
Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 1981-1989
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.5329

Identity of the connection curvature tensor of
almost manifold C(λ)

Ali A. Shihaba,∗

aDepartment of Mathematics, College of Education for Pure Sciences, Tikrit University, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

This paper aims to investigate the geometry of the projective curvature tensor and to obtain some
identities for this tensor. Several three classes of nearly infinite C(λ) are distinguished and studied.
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1. Introduction

D. Janssen and L. Vanheke [2] proposed the concept of almost manifolds −C(λ). The authors
defined such manifolds by the Riemann curvature tensor condition, and demonstrated that exam-
ples of almost manifold −C(λ) are Sasakian cosymplectic manifolds and Kenmotsu manifolds [3].
Furthermore, Olchek and R. Roska [15] investigated such manifolds, and almost manifold −C(λ) ap-
pear as a subclass of locally conformally almost cosymplectic manifolds in their work and then they
studied f -Kenmotsu manifolds that are manifold −C(λ) of constant curvature. Several researchers
dealt with this class and yielded significant results such as [1, 2, 3, 6, 7, 11, 4, 5, 9]. In this paper,
we study the geometry of the projective curvature tensor of a manifold −C(λ) using the techniques
of [16, 11], and it is organized as follows: The second section provides the necessary information
on almost contact metric manifolds, specifically the adjoint G-structure of an almost contact metric
manifold. In particular, we construct the adjoint G-structure of an almost contact metric manifold.
The third (main) section defines an almost manifold −C(λ) and obtains some additional Riemannian
curvature tensor identities. We characterize three types of almost manifold −C(λ) and give their
local characterization in the fourth section.
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2. Preliminary information

Let M be a smooth manifold, dimM = 2n+1;X(M)−C∞(M) then the external differentiation
operator comes from the module of smooth vector fields on a manifold M ; d−. All manifolds, tensor
fields, etc. Objects are supposedly to be smooth of class C∞.

Definition 2.1. [8, 12]. A triple of (η,£,Φ) tensor fields on this manifold is almost contact struc-
ture on a manifold M , where η is a differential 1-form named a contact form of the structure, £-is a
vector field named a characteristic field, Φ is an endomorphism of the module X(M), named struc-
tural endomorphism. Moreover,

η(£), 2)ηoΦ = 0, 3)Φ2 = −id+ η
⊗

£ (2.1)

If, in addition, a fixed Riemannian structure g = ⟨., .⟩ such that

(ΦX,ΦY ) = ⟨x, y⟩ − η(X)η(Y );X, Y ∈ X(M) (2.2)

a contact metric (in short, AC−) structure is almost the four (η,£,Φ, g). The almost contact metric
(in short, AC−) manifold is a nearly contact metric structure is fixed.

It is easy to check that the skew-symmetric is the tensor Ω(X, Y ) = (X,ΦY ) , i.e. it is a 2-form
on M . It is named the fundamental form structure.

It is well-known that the existence of an almost contact metric structure on a manifold re-
quires that it be orientable and odd-dimensional. Assume (η,£,Φ, g) is a contact metric struc-
ture on the almost manifold M (2n+1). Two mutually complementary projectors m = η

⊗
£ and

ℓ = id −m = −Φ2 [14, 13] are defined internally in module X(M). As a result, X(M) = L
⊕

M,
where L = ImΦ = kerη is the so-called contact distribution and M = Im⇕ is the structural vector’s
linear hull (where ⇕ and ℓ are projectors onto the submodules M and L, respectively). It is obvious
that the distributions are invariant with respect to Φ and mutually orthogonal. It is also obvious that
Φ̃2 = −id, ⟨Φ, Φ̃Y ⟩ = ⟨X, Y ⟩, X, Y ∈ L where Φ̃ = Φ|L. As a result, if p ∈ M , then an orthonormal
frame (p, e0, e1, ..., en,Φe1, ...,Φen) is constructed in the tangent space Tp(M) ,where e0 = ξ. This
type of frame is known as a materially adapted frame [19, 9]. On the other hand, let Lc = L

⊕
C

be the complexification of the distribution L. Internally, it defines two mutually complementary pro-

jectors σ = 1
2
(id −

√
−1Φ) and σ̄ = 1

2
(id +

√
−1Φ) onto the properl submodules D

√
−1

Φ and D−
√
−1

Φ

of the endomorphism, which correspond to the eigenvalues (−1) and −(−1), respectively. Hence, it
is possible to construct a frame (p, ε0, ε1, ..., εn, ε1̂, ..., en̂) complexification of the space Tp(M), where
ε0 = ξp, εa =

√
2σ(ea), εâ =

√
2σ̄(ea), consisting of the operator Φp’s eigenvectors. This a frame is

referred to as an A-frame [14, 13]. It is easy to imagine that the matrices of the tensor components
Φp and gp in the -frame take the form, respectively.

