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Abstract

In this study, a mathematical model consisting of four species: first prey and second prey with stage
structure and predator in the presence of toxicity and anti-predator has been proposed and studied
using the functional response Holling’s type IV and Lotka Volttra. The solution’s existence, unique-
ness, and boundedness have all been studied. All possible equilibrium points have been identified.
The stability of this model has been studied. Finally, numerical simulations have been used to verify
our analytical results.
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1. Introduction

In population dynamics, a mathematical model that used understand certain occurrences preda-
tion interactions are represented mathematically by interactions between predatory and prey animal
species living in the same environment. The prey predator model featured prey density-dependent
growth and functional responses.
When a population biologist starts evaluating a population of organisms, they employ a variety of
tools to collect data. Experiments and observations are used to build mathematical formulas and
models, which are then utilized to make forecasts. Essentially, the researchers must consider aspects
that influence the population.
Some types of prey have already been studied that are capable of fighting predators, whether with
chemicals, through community defines, or by excreting harmful substances. Many animals can escape
by fleeing quickly, defeating or outnumbering their attacker. Some species are able to escape even

∗Corresponding author
Email addresses: hudasalah367@gmail.com (Huda Salah Kareem ), azhar.majeed@sc.uobaghdad.edu.iq

(Azhar Abbas Majeed)

Received: March 2021 Accepted: July 2021

http://dx.doi.org/10.22075/ijnaa.2021.5322


1862 Kareem, Majeed

when they catch them by sacrificing certain body parts: crabs can get rid of their paws, while lizards
can shed their tails. Predators are often distracted long enough to allow prey to escape.

The anti-predator behaviour always influences more than one predator and also make the preda-
tor’s competition become more complex [15].A response based on the density of prey only was con-
sidered. In (1989), Arditi and Ginzburg [1] propose a ratio – dependent function response which is a
particular type of a predator dependence. Banerjee [3] constructed a prey and predator model, and
there are some ratio-dependent mathematical models [16] .There are very few mathematical model
[17] in which anti-predator behaviours have been.

The anti-predator behaviour property of first prey population has been introduced in our proposed
mathematical model. Here, Holling’s type IV functional response has been used on the basis of ratio-
dependency of prey and predator [17] [2].

One of the most important problems that face the dynamic of the ecosystem is the effects of toxic
substances. Defining a toxic substance as any human toxic substance released into an environment
through human activities, for example, are the rodents in poultry farms, causing the presence of
rodents in poultry breeding facilities. Large economic losses, so the farmer uses toxic pesticides for
rodents and carefully follows the instructions for use.

It is necessary to assess the risk to living organisms exposed to toxins and to find relevant factors
that determine the persistence of the organisms. Hallam and Deluna [8] discussed the effects of the
toxin through a population food chain. Hallam and Clark [9] studied the effect of a toxic substance
on populations, while Friedman and Shukla [6] developed a prey and predator pattern based on the
toxicity of one species. Chattopadhyay [4] studied the effect of toxic substances on two competing
species. And montoya et al [14] two types of factors were considered, such as (anti-predator behaviour
and collective defines in the stage structure model), some researchers in mathematics have looked at
prey and predator models in the effect of toxicity [10], [11], [12].

In recent years, many prey and predator models have been studied on the basis of the age structure
[5], [13]. In many cases, the lifestyle of different species passes through two stages of life (mature and
immature), the fully immature prey depends on its feeding on the mature prey in order to describe
the interactions.

In this paper, mathematical model of four species with stage- structure and anti-predator be-
haviour have been proposed to study.

2. Model formulation

In this section, an ecological model consists of four species have been proposed : the first prey
and second prey which have a stage- structure with only one predator , which are denoted to their
populations sizes at time E1(t), E2(t), E3(t) and E4(t), respectively .

1. The first prey grows logistically with intrinsic growth rate S1 > 0, and carrying capacity
L1 > 0 , the second immature prey arose to mature with a growth rate D > 0, respectively
and immature prey depends entirely on its feeding on mature prey that grows logistically with
intrinsic growth rate S2 > 0 , and carrying capacity L2 > 0, in the absence of predator.

2. The predator also consumes first prey according to the response of the Holling type- IV with
maximum attack rates C1 > 0, and measure the extent to which the environment provides
protection to the prey and predator m > 0, a portion of this food contributes to a conversion
rateA1 > 0, with a normal mortality rate k3 > 0, the predator faces death when deprived of
food, at the same time, mature and immature prey are consumed, depending on the predator. to
the response of the Lotka Volttra functional with consumption rates on the Ci > 0, i = 2, 3,
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respectively, a portion of this food contributes to a conversion rates Ai > 0, i = 2, 3, it is
referred to as a natural death for mature and immature prey is denoted by ki > 0, i = 1, 2 .

3. It assumes that the function response to the predation of the first prey is taken as Holling type-
IV response function because it describes a group defense phenomenon where it represents
n > 0, the rate of anti- predator behavior of first prey to predator.

4. Finally, αi > 0, i = 1, 2, 3, the toxicity represents the mature and second immature prey and
predator respectively.

dE1

dt
= S1E1

(
1− E1

L1

)
− C1E1E4

m+ E2
1

,

dE2

dt
= S2E3

(
1− E3

L2

)
−DE2 − C2E2E4 − α1E2

2 −K1E2,

dE3

dt
= DE2 − C2E3E4 − α2E

2
3 −K2E3,

dE4

dt
=

A1E1E4

m+ E2
1

+ A2E2E4 + A3E3E4 − nE1E4 − α3E4 −K3E4.

(2.1)

With initial condition E1 ( 0 ) ≥ 0, E2 ( 0 ) ≥ 0, E3 ( 0 ) ≥ 0, E4 (0) ≥ 0. Therefore these functions
are Lipschitzian on R4

+, and therefore the solution of the system (2.1) exists and is unique.

Theorem 2.1. All the solutions of system(2.1) with initial condition belonging to R4
+ are uniformly

bounded.
Proof . Let E1(t), E2(t), E3(t), E4(t) be a solution of system(2.1) with an initial non-negative con-
dition (E1 ( 0 ) , E2 ( 0 ) , E3 ( 0 ) , E4 (0)) ∈ R4

+.
Now according to the first equation of system(2.1) we have:

dE1

dT
≤ S1E1

(
1− E1

l1

)
.

By comparison theorem [7] for solving this differential inequality, we get:

lim
n→∞

supE1(t) ≤ L1.

