, i∗, y∗1, y
∗
2) , where

i∗ =
(β + d1)− s∗ (β + α1)

β (1 + α1)
, y∗1 =

α1s
∗ − d1
β

, y∗2 =
γ1 (α1s

∗ − d1)

β (σ + d3)
, (3.3)

while, the following polynomial equation of second order has a positive root s∗ ,

H1s
∗2 +H2s

∗ +H3 = 0 (3.4)

where

H1 = α1 (σ + d3) (θ1β (1 + α1)− θ2 (β + α1)) ,

H2 = (θ2 (σ + d3) (α1 (β + d1)) + γ1α1β (1 + α1))− β (1 + α1) (σ + d3) (θ1d1 − d2α1) ,

H3 = d1d2β (1 + α1) (σ + d3)− d1 (θ2 (β + d1) (σ + d3) + γ1β (1 + α1))

Now, τ4 exists iff the following condition holds

s < s∗ <
β + d1
β + α1

(3.5)

together with the following sets of conditions

H1 < 0 and H3 > 0

or

H1 > 0 and H3 < 0

 (3.6)
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The local dynamical behaviors are carried out by calculating J (τi) , i = 0, 1, 2, 3, 4 and then com-
puting the eigenvalues, which specify the stability type of each points.

J (τ0) =


1 0 0 0
0 −d1 0 0
0 0 −d2 1
0 0 γ1 − (σ + d3)

 (3.7)

Now, J (τ0) has a positive eigenvalue λ01 = 1 > 0. Then, the VEP is a saddle point.

J (τ1) =


−1 − (1 + α1) −1 0
0 α1 − d1 0 0
0 0 θ1 − d2 1
0 0 γ1 − (σ + d3)

 (3.8)

The eigenvalues of J (τ1) are computed by

λ11 = −1 < 0 (3.9a)

λ12 = α1 − d1 (3.9b)

λ13 + λ14 = (θ1 − d2)− (σ + d3) (3.9c)

λ13.λ14 = − (θ1 (σ + d3) + γ1) + d2 (σ + d3) (3.9d)

Accordingly, all the eigenvalues are negative provided that

α1 < d1 (3.9e)

θ1 +
γ1

(σ + d3)
< d2 (3.9f)

Clear that, from constraint (3.9e), the AEP is locally asymptotically stable (LAS) iff the PFEP is
not exist.

J (τ2) =


1− 2s− (1 + α1) i − (1 + α1) s −s 0

α1i α1s− d1 −βi 0
0 0 θ1s+ θ2i− d2 1
0 0 γ1 − (σ + d3)

 (3.10)

The eigenvalues of J (τ2) are computed by

λ21 + λ22 = − d1
α1

< 0 (3.11a)

λ21.λ22 =
d1
α1

(α1 − d1) > 0 (3.11b)

λ23 + λ24 =
θ1d1 (1 + α1) + θ2 (α1 − d1)

α1 (1 + α1)
− (d2 + (σ + d3)) (3.11c)

λ23.λ24 = d2 (σ + d3)−
(
(σ + d3)

(
θ1d1 (1 + α1) + θ2 (α1 − d1)

α1 (1 + α1)

)
+ γ1

)
(3.11d)

So, the eigenvalues in the s - direction and i - direction, λ21 and λ22 are negative. Whilst, the
eigenvalues in the y1 - direction and y2 - direction, λ23 and λ24 are negative. Now the PFEP is LAS
provided that condition (6) in addition to the following condition hold.

(3.11e)(
θ1d1 (1 + α1) + θ2 (α1 − d1)

α1 (1 + α1)

)
+

γ1
(σ + d3)

< d2 (3.11f)
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J (τ3) =


b11 b12 b13 b14
0 b22 0 0
b31 b32 b33 b34
0 0 b43 b44

 (3.12a)

where

b11 = 1− 2ŝ− ŷ1, b12 = − (1 + α1) ŝ, b13 = −ŝ, b14 = 0.

b21 = 0, b22 = α1ŝ− βŷ1 − d1, b23 = 0, b24 = 0.

b31 = θ1ŷ1, b32 = θ2ŷ1, b33 = θ1ŝ− d2, b34 = 1.

b41 = 0, b42 = 0, b43 = γ1, b44 = − (σ + d3) .