(Φi
j) =

0 0 0
0

√
−1In 0

0 0 −
√
−1In

 , (gij) =

1 0 0
0 0 In
0 In 0

 (2.3)

where In denotes the order n identity matrix . It has been demonstrated [14, 13] that the set of frames
determines G-structure on M with structural the group 1× U(n) represented by matrices such as

by matrices such as

1 0 0
0 A 0
0 0 A

 when A ∈ U(n). A G-structure is called adjoint [14, 13]. Let us
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emphasize that the adjoint G-structure space is formed up of complex frames, which are frames of
complexification of the corresponding tangent spaces. As a result, even when dealing with real tensors,
when we speak about their components over the space of an adjoint G-structure, we are referring to
components of complex extensions of these tensors. A tensor of this type is known as real [13]. A
real tensor is defined as the sum of a pure complex tensor and its complex conjugate tensor [13].
Throughout this work, we will assume that the indices i, j, k, .... have values ranging from 0 to 2n,
and the indices a, b, c, d, f, g, ... have values ranging from 1 to n, and that â = a+ n, ˆ̂a = a, 0̂ = 0.

3. Almost manifold −C(λ)

Let {M (2n+1), η, ξ,Φ, g} be an AC-manifold.

Definition 3.1. [10, 15] An almost manifold −C(λ) is an almost contact metric manifold if its
Riemannian curvature tensor satisfies the relation

⟨R(Z,W )Y,X⟩ =⟨R(ΦZ,ΦW )Y,X⟩ − λ{g(X, Y )g(Y, Z)− g(X,Z)g(Y,W )

− g(XΦ,W )g(Y,ΦZ) + g(X,ΦZ)g(Y,ΦW )} (3.1)

where X, Y, Z,W ∈ X(M), and λ in R.

Definition 3.2. [10, 15] A normal almost manifold −C(λ) is called manifold −C(λ).

Theorem 3.3. [11] An AC -manifold is almost manifold −C(λ) if and only if the components of its
of Riemannian curvature tensor on the space of the adjoint G-structure satisfy the relations:
Ra

b̂cd
= λδabcd , R

a
0b0 = λδab , R

a
bcd̂

, by virtue of the Ricci satisfying identity,

Ra
bcd̂

−Ra
cbd̂

= −λδadbc (3.2)

where λ is a real number, δabcd = δac δ
b
d − δadδ

b
c, and the remaining components sub are obtained from

the previous identity to the symmetry properties of the curvature tensor or are equal to zero.Using
the Riemannian curvature tensor of the known components on the space of the adjoint G-structure,
expressions for the components of the Ricci tensor of almost manifold −C over the space of the
adjoint G-structure S00 = 2λn, Sab̂ = Sbâ = Rb

caĉ +λnδab were obtained using the formula Sij = −Rk
ijk

in [11],. The other components are zero. It is easy to notice that

X = 2λn+ 2Ra
bab̂

+ 2λn2 (3.3)

is scalar curvature almost manifold −C(λ) on the space of the associated G-structure
Let {M2n+1, η, ξ,Φ, g} be an AC-manifold. [19], Weyl tensor projective recalls that the tensor or

curvature tensor of a pseudo-Riemannian manifold (Mn, g) is defined as follows

P (X, Y )Z = R(X, Y )Z − 1

n− 1
(⟨Q(Z), Y ⟩X − ⟨Q(Z), X⟩Y ),

where Q ↔ Qi
j = gikrkj is the Ricci operator. Its disappearance is required and sufficient for the

manifold Mn (locally) to admit a geodesic mapping onto the (pseudo) Euclidean space Rn (i.e. to be
projectively flat). On the other hand, it is clear that zero of this tensor is equal to the fact that