Now consider a function:
N(t) = E1 (t) + E2 (t) + E3 (t) + E4 (t) ,

then after take the function’s time derivative along with the system (2.1) solution, we get:

dN

dt
=S1E1

(
1− E1

L1

)
+ S2E3

(
1− E3

L2

)
−K1E2 −K2E3 −K3E4 − (C2 − A2)E2E4

− (C1 − A1)
E1E4

m+ E2
1

− (C3 − A3)E3E4 −
(
α1E

2
2 + α2E

2
3 + α3E4 + nE1E2

)
.

So according to the biological facts always Ci > Ai , i = 1, 2, 3, we get:

dN

dt
< 2S1E1 + S2E3

(
1− E3

L2

)
− (S1E1 +K1E2 +K2E3 +K3E4).
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Now since the function f (E3) = S2E3

(
1− E3

L2

)
in the second term represents a logistic function

with respect to E3 and hence it is bounded above by the constant S2L2

4
. So,

dN

dt
≤ 2S1L1 +

S2L2

4
− (S1 +K1 + k2 + k3)N.

dN

dt
+ SN ≤ 2S1L1 +

S2L2

4
, where N = min {S1, K1, K2, K3} .

dN

dt
+ SN ≤ H, where H =

(
2S1L1 +

S2L2

4

)
.

Again, by comparison theorem to solving this differential inequality for the initial value N(0) = N0,
we get:

N(t) ≤ H

S
+

(
N0 −

H

S

)
e−st,

Then, lim
t→∞

≤ H

S
. So, 0 ≤ N(t) ≤ H

S
, ∀ t > 0.

So, all solutions of system (2.1) are uniformly bounded. □

3. Existence of Equilibrium Points

In this section, we see that model (2.1) has discussed all the points of equilibrium that can check
the conditions of existence , as shown below:

1. The equilibrium point Q0 = ( 0 , 0 , 0 , 0 ) , which known as trivial point always exists.

2. The equilibrium point Q1 = (L1, 0, 0, 0) always exists, as the prey population grows to the
carrying capacity in the absence of predator.

3. The free second prey equilibrium point Q2 = (Ē1, 0, 0, Ē4) exists uniquely in Int. R4
+ of

E1E4−plane if there is positive solution to the following of equations

S1 −
S1E1

L1

− C1E4

(m+ E2
1)

= 0, (3.1a)

A1E1

m+ E2
1

− nE1 − α3 −K3 = 0, (3.1b)

From equation (3.1a) we have,

E4 =
s1 (m+ E2

1)(L1 − E1)

C1L1

, (3.1c)

From equation (3.1b) we have,

f(x) = β1E
3
1 + β2E

2
1 + β3E1 + β4 = 0, (3.1d)

where: β1 = −n < 0, β2 = − (α3 + k3) < 0 , β3 = A1−nm, β4 = − (α3m+ k3m) < 0,

By discarte rule Eq.(3.1d) either has no positive root or it has two positive root, denoted by
Q2 =

(
Ē1, 0, 0, Ē4

)
and Q3 =

(
Ē

′
1 , 0, 0, Ē

′
4

)
, depending on the following conditions:

L1 > E1, (3.1e)

A1 > nm (3.1f)
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4. The equilibrium point Q4 = (0, Ê2, Ê3, 0) exists uniquely in Int. R4
+ of E2E3− plane if there

is positive solution to the following equations:

S2E3

(
1− E3

L2

)
−DE2 − α1E

2
2 −K1E2 = 0 (3.2a)

D(E2)− α2E
2
3 −K2E3 = 0 (3.2b)

From equation (3.2b) we have

E2 =
(α2E3 +K2)E3

D
, (3.2c)

By substituting (3.2c) in (3.2a) and then simplifying the resulting term we obtain that:

f (x) = R1E
3
3 +R2E

2
3 +R3E3 +R4 = 0, (3.2d)

where

R1 = −α1α
2
2L2 < 0,

R2 = −2α1α2K2L2 < 0,

R3 = −(D2S2 +D2L2α2 + α1L2K
2
2 +K1DL2α2) < 0,

R4 = L2D (D (S2 −K2)−K2K1) .

By discarte rule Eq. (3.2d) unique positive root, namely Ê3 provided that:

S2 > K2, (3.2e)

D (S2 −K2) > K2K1. (3.2f)

So, Q4 = (0, Ê2, Ê3, 0) where Ê2 = E2(Ê3) exists, provided that the above conditions hold.

5. The free predator equilibrium point Q5 = (Ė1, Ė2, Ė3, 0) exists uniquely in Int.R4
+ of E1E2E3−

space if there is positive solution to the following set of equations:

S1 −
S1E1

L1

= 0, (3.3a)

S2E3

(
1− E3

L2

)
−DE2 − α1E

2
2 −K1E2 = 0, (3.3b)

DE2 − α2E
2
3 −K2E3 = 0, (3.3c)

From equation (3.3a) we have

Ė1 = L1.

From equation (3.3c) we have

E2 =
(α2E3 +K2)E3

D
, (3.3d)
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By substituting (3.3d) in (3.3b) and then simplifying the resulting term we obtain that:

f (x) = δ1E
3
3 + δ2E

2
3 + δ3E3 + δ4 = 0, (3.3e)

where

δ1 = −α1α
2
2L2 < 0,

δ2 = −2α1α2K2L2 < 0,

δ3 = −(D2S2 +D2L2α2 + α1L2K
2
2 +K1DL2α2) < 0,

δ4 = L2D (D (S2 −K2)−K2K1)

By discarte rule Eq. (3.3e) has unique positive root, namely Ė3, provided that (3.2e) and (3.2f)

hold. So, Q5 = (Ė1, Ė2, Ė3, 0) where Ė2 = E2

(
Ė3

)
, exists under the above conditions.

6. The free first prey equilibrium point Q6 = (0, ¯̄E2,
¯̄E3,

¯̄E4) exists uniquely in Int.R4
+ of E2E3E4−

plane if there is positive solution to the following set of equations:

S2E3

(
1− E3

L2

)
−DE2 − C2E2E4 − α1E

2
3 −K1E2 = 0, (3.4a)

DE2 − C3E3E4 − α2E
2
3 −K2E3 = 0, (3.4b)

A2E2 + A3E3 − α3 −K3 = 0, (3.4c)

From equation (3.4c) we have

E2 =
α3 +K3 − A3E3

A2

, (3.4d)

Now by substituting (3.4d) in (3.4b) we get

E4 =
D
A2
(α3 +K3 − A3E3)− (α2E3 +K2)E3

C3E3

, (3.4e)