Clearly, one of the eigenvalues of J (τ3) is λ32 = α1ŝ − βŷ1 − d1, will be negative if the following
condition holds:

α1ŝ < βŷ1 + d1 (3.12b)

However, the other eigenvalues of J (τ3) are roots of following equation:(
λ3 + A1λ

2 + A2λ+ A3

)
= 0, (3.12c)

where

A1 = − (b11 + b33 + b44) .

A2 = (b11b33−b13b31) + (b33b44 − b34b43)+b11b44.

A3 = − (b11 (b33b44 − b34b43)− b13b31b44) .

while

∆ = A1 A2 − A3 = − (b11b33−b13b31) (b11 + b33 + b44)− b11b44 (b11 + b44)

− (b33b44 − b34b43) (b33 + b44)− b44 (b11b33+b13b31)

By Routh-Hawirtiz Criterion [12], J (τ3) have negative real parts provided that condition (3.12b)
with A1 > 0, A3 > 0 and ∆ > 0, as follow

1 < 2ŝ+ ŷ1 (3.12d)

θ1ŝ < d2 (3.12e)

θ1ŝ (σ + d3) + γ1
(σ + d3)

< d2 <
θ1ŝ (1− 2ŝ− 2ŷ1)

1− 2ŝ− 2ŷ1
(3.12f)

Moreover, the Jacobian matrix at PEP is

J (τ4) = [aij]4×4 . (3.13)
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Here

a11 = 1− 2s∗ − (1 + α1) i
∗ − y∗1, a12 = − (1 + α1) s

∗, a13 = −s∗, a14 = 0,

a21 = α1i
∗, a22 = α1s

∗ − βy∗1 − d1, a23 = −βi∗, a24 = 0,

a31 = θ1y
∗
1, a32 = θ2y

∗
1, a33 = θ1s

∗ + θ2i
∗ − d2, a34 = 1,

a41 = 0 , a42 = 0 , a43 = γ1 , a44 = − (σ + d3) .

By Gershgorin theorem [8], if the next conditions hold

1 < 2s∗ + (1 + α1) i
∗ + y∗1 (3.14a)

α1s
∗ < βy∗1 + d1 (3.14b)

θ1s
∗ + θ2i

∗ < d2 (3.14c)

σ + d3 > 1 (3.14d)

1− ((1− θ1) y
∗
1 + i∗)

2
< s∗ < min

{
d1 + (β − θ2) y

∗
1

1 + 2α1

,
d2 − (γ1 + (β + θ2) i

∗)

1 + θ1

}
(3.14e)

Then, every the eigenvalues of J (τ4) exists in the left half plane. Then, the (PEP ) is LAS in Int.R4
+.

Theorem 3.1. Presume that AEP is LAS, then it’s a globally asymptotically stable (GAS) in the Int. R4
+

provided the following conditions hold.

(1 + α1) < d1, (3.15a)

1 + θ1 +
γ1
σ
< d2, (3.15b)

1 < σ + d3. (3.15c)

θ2 < β. (3.15d)

Proof . Let w1 (s, i, y1, y2) =
∫ s

k
u−1
u
du + i+ y1 + y2.

Now, straightforward calculations give that:

dw1

dt
= − (s− 1)2 − (1 + α1) si+ (1 + α1) i− sy1 + y1 + α1si− βiy1 − d1i+ θ1sy1 + θ2iy1

+ y2 − d2y1 + γ1y1 − σy2 − d3y2

we obtain that

dw1

dt
= − (s− 1)2 − si− (β − θ2) iy1 − sy1 − (d1 − (1 + α1)) i− (d2 − (1 + θ1s+ γ1)) y1

− ((σ + d3)− 1) y2
dw1

dt
≤ − (s− 1)2 − (d1 − (1 + α1)) i− (d2 − (1 + θ1 + γ1)) y1 − ((σ + d3)− 1) y2.

when conditions (3.15a)-(3.15d) are hold, dw1

dt
is negative definite. Then w1 is Lyapunov function

(L.F.) and AEP is GAS. □



1756 Ibrahim

Theorem 3.2. Presume that PFEP is LAS, then it’s GAS in the Int. R4
+ provided that the following

sufficient conditions hold.

s+ βi+ γ1 < d2 (3.16a)

1 < (σ + d3) (3.16b)

θ2 < β (3.16c)

θ1 < 1 (3.16d)(
i− i

)2
<
(
(s− s) +

(
i− i

))2
(3.16e)

Proof . Let

w2 (s, i, y1, y2) =

∫ s

s

u− s

u
du+

∫ i

i

v − i

v
dv+y1 + y2.