R(X, Y )Z =
K

n(n− 1)
(⟨Z, Y ⟩X − ⟨Z,X⟩Y )
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when is the scalar curvature of the metric g, that is equal to the curvature constancy of this manifold.
That is, they are spaces with constant curvature and are only projectively [19]. In terms of its
contravariant components, the projective curvature tensor can be written as

P i
jkl = Ri

jkl −
1

n− 1
(Sljδ

i
k − Skjδ

i
l), (3.4)

or, in terms of its covariant components,

Pijkl = Rijkl −
1

n− 1
(Sljgik − Skjgil). (3.5)

Proposition 3.4. 1. The tensor P is antisymmetric with respect to the second pair of indices;
i.e. Pijkl = −Pijlk.

2. Pijkl + Piklj + Piljk = 0.

Proof . (1) Pijkl = Rijkl − 1
n−1

(Sljgik − Skjgil) = −Rijlk +
1

n−1
(Skjgik − Sljgil) = −Pijlk.

(2) is obvious. □

Proposition 3.5. For a Riemannian manifold MPijkl = −Pjikl if and only if M is an Einstein
manifold.

Proof . Taking (3.5) and the properties of the Riemannian curvature tensor in order to obtain:

Pijkl = −Pjikl ⇔ Sjlgik − Sjkgil = −Sligjk + Skigjl.

The last equality is contracted with the object gih. Then we get Sljδ
k
h − Skjδ

h
l = −Sligjkg

ih +
Skigjlg

ih. We obtain the equality obtained by index k and h, then we obtain Sjl(n − 1) = −Sjl +
Kgjl ⇒ Sjl =

K
n
gjl, then M the Einstein manifold.

Conversely, let M be an Einstein manifold, i.e. Sij = λgij. Then Pijkl = Rijkl − 1
n−1

(Sljgik −
Skjgil) = −Rjikl − 1

n−1
(λgjlgik − λgkjgil) = −Rjikl +

1
n−1

(λgkjgil − λgjlgik) = −Rjikl +
1

n−1
(Silgjk −

Sikgjl) = −Pjikl. □

Proposition 3.6. For a Riemannian manifold M , the projective curvature tensor satisfies the equal-
ity Pijkl = Pklij if and only if the M-Einstein manifold.

Proof . The proof is carried out in the same manner as the previous Proposition’s proof. Let M be
a nearly manifold −C(λ) choosing the transaction Theorem 3.3, the components of the projective
curvature tensor for almost manifold−C(λ) on the space of the adjoint G -structure can be calculated:

(1) P 0
a0b̂

=R0
a0b̂

− 1

2n
Sab̂ =

1

2
λδab −

1

2n
Rb

caĉ.

(2) P 0
ab̂0

=R0
ab̂0

+
1

2n
Sab̂ =

1

2n
Rb

caĉ −
1

2
λδab .

(3) P a
bcd̂

=Ra
bcd̂

− 1

2n
(Sbd̂δ

a
c − Sbcδ

a
d̂
) = Ra

bcd̂
− 1

2n
(Rd

hbĥ
δac + λnδac δ

d
b ).

(4) P a
bd̂c

=
1

2n
(Rd

hbĥ
δac + λnδac δ

d
b )−Ra

bcd̂
. (3.6)

(5) P a
b̂cd

=Ra
b̂cd

− 1

2n
(Sb̂dδ

a
c − Sb̂cδ

a
d)

=λδabcd −
1

2n
(Rb

hdĥ
δac + λnδac δ

b
d −Rb

hcĥ
δad − λnδadδ

b
c)

=
1

2
λδabcd −

1

2n
(Rb

hdĥ
δac −Rb

hcĥ
δad).
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as well as complex conjugate formulas the remaining components are all zero.

1. Consider the equalities P a
00b = 0, P â

00b = 0, P 0
00b = 0, i.e. P i

00b = 0, i.e. P (ξ, εb)ξ = 0. Since

εb is the basis of the subspace D
√
−1

Φ , and the projection onto this subspace is the endomorphism π =
σ◦ℓ = −1

2
(Φ2+

√
−1Φ), therefore the resulting equality written as 1)P (ξ,Φ2X)ξ = 0; 2)P (ξ,ΦX)ξ =

0;∀X ∈ X(M). These equalities are equivalent to the following identity

P (ξ,Φ2X)ξ = 0;∀X ∈ X(M). (3.7)

Since Φ2X = −X + η(X)ξ, can be written in the form P (ξ,X)ξ = 0;∀X ∈ X(M). The procedure
described above is known as the identity restoration procedure [14, 13].