By substituting (3.4e) and (3.4d) in (3.4a) and then simplifying the resulting term we obtain
that

f (x) = B1E
3
3 +B2E

2
3 +B3E3 +B4 = 0, (3.4f)

where

B1 = −(S2A
2
2C3 + α2A2A3C2L2 + α1L2C3A

2
3) < 0,

B2 = L2

(
C2 ((α3 +K3)α2A2 − A3 (A3 + A2K2)) + C3

(
A2A3 (D +K1) + S2A

2
2 + 2(α3 +K3)α1A3

))
B3 = L2 (α3 +K3) (A3C2) (2 + k2)− C3 (A2 (D + k1) + α1 (α3 +K3)) ,

B3 = −C2L2D (α3 + k3)
2 < 0.
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By discarte rule Eq.(3.4f) either has no positive root or it has two positive root, denoted by

Q6 =
(
0, ¯̄E2,

¯̄E3,
¯̄E4

)
and Q7 =

(
0, ¯̄E

′

2 , ¯̄E
′

3 , ¯̄E
′

4

)
, depending on the following conditions:

α3 +K3 > A3E3, (3.4g)

D

A2

(α3 + k3 − A3E3) > (α2E3 +K2)E3 , (3.4h)

(α3 +K3)α2A2 > A3 (A3 + A2K2) , (3.4i)

A3C2 (2 + k2) > C3 ( A2 (D + k1) + α1 (α3 +K3)) . (3.4j)

7. Finally the positive equilibrium point Q8 =
(
Ẽ1, Ẽ2, Ẽ3, Ẽ4

)
exists in the Int.R4

+ if and only

if there is appositive solution of the following set of equations:

S1 −
S1E1

L1

− C1E4

(m+ E2
1)

= 0, (3.5a)

S2E3

(
1− E3

L2

)
−DE2 − C2E2E4 − α1E

2
2 −K1E2 = 0, (3.5b)

DE2 − C3E3E4 − α2E
2
3 −K2E3 = 0, (3.5c)

A1E1

(m+ E2
1)

+ A2E2 + A3E3 − nE1 − α3 −K3 = 0, (3.5d)

From equation (3.5a) we have

E4 =
s1 (L1 − E1) (m+ E2

1)

C1L1

, (3.5e)

From equation (3.5d) we have

E3 =

E1

(
n− A1

(m+E2
1)

)
+ α3 +K3 − A2E2

A3

(3.5f)

Subtitling (3.5e) and (3.5f) in (3.5b) and then simplifying the resulting term we obtain that:

F1 (E1, E2) = A3l2S2

(
E1(n− A1

(m+ E2
1)
) + (α3 +K3)− A2E2

)
− S2

(
E1(n− A1

(m+ E2
1)
) + (α3 +K3)− A2E2

)
− E2

(
D + α1E2 +K1 +

C2

C1L1

(
S1L1m+ S1L1E

2
1 − S1mE1 − S1E

3
1

))
= 0, (3.5g)

Now, by subtitling (3.5e) and (3.5f) in (3.5c) and them simplifying the resulting term we obtain
that:

F2 (E1, E2) = DE2 − C3A3

(
E1(n− A1

(m+ E2
1)
) + (α3 +K3)− A2E2

)
(S1L1m+ S1L1E

2
1

− S1mE1 − S1E
3
1)− α2C1L1

(
E1(n− A1

(m+ E2
1)
) + (α3 +K3)− A2E2

)
− C1A3L1K2

(
E1(n− A1

(m+ E2
1)
) + (α3 +K3)− A2E2

)
= 0, (3.5h)
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Now from (3.5g) we notice that, when E2 → 0 , E1 → Ẽ1, where Ẽ1is the unique positive root
of the equation.

f (E1) = γ1E
6
1 + γ2E

5
1 + γ3E

4
1 + γ4E

3
1 + γ5E

2
1 + γ6E1 + γ7 = 0, (3.5i)

where

γ1 = −n2 < 0,

γ2 = n (L2A3 − 2 (α3 +K3)) ,

γ3 = (α3 +K3) (L2A3 − (α3 +K3)) + 2n (A1 − nm) ,

γ4 = (L2A3 − 2 (α3 +K3)) (2nm− A1) ,

γ5 = 2m (α3 +K3) (L2A3 − (α3 +K3)) + nm (A1 − nm) + A2
1,

γ6 = (A1 − nm) (m (L2A3 − 2 (α3 +K3))) ,

γ7 = m2 (α3 +K3) (L2A3 − (α3 +K3)) .

If in addition to condition (3.1f), the following conditions hold:

L2A3 > max {(α3 +K3) , 2 (α3 +K3)} , (3.5j)

A1 < 2nm. (3.5k)

Moreover from Eq.(3.5g) we have dE1

dE2
= −

(
∂F1
∂E2
∂F1
∂E1

)
. So, dE1

dE2
> 0 if one set of the following set

of conditions holds.

∂F1

∂E2

> 0,
∂F1

∂E1

< 0 Or
∂F1

∂E2

< 0,
∂F1

∂E1

> 0 (3.5l)

Further, from Eq. (3.5h) we notice that, when E2 → 0, E1 → Ẽ
′
1 , where Ẽ

′
1 is the unique

positive root of the equation.

f (E1) = ρ1E
8
1 + ρ2E

7
1 + ρ3E

6
1 + ρ4E

5
1 + ρ5E

4
1 + ρ6E

3
1 + ρ7E

2
1 + ρ8E1 + ρ9 = 0, (3.5m)

where

ρ1 = S1A3nC3 > 0,

ρ2 = S1C3A3 ((α3 +K3)− nL1) ,

ρ3 = S1C3A3 (3nm− (α3 +K3)L1)− α2C1L1n
2,

ρ4 = 3S1C3A3m ((α3 +K3)− nL1)− A3 (S1C3A3 +K2C1L1)− 2α2C1L1 (α3 +K3) ,

ρ5 = α2C1L1 (2n (nm−A1)) + (K2A3 − α2 (α3 +K3))

C1L1 (α3 +K3) + S1C3A3 (m (3nm− (α3 +K3)L1) + A1L1) ,

ρ6 = C3A3mS1 (3m ((α3 +K3)− nL1)− 2A1) + 2α2C1L1 (α3 + K3) +K2C1L1A3) (nm− A1) ,

ρ7 = 2mC1L1 (α3 + K3) (K2A3 − α2 (α3 +K3) + α2C1L1

(
(A1 − 2nm)− n2m

)
+ 3C3A3m

2S1 (A1 − (α3 +K3)) ,

ρ8 = C3A3m
3S1 ((α3 +K3)− nL1) + 2α2C1L1 (α3 + K3) +K2C1L1A3) (nm−A1)− C3A3m

2S1A1,

ρ9 = C3A3m
2S1 (A1 − (α3 +K3))− C1L1 (α3 +K3)m

2 (K2A3 + α2 (α3 +K3)) .
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If in addition to conditions (3.1f) and (3.5k), the following conditions hold:

α3 +K3 < nL1, (3.5n)

3nm < (α3 +K3)L1, (3.5o)

K2A3 < α2 (α3 +K3) , (3.5p)

A1 (α3 +K3) , (3.5q)

Moreover from (3.5h) we have dE1

dE2
= − ∂F2

∂E2
/ ∂F2

∂E1
. So, dE1

dE2
< 0 if one set of the following set

of conditions holds.