Now, straightforward calculations give that

dw2

dt
=− (s− s)2 − ((1 + α1)− α1) (s− s)

(
i− i

)
– (β − θ2) iy1 − (1− θ1) sy1

−
(
d2 −

(
s+ βi+ γ1

))
y1 − ((σ + d3)− 1) y2

We obtain that

dw2

dt
≤ − (s− s)2 − (s− s)

(
i− i

)
−
(
d2 −

(
s+ βi+ γ1

))
y1 − ((σ + d3)− 1) y2.

dw2

dt
< − (s− s)2 − (s− s)

(
i− i

)
−
(
i− i

)2 − (d2 − (s+ βi+ γ1
))
y1 − ((σ + d3)− 1) y2 +

(
i− i

)2
.

dw2

dt
< −

(
(s− s) +

(
i− i

))2 − (d2 − (s+ βi+ γ1
))
y1 − ((σ + d3)− 1) y2 +

(
i− i

)2
.

when conditions (3.16a)-(3.16e) are hold, dw2

dt
is negative definite. Then, w2 is L.F. and PFEP is GAS.□

Theorem 3.3. Presume that DFEP is LAS, then it’s GAS in the Int. R4
+ provided the following

conditions hold.

q12
2 < 2q11q22 (3.17a)

q23
2 < 2q22q33 (3.17b)

θ2 < β (3.17c)

(1 + α1) ŝ < θ2ŷ1+d1 (3.17d)

Proof . Let

w3 (s, i, y1, y2) =

∫ s

ŝ

u− ŝ

u
du+ i+

∫ y1

ŷ1

v − ŷ1
v

dv +

∫ y2

ŷ2

w − ŷ2
w

dw.

Now, straightforward calculations give that

dw3

dt
= − (s− ŝ)2 − (1 + α1) (s− ŝ) i− (s− ŝ) (y1 − ŷ1) + α1si− βiy1 − d1i+ θ1 (s− ŝ) (y1 − ŷ1)

+ θ2i (y1 − ŷ1) (y1 − ŷ1)

(
y2
y1

− ŷ2
ŷ1

)
+ γ1 (y2 − ŷ2)

(
y1
y2

− ŷ1
ŷ2

)
.
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we obtain that

dw3

dt
≤− (s− ŝ)2 + (1 + α1) ŝi+ (θ1 − 1) (s− ŝ) (y1 − ŷ1)− (β − θ2) iy1−d1i− θ2iŷ1+

1

y1
(y1 − ŷ1) (y2 − ŷ2)−

ŷ2
y1ŷ1

(y1 − ŷ1)
2 +

γ1
y2

(y1 − ŷ1) (y2 − ŷ2)−
γ1ŷ1
y2ŷ2

(y2 − ŷ2)
2

dw3

dt
<− q11 (s− ŝ)2 + q12 (s− ŝ) (y1 − ŷ1)− q22 (y1 − ŷ1)

2 + q23 (y1 − ŷ1) (y2 − ŷ2)− q33 (y2 − ŷ2)
2

− (d1 + θ2ŷ1 − (1 + α1) ŝ) i.

here q11 = 1 , q12 = θ1 − 1, q22 =
ŷ2

y1ŷ1
, q23 =

1
y1

+ γ1
y2
, q33 =

γ1ŷ1
y2ŷ2

.

dw3

dt
<−

(
√
q11 (s− ŝ)−

√
1

2
q
22
(y1 − ŷ1)

)2

−

(√
1

2
q
22
(y1 − ŷ1)−

√
q33 (y2 − ŷ2)

)2

− (d1 + θ2ŷ1 − (1 + α1) ŝ) i.

when conditions (3.17a)-(3.17d) are hold, dw3

dt
is negative definite.

Then, w3 is L.F. and DFEP is GAS. □

Theorem 3.4. Presume that, PEP is LAS, then it’s GAS in the Int. R4
+ provided the following

conditions hold.

q12
2 < q11 q22 (3.18a)

q13
2 <

2

3
q11 q33 (3.18b)

q23
2 <

2

3
q22 q33 (3.18c)

q34
2 <

4

3
q33 q44 (3.18d)

(i− i∗)2 <

(√
1

2
q11 (s− s∗) +

√
1

2
q
22

(i− i∗)

)2

+

(√
1

2
q
22

(i− i∗) +

√
1

3
q33 (y1 − y1

∗)

)2

(3.18e)

Proof . Let

w4 (s, i, y1, y2) =

∫ s

s∗

u− s∗

u
du+

∫ i

i∗

v − i∗

v
dv+

∫ y1

y∗1

w − y∗1
w

dw +

∫ y2

y∗2

z − y∗2
z

dz.