2. Consider the inequalities P 0
0ab = 0, P c

0ab = 0, P ĉ
0ab = 0, i.e. P i

0ab = 0, i.e. P (εa, εb)ξ = 0.Since

εb is the basis of the subspace D
√
−1

Φ , the projection onto, this subspace is the endomorphism π =
σ◦ℓ = −1

2
(Φ2+

√
−1Φ), therefore equality written as P (Φ2X+

√
−1ΦX,Φ2Y +

√
−1ΦY )ξ = 0,∀X ∈

X(M). In the last equality we select the real and imaginary parts, then we get: 1)P (Φ2X,Φ2Y )ξ −
P (ΦY,ΦX)ξ = 0; 2)P (Φ2Y,ΦX)ξ + P (ΦY,Φ2X)ξ = 0;∀X, Y ∈ X(M) These equalities are equiva-
lent to the following identity

P (Φ2X,Φ2Y )ξ − P (ΦY,ΦX)ξ = 0;∀X, Y ∈ X(M). (3.8)

3. Applying the above-mentioned procedure for recovering identity to the equalities P 0
0ab̂

= 0, P c
0ab̂

=

0, P ĉ
0ab̂

= 0, we obtain

P (Φ2X,Φ2Y )ξ − P (ΦY,ΦX)ξ = 0;∀X, Y ∈ X(M). (3.9)

From (3.8) and (3.9) we have

P (Φ2X,Φ2Y )ξ = P (ΦY,ΦX)ξ = 0;∀X, Y ∈ X(M). (3.10)

4. If we apply the procedure for restoring the identity to the equality P 0
0ab = 0, P c

a0b = 0, P ĉ
a0b = 0,

then we get
P (ξ,Φ2X)Φ2Y − P (ξ,ΦX)ΦY = 0;∀X, Y ∈ X(M). (3.11)

5. Apply the recovery procedure P 0
a0b̂

= 1
2
λδba− 1

2n
Sab̂, P

c
a0b̂

= 0, P ĉ
a0b̂

= 0, i.e P (ξ, εb̂)εa =
1
2
λ⟨εa, εb̂⟩ξ−

1
2n
S(εa, εb̂)ξ. Since εa is the basis of the subspace D

√
−1

Φ , εâ. Endomorphisms are projections onto

the subspaces that are based on the subspace D−1
Φ .π = σ ◦ ℓ = −1

2
(Φ2 +

√
−1Φ) and π̄ = σ̄ ◦ ℓ =

1
2
(Φ2+

√
−1Φ) then the resulting equality can be written in P (ξ,−Φ2X+

√
−1ΦX)(Φ2Y +

√
−1ΦY ) =

1
2
λ⟨Φ2X +

√
−1ΦX,Φ2Y +

√
−1ΦY )ξ − 1

2n
S(Φ2X +

√
−1ΦX,Φ2Y +

√
−1ΦY )ξ, ∀X, Y ∈ X(M).

We get the equivalent identity from the obtained equality of the real and imaginary parts.

P (ξ,Φ2X)Φ2Y + P (ξ,ΦX)ΦY =
1

2
λ⟨Φ2X,Φ2Y ⟩ξ+1

2
λ⟨ΦX,ΦY ⟩ξ

− 1

2n
S(Φ2X,Φ2Y )ξ

− 1

2n
S(ΦX,ΦY )ξ; ∀X, Y ∈ X(M). (3.12)



1986 Shihab

By (3.11), the last identity can be written in the form:

P (ξ,Φ2X)Φ2Y =P (ξ,ΦX)ΦY

=λ⟨Φ2X,Φ2Y ⟩ξ + λ⟨ΦX,ΦY ⟩ξ

− 1

n
S(Φ2X,Φ2Y )ξ − 1

n
S(ΦX,ΦY )ξ;∀X, Y ∈ X(M) (3.13)

6. Similarly, from the equalities P 0
a bc = 0, P d

a bc = 0, P d̂
a bc = 0 we get the identity

P (Φ2X,Φ2Y )Φ2Z = P (Φ2X,ΦY )ΦZ+P (ΦX,Φ2Y )ΦZ+P (ΦX,ΦY )Φ2Z;X, Y, Z ∈ X(M). (3.14)