∂F2

∂E2

< 0 ,
∂F2

∂E1

< 0 Or
∂F2

∂E2

> 0 ,
∂F1

∂E1

> 0 (3.5r)

Then the two isoclines (3.5g) and (3.5h) intersect at a unique positive point
(
Ẽ1, Ẽ2

)
in the

Int.R+
4 of E1E2− space. If in addition to condition (3.1e), the following conditions hold

n >
A1E1

(m+ E2
1)
, (3.5s)

E1

(
n− A1E1

(m+ E2
1)

)
+ α3 +K3 > A2E2, (3.5t)

Ẽ1 < Ẽ
′

1 (3.5u)

So, Q8 =
(
Ẽ1, Ẽ2, Ẽ3, Ẽ4

)
where Ẽ3 = E3

(
Ẽ1, Ẽ2

)
and Ẽ4 = E4

(
Ẽ1, Ẽ2

)
exists under above

conditions.

4. Local Stability Analysis

In this section discusses the local stability analysis of the system (2.1) for each of the previous
equilibrium points have been discussed by computing the Jacobean matrix J(E1, E2, E3, E4) of the
system (2.1) as follows:

J =


S1(L1−2E1)

L1
−

C1E4(m−E2
1)

(m+E2
1)

2 0 0 − C1E1

(m+E2
1)

0 −D−C2E4−2α1E2−K1
S2(L2−2E3)

L2
−C2E2 0

0 D −C3E4−2α2E3−K2 −C3E3

A1E4(m−E2
1)

(m+E2
1)

2 −nE4 A2E4 A3E4
A1E1

(m+E2
1)

+A2E2+A3E3−nE1−α3−K3.


(4.1)

4.1. Local Stability Analysis of Q0

The Jacobean matrix at Q0 = ( 0 , 0 , 0 , 0 ) is given by:

J0 = J (Q0) =


S1 0 0 0
0 −D −K1 S2 0
0 D −K2 0
0 0 0 −α3 −K3

 (4.2)
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Then the characteristic equation of J0 is given by:

(S1 − λ)
[
λ2 + (K1 +K2 +D)λ+ (D (K2 − S2) +K2K1)

]
(−α3 −K3 − λ) = 0,

So, either (S1 − λ) (−α3 −K3 − λ) = 0, which gives

λ0E1 = S1 > 0,

λ0E4 = −(α3 +K3) < 0,

Or [λ2 + (K1 +K2 +D)λ+ (D (K2 − S2) +K2K1)] = 0, wich gives

λ0E2 + λ0E3 = −(K1 +K2 +D) < 0,

λ0E2 • λ0E3 = D (K2 − S2) +K2K1

Hence Q0 is saddle point, and it is (unstable).

4.2. Local Stability Analysis of Q1

The Jacobean matrix at Q1 = (L1, 0, 0, 0) is given by:

J1 = J(Q1) =


−S1 0 0 − C1L1

(m+L2
1)

0 −D −K1 S2 0
0 D −K2 0
0 0 0 A1L1

(m+L2
1)

− nL1 − α3 −K3

 (4.3)

Then the characteristic equation of J1 is given by

(−S1 − λ)
[
λ2 + (K1 +K2 +D)λ+ (D (K2 − S2) +K2K1)

](
−α3 −K3 + L1(

A1

(m+ L2
1)

− n)− λ

)
= 0,

So, either (−S1 − λ)

(
−α3 −K3 + L1

(
A1

(m+L2
1)

− n

)
− λ

)
= 0, which gives

λ1E1 = −S1 < 0,

λ1E4 = L1

(
A1

(m+ L2
1)

− n

)
− α3 −K3

Or [λ2 + (K1 +K2 +D)λ+ (D (K2 − S2) +K2K1)] = 0, which gives

λ1E2 + λ1E3 = −(K1 +K2 +D) < 0,

λ1E2 • λ1E3 = D (K2 − S2) +K1K2

Hence Q1 is locally asymptotically stable if in addition to conditions (3.2e) the following conditions
hold.

D (S2 −K2) < K1K2, (4.4)

A1L1

(m+ L2
1)

> n, (4.5)

A1L1

(m+ L2
1)

− n < α3 +K3, (4.6)

Otherwise it is unstable.
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4.3. Local Stability Analysis of Q2

The Jacobean matrix of Q2 =
(
Ē1, 0, 0, Ē4

)
, similarly for Q3 =

(
Ē

′
1 , 0, 0, Ē

′
4

)
, is given by

J2 = J(Q2) =


S1(l1−2Ē1)

l1
−

C1Ē4(m−Ē2
1)

(m+Ē2
1)

2 0 0 − C1Ē1

(m+Ē2
1)

0 −D−C2Ē4−K1 S2 0
0 D −C3Ē4−K2 0A1(m−Ē2
1)

(m+Ē2
1)

2 −n

Ē4 A2Ē4 A3Ē4
A1Ē1

(m+Ē2
1)

−nĒ1−α3−K3

 (4.7)

Then the characteristic equation of J2 is given by[
λ2 + (v11 + v44)λ+ (v11) (v44)− (v14) (v41)

] [
λ2 + (v22 + v33)λ+ (v22) (v33)− (v23) (v32)

]
= 0,

So, either [λ2 + (v11 + v44)λ+ (v11) (v44)− (v14) (v41)] = 0, which gives

λ2E1 + λ2E4 =

(
S1

(
L1 − 2Ē1

)
L1

−
C1Ē4

(
m− Ē2

1

)(
m+ Ē2

1

) )
+

((
A1(

m+ Ē2
1

) − n

)
Ē1 − α3 −K3

)

λ2E1 • λ2E4 =

(
S1

(
L1 − 2Ē1

)
L1

−
C1Ē4

(
m− Ē2

1

)(
m+ Ē2

1

) )((
A1(

m+ Ē2
1

) − n

)
Ē1 − α3 −K3

)

+

(
A1

(
m− Ē2

1

)(
m+ Ē2

1

)2 − n

)
E4

(
C1Ē1(

m+ Ē2
1

))

Or [λ2 + (v22 + v33)λ+ (v22) (v33)− (v23) (v32)] = 0, which gives

λ2E2 + λ2E3 = −(D + C2Ē4 +K1 + C3Ē4 +K2) < 0,

λ2E2 • λ2E3 =
(
D + C2Ē4 +K1

) (
C3Ē4 +K2

)
−DS2

So, all the eigenvalues of J2 have negative and hence Q2 and Q3 is locally asymptotically stable
provided that the following conditions hold.(

D + C2Ē4 +K1

) (
C3Ē4 +K2

)
> DS2, (4.8a)

L1 < 2Ē1, (4.8b)

m > Ē2
1 , (4.8c)(

A1Ē1(
m+ Ē2

1

) − n

)
< α3 +K3, (4.8d)

n < min

{
A1Ē1(
m+ Ē2

1

) , A1

(
m− Ē2

1

)(
m+ Ē2

1

)2
}
, (4.8e)

Otherwise it is saddle point.