Now, straightforward calculations give that

dw4

dt
= − (s− s∗)2 − (s− s∗) (i− i∗)± (i− i∗)2 − (1− θ1) (s− s∗) (y1 − y∗1)− (β − θ2) (i− i∗) ⋆

(y1 − y∗1) +

(
1

y1
+
γ1
y2

)
(y1 − y∗1) (y2 − y2

∗)− y2
∗

R1

(y1 − y∗1)
2 − γ1y1

∗

R2

(y2 − y2
∗)2

where R1 = y1y
∗
1 , R2 = y2y2

∗.

dw4

dt
=− q11 (s− s∗)2 − q12 (s− s∗) (i− i∗)− q22 (i− i∗)2+(i− i∗)2−q13 (s− s∗) (y1 − y∗1)

− q23 (i− i∗) (y1 − y∗1)+q34 (y1 − y∗1) (y2 − y2
∗)−q33 (y1 − y∗1)

2−q44 (y2 − y2
∗)2
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here q11 = 1, q12 = 1, q22 = 1, q13 = 1− θ1, q23 = β − θ2, q34 =
1
y1

+ γ1
y2

, q33 =
y2∗

R1
, q44 =

γ1y1∗

R2
.

dw4

dt
≤ −

(√
1

2
q11 (s− s∗) +

√
1

2
q
22

(i− i∗)

)2

−

(√
1

2
q
22

(s− s∗) +

√
1

3
q33 (y1 − y1

∗)

)2

−

(√
1

2
q
22

(i− i∗) +

√
1

3
q33 (y1 − y1

∗)

)2

−

(√
1

3
q33 (y1 − y1

∗)−√
q44 (y2 − y2

∗)

)2

+ (i− i∗)2 .

Hence, under condition (3.18a)-(3.18e), dw4

dt
is negative definite. Then, w4 is L.F.

Therefore, PEP is GAS. □

Now, the persistence of system (2.3) is discussed in the next theorem.

Theorem 3.5. Presume that condition (3.1) along with the following condition holds:(
θ1d1 (1 + α1) + θ2 (α1 − d1)

α1 (1 + α1)

)
+

γ1
(σ + d3)

> d2 (3.19a)

α1ŝ > βŷ1 + d1 (3.19b)

Then, system (2.3) uniformly persists.
Proof . Presume that the point P is in the Int. R4

+ and the orbit through P is denoted by o(P).
Let Ω(P) be omega limit set of o(P). Note that Ω(P) is bounded, due to theorem (1).
Now to show that τ0 /∈ Ω(P), presume the contrary.
τ0 is saddle point, by Butler-McGhee lemma [5], there exist at least one another point Q1 such that
Q1 ∈ ωs(τ0) ∩ Ω(P).
Moreover, since ωs(τ0) is the R3

+(iy1y2) space and o(Q1) is the entire orbit through Q1 contain in
Ω(P).

Now, if Q1on ether boundary axes of R3
+(iy1y2), then the positive specific axis is contained in

Ω(P) and this is contradicting to it’s boundedness.
Else, Q1 ∈ Int. R3

+(iy1y2) and there is no equilibrium point in the Int. R3
+(iy1y2), the o(Q1) must be

unbounded and this leads to contradiction. We get that τ0 /∈ Ω(P).
Presently to proof τ1 /∈ Ω(P), presume the contrary.
τ1 is a saddle point provided condition (3.1), by Butler-McGhee lemma Q2 ∈ ωs(τ1) ∩ Ω(P). More-
over, since ωs(τ1) is R3

+(sy1y2) space.

Now, if Q2 on boundary axes of R3
+(sy1y2), we obtain the contradiction in above part of proof. In

case of Q2 ∈ Int. R3
+(sy1y2) there is no equilibrium point in Int. R3

+(sy1y2) we get o(Q2) ⊂ Ω(P) is
undounded and this leads to contradiction. Then, we get τ1 /∈ Ω(P).
Presently to proof τ2 /∈ Ω (P) , presume the contrary. τ2 is a saddle point provided condition (23a),
by Butler-McGhee lemma Q3 ∈ ωs(τ1) ∩ Ω(P). Moreover, since ωs(τ2) is R3

+(siy2) space.