7. Apply the identity recovery procedure to the equalities P 0
bcd̂

= 0, P a
bcd̂

= Ra
bcd̂

− 1
2n
Sbd̂δ

a
c , P

â
bcd̂

= 0,
we get

P (Φ2X,Φ2Y )Φ2Z + P (Φ2X,ΦY )ΦZ − P (ΦX,Φ2Y )ΦZ + P (ΦX,ΦY )Φ2Z

=R(Φ2X,Φ2Y )Φ2Z +R(Φ2X,ΦY )ΦZ −R(ΦX,Φ2Y )ΦZ +R(ΦX,ΦY )Φ2Z

− 1

2n
{S(Φ2Z,Φ2Y )Φ2XS(Φ2Z,ΦY )ΦX − S(ΦZ,Φ2X)ΦY S(ΦZ,ΦY )Φ2X}, (3.15)

for all X, Y, Z ∈ X(M). It is worth noting that the following equalities hold for the Ricci tensor,
which is almost manifold−C(λ) [18].

1)S(ξ, ξ) = 2λn;

2)S(ξ,X) = 2λnη(X);

3)S(Φ2X,Φ2Y ) = S(ΦX,ΦY );

4)S(ΦX,Φ2Y ) = −S(Φ2X,ΦY ), (3.16)

for all X, Y ∈ X(M). Then identity 3.15, taking into account 3.14, 3.16, and also applying the
identities of the Riemannian curvature of almost manifold −C(λ) [17], can be written in the following
form:

p(Φ2X,Φ2Y )Φ2Z − P (ΦX,Φ2Y )ΦZ =R(Φ2X,Φ2Y )Φ2Z −R(ΦX,Φ2Y )ΦZ

− 1

2n
{S(Φ2Z,Φ2Y )Φ2X + S(Φ2Z,ΦY )ΦX}, (3.17)

for all X, Y, Z ∈ X(M).
8. Consider the equalities: −P 0

bĉd̂
= 0, P a

bĉd̂
= 0, P â

bĉd̂
= Râ

bĉd̂
− 1

2n
(Sbd̂δ

â
ĉ − Sbĉδ

â
d̂
As in the previous

case, we get:

P (Φ2X,Φ2Y )Φ2Z − P (ΦX,ΦY )Φ2Z =R(Φ2X,Φ2Y )Φ2Z −R(ΦX,ΦY )Φ2Z

− 1

2n
{S(Φ2Z,Φ2Y )Φ2X − S(Φ2Z,Φ2X)Φ2Y + S(Φ2Z,ΦX)ΦY },

(3.18)

for all X, Y, Z ∈ X(M). Since the manifold −C(λ), the identity [17]

R(Φ2X,Φ2Y )Φ2Z−R(ΦX,ΦY )Φ2Z = λ{Φ2X⟨ΦY,ΦZ⟩−ΦX⟨Y,ΦZ⟩−Φ2Y ⟨ΦX,ΦZ⟩+ΦY ⟨X,ΦZ⟩};
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for all X, Y, Z ∈ X(M), almost identifies 3.18 and takes the form:

P (Φ2X,Φ2Y )Φ2Z − P (ΦX,ΦY )Φ2Z

=λ Φ2X⟨ΦY,ΦZ⟩ − ΦX⟨Y,ΦZ⟩ − Φ2Y ⟨ΦX,ΦZ⟩+ ΦY ⟨X,ΦZ⟩

− 1

2n
{S(Φ2Z,Φ2Y )Φ2X − S(Φ2Z,Φ2X)Φ2Y + S(Φ2Z,ΦX)ΦY }, (3.19)

for all X, Y, Z ∈ X(M). The preceding theorem can be summarized as follows. □

Theorem 3.7. The following identities are equivalent to the projective curvature tensor of an almost
manifold−C(λ):