4.4. Local Stability Analysis of Q4

The Jacobean matrix at Q4 = (0, Ê2, Ê3, 0) is given by

J4 = J(Q4) =


S1 0 0 0

0 −D − 2α1Ê2 −K1
S2(L2−2Ê3)

L2
−C2Ê2

0 D −2α2Ê3 −K2 −C3Ê3

0 0 0 A2Ê2 + A3Ê3 − α3 −K3

 (4.9)
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Then the characteristic equation J4 is given by

(d11 − λ)
[
λ2 + (d22 + d33)λ+ (d22) (d33)− (d23) (d32)

]
(d44 − λ) = 0,

So, either (d11 − λ) (d44 − λ) = 0, which gives

λ4E1 = S1 > 0,

λ4E4 = A2Ê2 + A3Ê3 − α3 −K3,

Or [λ2 + (d22 + d33)λ+ (d22) (d33)− (d23) (d32)] = 0, which gives

λ4E2 + λ3E3 = −(D + 2α1Ê2 +K1 + 2α2Ê3 +K2) < 0,

λ4E2 • λ3E3 =
(
D + 2α1Ê2 +K1

)(
2α2Ê3 +K2

)
−

DS2

(
L2 − 2Ê3

)
L2

,

Hence Q4 is saddle point, and it is (unstable).

4.5. Local Stability Analysis of Q5

The Jacobean matrix at Q5 = (Ė1, Ė2, Ė3, 0) is given by:

J5 = J(Q5) =


S1(L1−2Ė1)

L1
0 0 − C1Ė1

(m+Ė2
1)

0 −D−2α1Ė2−K1
S2(L2−2Ė3)

L2
−C2Ė2

0 D −2α2Ė3−K2 −C3Ė3

0 0 0
A1Ė1

(m+Ė2
1)

+A2Ė2+A3Ė3−nĖ1−α3−K3

 (4.10)

Then the characteristic equation of J5 is given by

(u11 − λ)
[
λ2 + (u22 + u33)λ+ (u22) (u33)− (u23) (u32)

]
(u44 − λ) = 0,

So, either (u11 − λ) (u44 − λ) = 0, which gives

λ5E1 =
S1(L1 − 2Ė1)

L1

,

λ5E4 =

 A1(
m+ Ė2

1

) − n

 Ė1 + A2Ė2 + A3Ė3 − α3 −K3,

Or [λ2 + (u22 + u33)λ+ (u22) (u33)− (u23) (u32)] = 0, which gives

λ5E2 + λ4E3 = −(D + 2α1Ė2 +K1 + 2α2Ė3 +K2) < 0,

λ5E2 • λ4E3 =
(
D + 2α1Ė2 +K1

)(
2α2Ė3 +K2

)
−

DS2

(
L2 − 2Ė3

)
L2

,
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Hence Q5 is locally asymptotically stable provided that the following conditions hold.

A1Ė1(
m+ Ė2

1

) > n , (4.11a)

Ė1

 A1Ė1(
m+ Ė2

1

) − n

+ A2Ė2 + A3Ė3 < α3 +K3, (4.11b)

L2 < 2Ė3, (4.11c)(
D + 2α1Ė2 +K1

)(
2α2Ė3 +K2

)
>

DS2(L2 − 2Ė3)

L2

, (4.11d)

Otherwise it is saddle point.

4.6. Local Stability Analysis of Q6

The Jacobean matrix of Q6 =
(
0, ¯̄E2,

¯̄E3,
¯̄E4

)
, similarly for Q7 =

(
0, , ¯̄E

′

2 , ¯̄E
′

3 , ¯̄E
′

4

)
, is given

by

J6 = J(Q6) =


S1−C1

¯̄E4
m

0 0 0

0 −D−2α1
¯̄E2−C2

¯̄E4−K1
S2(L2−2 ¯̄E3)

L2
−C2

¯̄E2

0 D −2α2
¯̄E3−C3

¯̄E4−K2 −C3
¯̄E3

A1
¯̄E4

m
−n ¯̄E4 A2

¯̄E4 A3
¯̄E4 A2

¯̄E2+A3
¯̄E3−α3−K3

 (4.12)

Then the characteristic equation of J6 is given by

(e11 − λ)
[
λ3 + ¯̄B1λ

2 + ¯̄B2λ
1 + ¯̄B3

]
= 0 (4.13a)

So, either (e11 − λ) = 0, which give λ6E1 = S1 − C1
¯̄E4

m
, which is negative provided that :

S1 <
C1

¯̄E4

m
, (4.13b)

Or[
λ3 + ¯̄B1λ

2 + ¯̄B2λ
1 + ¯̄B3

]
= 0, (4.13c)

where

¯̄B1 = − (e22 + e33 + e44) > 0

¯̄B2 = (e22 + e33) e44 + (e22) (e33)− (e34) (e43)− (e23) (e32)− (e24)(e42)

¯̄B3 = e44 [(e23) (e32)− (e22) (e33)] + (e22) (e34) (e43) + (e24)(e42) [(e33)− (e32)]

− [(e23)(e34)(e42) + (e32) (e24) (e43)] > 0,

By the Routh-Hawirtiz criterion, equation (1.13c) has real negative parts, if ¯̄Bi > 0, i = 1, 3 and

∆ =
(
¯̄B1

¯̄B2 − ¯̄B3

)
¯̄B3 > 0. Clearly, ¯̄Bi > 0 if the following conditions hold

A2
¯̄E2 + A3

¯̄E3 < α3 +K3, (4.13d)

L2 < 2 ¯̄E3, (4.13e)

S2C3A2(L2 − 2 ¯̄E3)
¯̄E3

¯̄E4

L2

< DC2A3
¯̄E2

¯̄E4, (4.13f)
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Straightforward computation shows that ¯̄∆ = P1 − P2, where

P1 = (e44 + e22 + e33) [(e24) (e42) + (e43) (e34)− (e22 + e33)e44] + (e22 + e33) [(e23) (e32)− (e22) (e33)],

and

P2 = [(e23) (e34) (e42) + (e32) (e24) (e43)]− (e34) (e43) (e22)− (e24) (e42) [e33 − e32] ,

Hence, ∆ will be positive if in addition of conditions and (4.13d)-(4.13f) the following condition
holds

P1 > P2, (4.13g)

So, all the eigenvalues of J6 have negative real parts under the above conditions, hence Q6 and Q7

are locally asymptotically stable. It’s unstable otherwise.