Now, if Q3 on boundary axes of R3
+(siy2), we obtain contradiction in above part of proof. In

case of Q3 ∈ Int. R3
+(siy2) there is no equilibrium point in Int. R3

+(siy2) we get o(Q3) ⊂ Ω(P) is
undounded and this leads to contradiction. Therefore, we get τ2 /∈ Ω(P).
Finally, τ3 is a saddle point provided condition (3.19b). Similarity, by using the argument we obtain
τ3 /∈ Ω(P). Then Ω(P) must be in the Int. R4

+. □
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4. Bifurcations Analyses

Rewrite system (2.3) as the follow:
dX

dt
= f (X)

where X = (s, i, y1, y2)
T and f = (f1, f2, f3, f4)

T with fi; i = 1, 2, 3, 4. Then by J of system (2.3),
Let V = (v1, v2, v3, v4)

Tbe any nonzero vector and the second directional derivative write as follow

D2f (s, i, y1, y2) (V, V ) =


−2v1

2 − 2 (1 + α1) v1v2 − 2v1v3
2v1v3 − 2βv2v3

2θ1v1v3 + 2θ2v2v3
0

 (4.1)

Moreover, the third directional derivative given by

D3f (s, i, y1, y2) (V, V, V ) = (0, 0, 0, 0)T .

Then, system (2.3) has no pitchfork bifurcation.

Theorem 4.1. Presume that condition (13f) holds, system (2.3) do not undergoes any types of local
bifurcation at AEP when d1 passes through d∗1 = α1.
Proof . From J (τ1), system (2.3) at AEP and d1 = d∗1 has J (τ1, d

∗
1) = J1, which has zero eigenvalue,

say λ∗i = 0.

J1 =


−1 − (1 + α1) −1 0
0 0 0 0
0 0 θ1 − d2 1
0 0 γ1 − (σ + d3)


Now, let U [1] =

(
u
[1]
1 , u

[1]
2 , u

[1]
3 , u

[1]
4

)T
is the eigenvector corresponding to λ∗i = 0.

Now, J1U
[1] = 0 leads to U [1] =

(
δu

[1]
2 , u

[1]
2 , 0, 0

)T
, where u

[1]
2 is nonzero real numbers and δ =

− (1 + α1) < 0 . Let ψ[1]=
(
ψ

[1]
1 , ψ

[1]
2 , ψ

[1]
3 , ψ

[1]
4

)T
is the eigenvector corresponding to λ∗i = 0 of J1

T .

Hence, due to condition (13f), J1
Tψ[1] = 0 gives that ψ[1]=

(
0, ψ

[1]
2 , 0, 0

)T
, where ψ

[1]
2 is any nonzero

real numbers.
Now,

∂f

∂d1
= fd1 (X, d1) =

(
∂f1
∂d1

,
∂f2
∂d1

,
∂f3
∂d1

,
∂f4
∂d1

)T

= (0,−i, 0, 0)T .

Thus fd1 (τ1, d
∗
1) = (0, 0, 0, 0)T , which gives

(
ψ[1]
)T
fd1 (τ1, d

∗
1) = 0. By Sotomayor’s theorem system

(2.3) has no saddle − node bifurcation at d1 = d∗1. Furthermore

Dfd1 (τ1, d1) =


0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 .
We can show,(

ψ[1]
)T (

Dfd1 (τ1, d
∗
1)U

[1]
)
=
(
0, ψ

[1]
2 , 0, 0

)(
0,−u[1]2 , 0, 0

)T
= −ψ[1]

2 u
[1]
2 ̸= 0
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Moreover using Eq.(4.1) with τ1, d
∗
1 and U [1] gives

D2f (τ1, d
∗
1)
(
U [1], U [1]

)
= −2δ

(
u
[1]
2

)2
(δ + (1 + α1), 0, 0, 0)T .

Hence it is obtained that (
ψ[1]
)T
D2f (τ1, d

∗
1)
(
U [1], U [1]

)
= 0.

Now, a transcritical bifurcation does not occurs as d1 passes through the value d∗1. Therefore, the
AEP has no any types of local bifurcation. □

Theorem 4.2. system (2.3) undergoes a transcritical bifurcation at PFEP when d2 passs through
d∗2 =

γ1
(σ+d3)

+ θ1s+ θ2i provided that

[θ1µ1 + θ2µ2] ̸= 0 (4.2)

here µ1 and µ2 are given in the proof.
Proof . From J (τ2), system (2.3) at PFEP and d2 = d∗2 has J (τ2, d

∗
2) = J2, which has zero eigen-

value, say λ∗y1 = 0.