1. P (ξ,Φ2X)ξ = 0; 2)P (ξ,X)ξ = 0; 3)P (Φ2X,Φ2Y )ξ − P (ΦY,ΦX)ξ = 0.
2. P (Φ2X,Φ2Y )ξ + P (ΦY,ΦX)ξ = 0.
3. P (Φ2X,Φ2Y )ξ = P (ΦY,ΦX)ξ = 0.
6. P (ξ,Φ2X)Φ2Y − P (ξ,ΦX)ΦY =
7. P (ξ,Φ2X)Φ2Y = P (ξ,ΦX)ΦY = λ⟨Φ2X,Φ2Y ⟩ξ+λ⟨ΦX,ΦY ⟩ξ− 1

n
S(Φ2X,Φ2Y )ξ− 1

n
S(ΦX,ΦY )ξ;

8. P (Φ2X,Φ2Y )Φ2Z = P (Φ2X,ΦY )ΦZ + P (ΦX,Φ2Y )ΦZ + P (ΦX,ΦY )Φ2Z;
9. P (Φ2X,Φ2Y )Φ2Z−P (ΦX,Φ2Y )ΦZ = R(Φ2X,Φ2Y )Φ2Z−R(ΦX,Φ2Y )ΦZ− 1

2n
{S(Φ2Z,Φ2Y )Φ2X+

S(Φ2Z,ΦY )ΦX};
10. P (Φ2X,Φ2Y )Φ2Z−P (ΦX,ΦY )Φ2Z = λ{Φ2X⟨ΦY,ΦZ⟩−ΦX⟨Y,ΦZ⟩−Φ2Y ⟨ΦX,ΦZ⟩+ΦY ⟨X,ΦZ⟩}−
1
2n
{S(Φ2Z,Φ2Y )Φ2X − S(Φ2Z,ΦY )ΦX − S(Φ2Z,Φ2X)Φ2Y + S(Φ2Z,ΦX)ΦY };X, Y, Z ∈ X(M)

4. Classes of almost manifold −C(λ)

The identity

P (ξ,Φ2X)Φ2Y =P (ξ,ΦX)ΦY

=λ⟨Φ2X,Φ2Y ⟩ξ + λ⟨ΦX,ΦY ⟩ξ − 1

n
S(Φ2X,Φ2Y )ξ − 1

n
S(ΦX,ΦY )ξ, (4.1)

for all X, Y, Z ∈ X(M), is the first additional property of an almost manifold’s projective curvature
tensor of an almost manifold C(λ).

Definition 4.1. C(λ) on manifold M that satisfies the first additional identity of projective cur-
vature, or is a manifold of class CP1 if

P (ξ,Φ2X)Φ2Y = P (ξ,ΦX)ΦY = 0; X, Y, Z ∈ X(M). (4.2)

Theorem 4.2. Almost manifold C(λ) is a manifold of class CP if and only if P 0
a0b̂

= 0, where P 0
a0b̂

is the projective curvature tensor component for almost manifold C(λ) on the space of the adjoint G
-structure.

Proof . Given almost manifold C- is a manifold of class CP1. Then, according to definition 4.2,
there is a space in which the identity is written P (ξ,ΦX)ΦY = 0;∀X, Y ∈ X(M); in the attached
G-structure written in the form of P 0

i0j(ΦY )i(ΦX)jξ + P c
i0j(ΦY )i(ΦX)jεc + P ĉ

i0j(ΦY )i(ΦX)jεĉ = 0,
which, when combined with 2.3 and 3.6, will take the form P 0

a0b̂
ξ + P 0

b̂0a
ξ = 0. i.e. P 0

a0b̂
= 0.

Conversely, let for an almost manifold C(λ) –and P 0
a0b̂

= 0. Since for almost manifold C(λ) -we

obtain P c
a0b̂

= 0 and P ĉ
a0b̂

= 0, using the procedure for reconstructing the identities to the equalities

P i
a0b̂

= 0 we get P (ξ,Φ2X)Φ2Y = P (ξ,ΦX)ΦY = 0;∀X, Y ∈ X(M). □
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Theorem 4.3. Almost manifold C(λ), which is a manifold of the class CP1, must be an Einstein
manifold.

Proof . Let M be almost manifold C(λ) - the manifold of class CP1, that is, P
0
a0b̂

= 0. By virtue of

3.6: 1, this is equivalent to 1
2
λδba − 1

2n
Rb

caĉ = 0, i.e.