4.7. Local stability Analysis of Q8

The Jacobean matrix at Q8 =
(
Ẽ1, Ẽ2, Ẽ3, Ẽ4

)
is given by

J8 = J(Q8) =


S1(L1−2Ẽ1)

L1
−

C1Ẽ4(m−Ẽ2
1)

(m+Ẽ2
1)

0 0 − C1Ẽ1

(m+Ẽ2
1)

0 −D−C2Ẽ4−2α1Ẽ2−K1
S2(L2−2Ẽ3)

L2
−C2Ẽ2

0 D −C3Ẽ4−2α2Ẽ3−K2 −C3Ẽ3

A1Ẽ4(m−Ẽ2
1)

(m+Ẽ2
1)

2 −nẼ4 A2Ẽ4 A3Ẽ4

(
A1

(m+Ẽ2
1)

−n

)
Ẽ1+A2Ẽ2+A3Ẽ3−α3−K3


(4.14)

Then the characteristic equation of J8 is given by[
λ4 + ρ̃1λ

3 + ρ̃2λ
2 + ρ̃3 λ+ ρ̃4

]
= 0, (4.15a)

ρ̃1 = − (µ0 + µ1) > 0,

ρ̃2 = µ0µ1 + µ2 + µ7 − µ3 − µ4 − µ5 − µ6,

ρ̃3 = µ1 [µ4 − µ7] + µ0 [µ6 − µ2] + µ3µ8 + µ5µ9 − µ12 − µ13 > 0,

ρ̃4 = µ10 [µ7 − µ3] + µ4 [µ6 − µ2]− µ6µ7 + (h11) [µ13 + µ12]

− µ11µ5 > 0.

with

µ0 = h22 + h33 < 0, µ1 = h11 + h44 , µ2 = h11h44, µ3 = h34h43 < 0, µ4 = h23h32,

µ5 = h24h42 < 0, µ6 = h14h41, µ7 = h22h33 > 0, µ8 = h11 + h22, µ9 = h11 + h33, µ10 = h11h22,

µ11 = h11h33, µ12 = h23h34h42, µ13 = h24h32h43 < 0.
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By the Routh-Hawirtiz criterion, equation (4.15a) has real negative parts, if ρ̃i > 0, i = 1, 3 and 4
and ∆ = (ρ̃1ρ̃2 − ρ̃3) ρ̃3 − ρ̃21ρ̃4 > 0. Evidently, ρ̃i > 0, i = 1, 3 and 4 if the following conditions
hold

m > Ẽ2
1 , (4.15b)

L2 < min{2Ẽ1, 2Ẽ3}, (4.15c)

Ẽ1

 A1Ẽ1(
m+ Ẽ2

1

) − n

 + A2Ẽ2 + A3Ẽ3 < +α3 +K3, (4.15d)

n < min

 A1Ẽ1(
m+ Ẽ2

1

) , A1

(
m− Ẽ2

1

)
(
m+ Ẽ2

1

)2
 , (4.15e)

S2C3A2(L2 − 2Ẽ3)Ẽ3Ẽ4

L2

< DC2A3Ẽ2Ẽ4, (4.15f)

Straightforward computation shows that ∆ = H1 −H2, where

H1 = ρ̃3 (µ0 + µ1) (µ3 − µ7 + µ5 − µ0µ1)− µ0µ11µ5 (µ0 + 2µ1) + ρ̃3[µ0µ4 + µ1 (µ6 − µ2)], and

H2 = [(µ12 + µ13)− µ3µ8 − µ5µ9] ρ̃3 + µ2
1 (µ6µ7 + µ11µ5)− (µ0 + µ1)

2

[µ10 (µ7 − µ3) + µ4 (µ6 − µ2) + (h11) (µ12 + µ13)] + µ7

(
µ2
0µ6 + µ1ρ̃3

)
∆ > 0 if in addition to the condition (4.15b)-(4.15f) the following conditions hold

µ13 > µ12, (4.15g)

H1 > H2, (4.15h)

So, all the eigenvalues of J8 have negative real part under the given conditions hence Q8 is locally
asymptotically stable. However, it is unstable otherwise.

5. Global Stability Analysis

In this section, the global stability of the equilibrium points of system (2.1) is investigated by
using the lyapunov function as shown in the following theorems.

Theorem 5.1. The (EP) Q1 is a globally asymptotically stable on any subregion Ω1 ⊂ R4
+ that

satisfies the next condition

C1E4E1

m+ E2
1

+
S2L2

4
<

[
S1

L1

(E1 − L1)
2 +K1E2 +K2E3 +K3E4

]
. (5.1a)

Proof . Consider the following function

N1 (E1, E2, E3, E4) =

(
E1 − L1 − L1 ln

E1

L1

)
+ E2 + E3 + E4.
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Clearly N1 : R4
+ → R is a N1 ∈ C1 positive definite function.

Now, by differentiating N1 with regard to time t and some algebraic manipulation, gives the following

dN1

dt
=− S1

L1

(E1 − L1)
2 + S2E3

(
1− E3

L2

)
+

C1E4L1

m+ E2
1

−K1E2 −K2E3 −K3E4

− E2E4 (C2 − A2)− E3E4 (C3 − A3)−
E1E4

m+ E2
1

(C1 − A1) .

Now since the function f(E3) = S2E3

(
1− E3

L2

)
in the second term represents a logistic function with

respect to E3 and hence it is bounded above by the constant S2L2

4
, then according to the biological

facts, Ci > Ai, i = 1, 2, 3. Hence,

dN1

dt
<

S2L2

4
+

C1E1E4

m+ E2
1

−
[
S1

L1

(E1 − L1)
2 +K1E2 +K2E3 +K3E4

]
.

Hence N1 is strictly Lyapunov function. So, by condition (5.1) N1 is negative definite on the subregion
ω1. Thus Q1 is a globally asymptotically stable. □

Moreover since there are two equilibrium point Q2 =
(
Ē1, 0, 0, Ē4

)
and Q3 =

(
Ē

′
1 , 0, 0, Ē

′
4

)
in the

interior of R4
+ having exactly the same conditions of local stability but with various neighborhoods of

starting points then it is impossible to study the global stability of them using Lyapunove function.
So we will study it numerically instead of analytically as shown in the next section.