J2 =


1− 2s− (1 + α1) i − (1 + α1) s s 0

α1i α1s− d1 −βi 0
0 0 − γ1

(σ+d3)
1

0 0 γ1 − (σ + d3)


Now, let U [2] =

(
u
[2]
1 , u

[2]
2 , u

[2]
3 , u

[2]
4

)T
is the eigenvector corresponding to λ∗y1 = 0.

Now, J2U
[2] = 0 leads to U [2] =

(
µ1u

[2]
4 , µ2u

[2]
4 , µ3u

[2]
4 , u

[2]
4

)T
, where u

[2]
4 is nonzero real numbers,

µ1 =
β(σ+d3)
α1γ1

, µ2 = − (β+α1)(σ+d3)
α1γ1(1+α1)

and µ3 =
(σ+d3)

γ1
.

Let ψ[2]=
(
ψ

[2]
1 , ψ

[2]
2 , ψ

[2]
3 , ψ

[2]
4

)T
is the eigenvector corresponding to λ∗y1 = 0 of J2

T .

J2
Tψ[2] = 0 leads to ψ[2]=

(
0, 0, ηψ

[2]
4 , ψ

[2]
4

)T
, where ψ

[2]
4 is nonzero real numbers and η = (σ + d3).

Now,
∂f

∂d2
= fd2 (X, d2) =

(
∂f1
∂d2

,
∂f2
∂d2

,
∂f3
∂d2

,
∂f4
∂d2

)T

= (0, 0,−y1, 0)T .

Thus fd2 (τ2, d
∗
2) = (0, 0, 0, 0)T , which gives

(
ψ[2]
)T
fd2 (τ2, d

∗
2) = 0.

By Sotomayor’s theorem, system (2.3) has no saddle − node bifurcation at d2 = d∗2.

Dfd2 (τ2, d
∗
2) =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


Then its obtain that(

ψ[2]
)T (

Dfd2 (τ2, d
∗
2)U

[2]
)
=
(
0, 0, η ψ

[2]
4 , ψ

[2]
4

)(
0, 0,−µ3u

[2]
4 , 0

)T
= −η µ3ψ

[2]
4 u

[2]
4 ̸= 0

Again by using Eq.(4.1) with τ2, d
∗
2 and U [2] gives that

D2f (τ2, d
∗
2)
(
U [2], U [2]

)
= 2

(
u
[2]
4

)2
−µ1 [µ1 + (1 + α1)µ2 + µ3]

µ3 [µ1 − βµ2]
µ3 [θ1µ1 + θ2µ2]

0


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Hence it is obtain that:(
ψ[2]
)T
D2f (τ2, d

∗
2)
(
U [2], U [2]

)
= 2 η µ3ψ

[2]
4 [θ1µ1 + θ2µ2]

(
u
[2]
4

)2
[θ1µ1 + θ2µ2] ̸= 0

Therefore, if the condition (4.2) satisfies, system (2.3) has a transcritical bifurcation at PFEP as d2
passes through value d∗2. □

Theorem 4.3. system (2.3) undergoes a transcritical bifurcation at DFEP when α1 passs through
α∗
1 =

βŷ1+d1
ŝ

provided that
ξ2 (ξ1 − β) ̸= 0. (4.3)

here ξ1 and ξ2 are given in the proof.
Proof . From J (τ3), system (2.3) at DFEP and α1 = α∗

1 has J (τ3, α
∗
1) = J3, which has zero

eigenvalue, say λ∗i = 0.

J2 =


b11 b12 b13 0
0 0 0 0
b31 b32 b33 b34
0 0 b43 b44


where, b11 = 1 − 2ŝ − ŷ1, b12 = − (1 + α∗

1) ŝ, b13 = ŝ, b31 = θ1ŷ1, b32 = θ2ŷ1, b33 = θ1ŝ − d2,
b34 = 1, b43 = γ1, b44 = − (σ + d3).

Now, let U [3] =
(
u
[3]
1 , u

[3]
2 , u

[3]
3 , u

[3]
4

)T
is the eigenvector corresponding to λ∗i = 0 .