Rb
caĉ = λnδba. (4.3)

Then for the Ricci tensor we have S00 = 2λn, Sab̂ = Sb̂a = Rb
caĉ + λnδba = 2λnδba, i.e. Sij = 2nλgij

i.e. M - Einstein manifold.□
The second additional property of the projective curvature tensor of an almost manifold C(λ) is
called identity

P (Φ2X,Φ2Y )Φ2Z − P (ΦX,Φ2Y )ΦZ =R(Φ2X,Φ2Y )Φ2Z −R(ΦX,Φ2Y )ΦZ

− 1

2n
{S(Φ2Z, Phi2Y )Φ2X + S(Φ2Z,ΦY )ΦX}, (4.4)

for all X, Y, Z ∈ X(M). □

Definition 4.4. The C(λ) on manifold M that satisfies the second additional identity of projective
curvature, or is a manifold of classCP2 if

P (Φ2X,Φ2Y )Φ2Z − P (ΦX,Φ2Y )ΦZ = 0; ∀X, Y, Z ∈ X(M). (4.5)

Theorem 4.5. Almost manifold C(λ) is a manifold of class CP2 if and only if P a
bcd̂

= 0, where P a
bcd̂

is the projective curvature tensor component for almost manifold C(λ) on the space of the adjoint
G-structure.

Proof . The proof is the same as in Theorem 4.2. □

Theorem 4.6. Almost manifold C(λ), which is a manifold of the class CP2, must be a manifold of
pointwise constant Φ-holomorphic sectional curvature with c = 2λ

Proof . Consider M is almost manifold C(λ) - of class CP2, that is, P
a
bcd̂

= 0 By virtue of 3.6: 3,

this is equivalent to the fact that P a
bcd̂

= Ra
bcd̂

− 1
2n
(Rd

hbĥ
δac + λnδac δ

d
b ) = 0, i.e.

Ra
bcd̂

=
1

2n

(
Rd

hbĥ
δac + λnδac δ

d
b

)
. (4.6)

Rb
caĉ = λnδba is obtained by reducing equality 4.9 with respect to the indices a and c. This means

that the manifold is an Einstein manifold. Taking equality into account, Rb
caĉ = λnδba identity 4.9

takes the form Ra
bcd̂

= λδac δ
d
b .

The obtained equality is symmetrized first with respect to indices a and d, and then with respect
to indices b and c, yielding R

(ad
( (bc)) = λδ̃adbc ,that is, δ̃adbc = δab δ

d
c + δac δ

d
b . The manifold of point

constant holomorphic sectional curvature c = 2λ [18] is the manifold of point constant.□
We call the identity

P (Φ2X,Φ2Y )Φ2Z − P (ΦX,ΦY )Φ2Z =λ{Φ2X⟨ΦY,ΦZ⟩ − ΦX⟨Y,ΦZ⟩ − Φ2Y ⟨ΦX,ΦZ⟩+ ΦY ⟨X,ΦZ⟩}

− 1

2n
{S(Φ2Z,Φ2Y )Φ2X − S(Φ2Z,ΦY )ΦX

− S(Φ2Z,Φ2X)Φ2Y + S(Φ2Z,ΦX)ΦY }, (4.7)

for all X, Y, Z ∈ X(M). The projective curvature tensor’s third additional property is almost mani-
fold C(λ). □
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Definition 4.7. C(λ) on manifold M that satisfies the second additional identity of projective cur-
vature, or is a manifold of classCP3 if

P (Φ2X,Φ2Y )Φ2Z − P (ΦX,ΦY )Φ2Z = 0;X, Y, Z ∈ X(M). (4.8)

Theorem 4.8. Almost manifold C(λ) is a manifold of class CP if and only if P â
bĉd̂

= 0, where P â
bĉd̂

is the projective curvature tensor component for almost manifold C(λ) on the space of the adjoint G
-structure.

Proof . The proof is the same as in Theorem 4.2. □

Theorem 4.9. Almost manifold C(λ), which is a manifold of the class CP3, must be an Einstein
manifold

Proof . Let M be an almost manifold C - of class CP3, i.e., PP â
bĉd̂

= 0 is 0.This equivalents

to 1
2
λδabcd − 1

2n
(Rb

hdĥ
δac − Rb

hcĥ
δad) = 0 according to 3.6: 5.Then we have S00 = 2λn, Sab̂ = Sb̂a =

Rb
caĉ + λnδba = 2λnδba, i.e. Sij = 2nλgij for the Ricci tensor, which is M -Einstein manifold. □
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