Theorem 5.2. The (EP) Q5 is a globally asymptotically stable on any subregion Ω2 ⊂ R4
+ that

satisfies the next conditions:

(
S2

E2

+
D

E3

)
≤ 2

√√√√(α1 +
S2Ė3

E2Ė2

)(
α2 +

DĖ2

E3Ė3

)
, (5.2a)

Ḣ1 > Ḣ2 . (5.2b)

where

Ḣ1 =


√√√√(α1 +

S2Ė3

E2Ė2

)(
E2 − Ė2

)
−

√√√√(α2 +
DĖ2

E3Ė3

) (
E3 − Ė3

)2

+
S1

L1

(
E1 − Ė1

)2
+K3E4,

Ḣ2 =
C1E4Ė1

m+ E2
1

+
(
C3Ė3 + C2Ė2

)
E4 +

(
E2Ė

2
3

Ė2

+
Ė2E

2
3

L2E3

)
S2. (5.2c)

Proof . Consider the following function

N2 (E1, E2, E3, E4) =

(
E1 − Ė1 –Ė1 ln

E1

Ė1

)
+

(
E2 − Ė2–Ė2 ln

E2

Ė2

)
+

(
E3 − Ė3 − Ė3 ln

E3

Ė3

)
+ E4.

Clearly N2 : R4
+ → R is a N2 ∈ C1 positive definite function.
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Now, by differentiating N2 with regard to time t and some algebraic manipulation, gives the following

dN2

dt
=− S1

L1

(
E1 − Ė1

)2
+

C1E4Ė1

m+ E2
1

−

(
α1 +

S2Ė3

E2Ė2

)(
E2 − Ė2

)2
+ (

S2

E2

+
D

E3

)
(
E2 − Ė2

)
(
E3 − Ė3

)
−

(
α2 +

DĖ2

E3Ė3

)(
E3 − Ė3

)2
+ C3Ė3E4 + C2Ė2E4 −

E1E4

m+ E2
1

(C1 − A1)

− E2E4 (C2 − A2)− E3E4 (C3 − A3)−K3E4 +

(
E2Ė

2
3

Ė2

+
Ė2E

2
3

L2E3

)
S2.

So, according to condition (5.2a) with the biological facts in Theorem 2.1, always Ci > Ai, i = 1, 2, 3.

dN2

dt
<−


√√√√(α1 +

S2Ė3

E2Ė2

)(
E2 − Ė2

)
−

√√√√(α2 +
DĖ2

E3Ė3

)(
E3 − Ė3

)2

− S1

L1

(
E1 − Ė1

)2
−K3E4 +

C1E4Ė1

m+ E2
1

+
(
C3Ė3 + C2Ė2

)
E4 +

(
E2Ė

2
3

Ė2

+
Ė2E

2
3

L2E3

)
S2.

Then, dN2

dt
< −Ḣ1 + Ḣ2 . Hence N2 is strictly Lyapunov function. So, by condition (5.2b) N2 is

negative definite on the subregion Ω2. Thus Q5 is a globally asymptotically stable. □

Moreover since there are two equilibrium point Q6 =
(
0, ¯̄E2,

¯̄E3,
¯̄E4

)
and Q7 =

(
0, , ¯̄E

′

2 , ¯̄E
′

3 , ¯̄E
′

4

)
in the interior of R4

+ having exactly the same conditions of local stability but with various neighbor-
hoods of starting points then it is impossible to study the global stability of them using Lyapunove
function. So we will study it numerically instead of analytically as shown in the next section.

Theorem 5.3. The (EP) Q8 is a globally asymptotically stable on any subregion Ω3 ⊂ R4
+ that

satisfies the next conditions(
S2

E2

+
D

E3

)
≤ 2

√√√√(α1 +
S2Ẽ3

E2Ẽ2

)(
α2 +

DẼ2

E3Ẽ3

)
, (5.3a)

Ẽ1 < E1, (5.3b)

ũ2 < ũ1, (5.3c)

ũ1 =


√√√√ (

α1 +
S2Ẽ3

E2Ẽ2

)(
E2 − Ẽ2

)
−

√√√√(α2 +
DẼ2

E3Ẽ3

) (
E3 − Ẽ3

)2

+
S1

L1

(
E1 − Ẽ1

)2
,

ũ2 =
C1E4

(
E1 − Ẽ1

)
(E2

1 − Ẽ2
1)(

m+ Ẽ2
1

)
(m+ E2

1)
+
(
E1Ẽ4 + Ẽ1E4

)
n+

(
E2Ẽ4 + Ẽ2E4

)
C2 +

(
E3Ẽ4 + Ẽ3E4

)
C3.

Proof . Consider the following function:

N3 (E1, E2, E3, E4) =

(
E1 − Ẽ1 − Ẽ1 ln

E1

Ẽ1

)
+

(
E2 − Ẽ2 − Ẽ2 ln

E2

Ẽ2

)
+

(
E3 − Ẽ3 − Ẽ3 ln

E3

Ẽ3

)
+

(
E4 − Ẽ4 − Ẽ4 ln

E4

Ẽ4

)
.
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Clearly N3 : R4
+ → R is a N3 ∈ C1 positive definite function.

Now, by differentiating N3 with regard to time t and some algebraic manipulation, gives the following

dN3

dt
=− S1

L1

(
E1 − Ẽ1

)2
−

(
α1 +

S2Ẽ3

E2Ẽ2

)(
E2 − Ẽ2

)2
+

(
S2

E2

+
D

E3

)(
E2 − Ẽ2

)(
E3 − Ẽ3

)

−

(
α2 +

DẼ2

E3Ẽ3

)(
E3 − Ẽ3

)2
−

C1E4

(
E1 − Ẽ1

)(
E4 − Ẽ4

)
(
m+ Ẽ2

1

) (C1 − A1)− E2E4 (C2 − A2)

− E3E4 (C3 − A3) +
C1E4

(
E1 − Ẽ1

)(
E2

1 − Ẽ2
1

)
(
m+ Ẽ2

1

)
(m+ E2

1)
+
(
E1Ẽ4 + Ẽ1E4

)
n+

(
E2Ẽ4 + Ẽ2E4

)
C2

+
(
E3Ẽ4 + Ẽ3E4

)
C3.