Now, J3U
[3] = 0 leads to U [3] =

(
ξ1u

[3]
2 , u

[3]
2 , ξ2u

[3]
2 , ξ3u

[3]
2

)T
, where u

[3]
2 is nonzero real numbers with

ξ1 = −
(

b12(b44(b11b33−b13b31)−b11b34b43)+b13b44(b12b31−b11b32)
b44(b11b33−b13b31)−b11b34b43

)
, ξ2 =

b44(b12b31−b11b32)
b44(b11b33−b13b31)−b11b34b43

and ξ3 = − b43(b12b31−b11b32)
b44(b11b33−b13b31)−b11b34b43

.

Let ψ[3]=
(
ψ

[3]
1 , ψ

[3]
2 , ψ

[3]
3 , ψ

[3]
4

)T
is the eigenvector corresponding to λ∗i = 0 of J3

T .

J3
Tψ[3] = 0 leads to ψ[3]=

(
0, ψ

[3]
2 , 0, 0

)T
, where ψ

[3]
2 is nonzero real numbers.

Now,
∂f

∂α1

= fα1 (X,α1) =

(
∂f1
∂α1

,
∂f2
∂α1

,
∂f3
∂α1

,
∂f4
∂α1

)T

= (−si, si, 0, 0)T .

Thus fα1 (τ3, α
∗
1) = (0, 0, 0, 0)T , which gives

(
ψ[3]
)T
fα1 (τ3, α

∗
1) = 0.

By Sotomayor’s theorem, system (2.3) has no saddle − node bifurcation at α1 = α1
∗.

Dfα1
(τ3, α

∗
1) =


0 −ŝ 0 0
0 ŝ 0 0
0 0 0 0
0 0 0 0


Then its obtain that (

ψ[3]
)T (

Dfα1
(τ3, α

∗
1)U

[3]
)
= ŝψ

[3]
2 u

[3]
2 ̸= 0.

Again by using Eq.(4.1) with τ3, α
∗
1 and U [3] gives that(

ψ[3]
)T
D2f (τ3, α

∗
1)
(
U [3], U [3]

)
= ξ2 (ξ1 − β)ψ

[3]
2

(
u
[3]
2

)2
̸= 0.

Therefore, if the condition (4.3) satisfies, system (2.3) has a transcritical bifurcation at DFEP as α1

passes through value α∗
1. □
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5. Numerical Analysis

The aim is the study the impact of changing the value of all parameters on the dynamical behavior
of system (2.3). It is spotted that, for the next set of presumptive parameters that satisfies stability
restrictions of the PEP, system (2.3) has a GAS as shown in Figure.1.

α1 = 0.6, β = 0.1 d3 = 0.05, θ1 = 0.1, θ2 = 0.06

d2 = 0.1, γ1 = 0.05, σ = 0.6, d3 = 0.05
(5.1)

Clearly, Figure.1 shows the system has a GAS as the solution of the system which approaches
asymptotically to the PEP = (0.20, 0.04, 0.72, 0.05), starting from three various initial points.

Figure 1: The trajectories of system (2.3) using data given by Eq.(5.1) with different initial points
approach asymptotically to PEP, represented by τ4 = (0.20, 0.04, 0.72, 0.05). (a) Time series of
trajectories of the susceptible prey. (b) Time series of the trajectories of infected prey. (c) Time
series of the trajectories of mature predator. (d) Time series of the trajectories of immature predator.

Now, the influence of varying α1 on the dynamical behavior in the ranges 0.01≤ α1 < 0.6, and
0.6≤ α1 < 1, is investigated. Note that, the trajectory approaches asymptotically to DFEP and
PEP in the Int.R4

+ respectively, as shown in Figure.2.
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Figure 2: The trajectories of system (2.3) using data given by Eq. (5.1) with values of α1. (a) Time
series of the trajectory with α1 = 0.2. (b) Time series of the trajectory with α1 = 0.8.

The impact of changing of β on the dynamical behavior in the ranges 0 < β < 0.2 and 0.2 ≤ β < 1
is studied. The trajectory approaches asymptotically to PEP in the Int.R4

+ and DFEP, respectively
as illustrated in the Figure.3.

Figure 3: The trajectories of system (2.3) using data given by Eq.(5.1) with values of β. (a) Time
series of the trajectory with β = 0.05. (b) Time series of the trajectory with β = 0.4.