So, according to by conditions (5.3a) and (5.3b) with the biological facts, Ci > Ai, i = 1, 2, 3.

dN3

dt
<−


√√√√(α1 +

S2Ẽ3

E2Ẽ2

)(
E2 − Ẽ2

)
−

√√√√(α2 +
DẼ2

E3Ẽ3

)(
E3 − Ẽ3

)2

− S1

L1

(
E1 − Ẽ1

)2

+
C1E4

(
E1 − Ẽ1

)(
E2

1 − Ẽ2
1

)
(
m+ Ẽ2

1

)
(m+ E2

1)
+ n

(
E1Ẽ4 + Ẽ1E4

)
+ C2

(
E2Ẽ4 + Ẽ2E4

)
+ C3

(
E3Ẽ4 + Ẽ3E4

)
Then, dN3

dt
= −ũ1 + ũ2. Hence N3 is strictly Lyapunov function. So, by condition (5.3c) N3 is

negative definite on the subregion ω3. Thus Q8 is a globally asymptotically stable. □

6. Numerical Simulation

In this section, numerical simulations have been used dynamic behavior of system (2.1). For one
set of parameters and different set of initial points. The aim of this study:

1. the effects of parameters on the dynamics of our model.

2. Confirm the analytic results.

Figure 1. (a-d) it appears that the system (2.1) at the hypothetical set of parameters (6.1) has global
positive equilibrium point.

S1 = 0.5, L1 = 0.5, C1 = 0.5, m = 0.5, S2 = 0.5, L2 = 0.5, D = 0.5,

C2 = 0.5, α1 = 0.1, K1 = 0.1, C3 = 0.5, α2 = 0.1, K2 = 0.1, A1 = 0.3,

A2 = 0.3, A3 = 0.3, n = 0.1, α3 = 0.1, K3 = 0.1

(6.1)

Now, in order to discuss the effect of the parameters values of system (2.1) on the dynamical
behavior of system, the system (2.1) solved numerically for the data given in (6.1) with change one
parameter at each time the obtained results.
The effect of the following parameters summarized in table (1).
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Figure 1: Time series of the solution of system (2.1) beginning with different initial points (0.5 , 1.8 , 0.6 , 0.7) ,
(0.3, 0.2 , 0.1, 0.9) , and (1.9 , 2 , 0.4, 0.3) . (a) Trajectory of E1 as a function of time, (b) Trajectory of E2 as a
function of time, (c) Trajectory of E3 as a function of time, (d) Trajectory of E4 as a function of time.

Figure 2: Graphical representation of the solution which approaches Q8 = ( 0.310, 0.062, 0.133, 0.500).

Table 1:

Range of parameter The stable point Range of parameter The stable point
0.1 ≤ L1 < 0.16 Q5 0.1 ≤ K2 < 0.32 Q8

0.16 ≤ L1 < 1 Q8 0.32 ≤ K2 < 0.41 Q5

0.41 ≤ K2 < 1 Q1

0.1 ≤ S1 < 2 Q8 0.1 ≤ D < 1 Q8

0.1 ≤ m < 0.98 Q8 0.1 ≤ αi < 1.5, i = 1, 2 Q8

0.98 ≤ m ≤ 1.5 Q5

0.1 ≤ S2 < 0.14 Q1 0.1 ≤ Ai ≤ 0.4, i = 1, 2, 3 Q8

0.14 ≤ S2 < 0.20 Q5

0.20 ≤ S2 < 2 Q8

0.3 ≤ Ci < 2, i = 1, 2, 3 Q8 0.1 ≤ n < 0.261 Q8

0.261 ≤ n ≤ 1.5 Q5

0.1 ≤ L2 < 1.5 Q8 0.1 ≤ K3, α3 < 0.179 Q8

0.1 ≤ K1 < 1 Q8 0.179 ≤ K3, α3 < 1 Q5

The effect of varying the parameter S2 in the range 0.1 ≤ S2 < 0.14 the solution approaches to Q1,
as shown in Figure 3 (a) , for model value S2 = 0.1, increasing further in the range 0.14 ≤ S2 < 0.21
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the solution approaches to Q5, as shown in Figure 3 (b), for model value S2 = 0.18, but in the
0.21 ≤ S2 < 2 the solution approaches to Q8 , as shown in Figure 3 (c), for model value S2 = 0.25.

Figure 3: (a) Time series of the solution of system (2.1) with S2 = 0.1, which approaches to Q1 = (0.5, 0, 0, 0) , and
(b) time series of the solution of system (2.1) with S2 = 0.15, which approaches to Q5 = (0.410, 0.032, 0.123, 0) , and
(c) time series of the solution of system (2.1) with S2 = 0.25, which approaches to Q8 = (0.410, 0.310, 0.140, 0.060) .

For the parameter K2 in the range 0.1 ≤ K2 < 0.32 the solution approaches to Q8, as shown in
Figure 4 (a), for model value K2 = 0.1, increasing further in the range 0.32 ≤ K2 < 0.41 the solution
approaches to Q5, as shown in Figure 4 (b), for model value K2 = 0.33, but in the 0.41 ≤ k2 < 1 the
solution approaches to Q1 , as shown in Figure 4 (c), for model value K2 = 0.5.

Figure 4: (a) Time series of the solution of system (2.1) with K2 = 0.1, which approaches to Q8 =
(0.424, 0.050, 0.140, 0.103) , and (b) time series of the solution of system (2.1) with K2 = 0.33, which approaches
to Q5 = (0.410, 0.032, 0.140, 0) , and (c) time series of the solution of system (2.1) with k2 = 0.5, which approaches
to Q1 = (0.5, 0, 0, 0) .
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Finally, change the parameter α3, K3, A1, with the rest of parameter as given (6.1) in the range
0.01 ≤ K3, α3 < 0.015, 0.09 ≤ A1 < 0.043, the solution of system (2.1) approaches to Q8, as shown
in Figure 5, for model values α3 = 0.01, K3 = 0.01 and A1 = 0.09.

Figure 5: Time series of the solution of system (2.1) with K3, α3 = 0.01, A1 = 0.09, which approaches to Q8 =
(0.012, 0.013, 0.023, 0.392) .

7. Conclusions and Discussions

In this study, a mathematical model that consisting of four species: first prey and second prey
with stage structure and predator in the presence of toxicity and anti -predator has been proposed
and studied by using the functional response Holling’s type IV and Lotka Volttra. The solution’s
existence, uniqueness, and boundedness have all been studied. All possible equilibrium points have
been identified. They stability of this model have been studied. Finally, numerical simulation have
been used to verify our analytical results. With data given in Eq. (6.1). Which are summarized as
follow:

1. There is no periodic dynamics for system (2.1).

2. The parameters L1,m, S2, K2, n, α3 and K3 play an important role on the dynamics of system
(2.1), while at others parameters Si, αi, i = 1, 2, Ai, Ci, i = 1, 2, 3, L2, K1, D, the solution still
approaches to positive equilibrium point.
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