Now, the influence of varying the parameters d1 and θ1 in the ranges 0 < d1 < 0.07, 0.07 ≤ d1 < 1,
and 0.01 ≤ θ1 < 0.2, 0.2 ≤ θ1 < 1, are studied. The trajectory approaches asymptotically to PEP
and DFEP, respectively as shown above in the Figure.3.
The influence of varying θ2 in the ranges 0.01 ≤ θ2 < 0.03 and 0.03 ≤ θ2 < 1 is studied. the trajectory
approaches asymptotically to PFEP in the si− plane and PEP in the Int.R4

+ respectively as shown
in Figure.4.
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Figure 4: The trajectories of system (2.3) using data given by Eq.(5.1) with values of β (a) Time
series of the trajectory with β = 0.05 (b) Time series of the trajectory with β = 0.4.

The influence of varying d2 in the ranges 0.08 ≤ d2 < 0.1, 0.1 ≤ d2 < 0.2 and 0.2 ≤ d2 < 1 is
studied. The trajectory approaches asymptotically to the DFEP, PEP in the Int.R4

+ and PFEP in
the si− plane respectively, as shown in Figure.5.

Figure 5: The trajectories of system (2.3) using data given by Eq.(5.1) with values of β (a) Time
series of the trajectory with β = 0.05 (b) Time series of the trajectory with β = 0.4.

The impact of varying γ1 in the ranges 0.01 ≤ γ1 < 0.04, 0.04 ≤ γ1 < 0.06 and 0.06 ≤ γ1 < 0.07
is studied. The trajectory approaches asymptotically to PFEP in the si−plane, PEP in the Int.R4

+,
and DFEP respectively, the trajectory of system (2.3) as explained in Figure.6.
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Figure 6: The trajectories of system (2.3) using data given by Eq.(5.1) with values of γ1, (a) Time
series of the trajectory with γ1 = 0.02 (b) Time series of the trajectory with γ1 = 0.04 (c) Time
series of the trajectory with γ1 = 0.06.

Now, the effect of varying σ in the ranges 0.5 ≤ σ < 0.6, 0.6 ≤ σ < 0.9, and 0.9 ≤ σ < 1 is studied.
The trajectory approaches asymptotically to DFEP, PEP in the Int.R4

+, PFEP in the si−plane, as
shown in the Figure.7.

Figure 7: The trajectories of system (2.3) using data given by Eq.(5.1) with values of σ, (a) Time
series of the trajectory with σ = 0.5 (b) Time series of the trajectory with σ = 0.7 (c) Time series
of the trajectory with σ = 0.9.

Finally, the effect of varying d3 in the ranges 0.01 ≤ d3 < 0.4, 0.4 ≤ d3 < 0.3, and 0.3 ≤ d3 < 1
is investigated. Note that, varying d3 has similar effects as shown with varying σ.
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6. Discussion and Conclusion

In this article, a prey−predator model comprising infectious disease in prey species and stage–
structure in predator species is suggested and studied. The local and global dynamics of the suggested
model are investigated. The conditions of persistence and the local bifurcation are investigated.
Finally, the global dynamics of the model is investigated numerically and confirmed the obtained
outcomes.

Now, the summary of the numerical simulation outcomes are obtained by using data (5.1).

1. The trajectory approaches asymptotically to PEP starting from various initial points, which
refers to existence of GAS.

2. when α1 decreases below a particular value, we observed the trajectory approaches asymptoti-
cally to DFEP. While, increasing α1 above a particular in the Int.R4

+.

3. If the parameter β increases above a particular value leading to approaches asymptotically to
DFEP. Else, the system still persists at a PEP.

4. When d1 and θ1 decreases below a particular value leads to approaches asymptotically to
PEP. However, increasing these parameters above a particular value leads to approaches
asymptotically to DFEP.

5. When θ2 decreases below a particular value, the trajectory approaches asymptotically to
PFEP in the si− plane. Else, the system still persists at a PEP.

6. Decreasing d2 below a particular value leading to approaches asymptotically to DFEP. In-
creasing d2 above a particular value leads to approaches asymptotically to PEP in the Int.R4

+.
Further increasing leads to PFEP in the si− plane.

7. If γ1 decreases below a particular value leads to approaches asymptotically to PFEP in the si−
plane. Increasing γ1above a particular value leads to approaches asymptotically to PEP in the
Int.R4

+. Further increasing leads to DFEP.

8. Decreasing σ and d3 below a particular value leads to approaches asymptotically to DFEP.
However, increasing these parameters above a particular values leads to approaches asymp-
totically to PEP in the Int.R4

+. Further increasing leads to approaches asymptotically to
PFEP in the si− plane.
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